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ABSTRACT.

The steady state burn of fusion plasmas will require a significant increase in the amount and

sophistication of feedback control with respect to present day experiments. In the last years, it has

been realised that more involved real time schemes need significant advances in the signal processing

and data analysis methods. Since one of the crucial issues for the control of reactor relevant

configurations is the proper identification of the plasma to be controlled, various methods for the

determination of the magnetic topology are being developed at JET. In addition to a real time

algorithm (EQUINOX) to solve the Grad-Shafranov equation on a time scale of ms, a new approach

based on Bayesian statistics is also providing very reliable and fast results. Robust methods of

confinement regime identification are a prerequisite for safe, general control schemes. New identifiers

based on Support Vector Machines have been developed and they have success rates exceeding

99% in determining whether plasmas are in the L or H mode. Prediction of harmful events is also an

important issue in the perspective of safely operating reactor relevant devices. A new disruption

predictor based on Support Vector Machines is being developed and has already provided success

rates higher than 90% in realistic real time conditions. Moreover, the generalisation capability of

this new predictor has been confirmed by applying it to new experimental campaigns not used for

the training. The success rate remains high even more than ten campaigns, which means more than

three years, after the last one used for the training. The enormous progress of video camera

technologies in the last decades has increased the range of applications of image diagnostics. Their

deployment in real time requires the development of new image processing algorithms. The

innovative technology of Cellular Nonlinear Networks has already been implemented successfully

on JET for the real time identification of hot spots. A series of new feedback schemes has also been

explicitly developed not much to control the plasma but to really improve the physics understanding

of some phenomena. Particularly interesting are the simultaneous control of the safety factor and

pressure profiles and the real time tracking of Toroidal Alfven Eigenmode instabilities.  These

advanced feedback schemes for physics understanding often require more advanced signal processing

techniques like adaptive filtering.

1. INTRODUCTION

Even if the long term goal of Magnetic Confinement Nuclear Fusion (MCNF) is the sustained,

steady state burn of high temperature plasmas, nowadays even in the most sophisticated devices

many parameters are still set in advance and not controlled in feedback during the discharges. A

typical example is the confinement regime, and in particular the H mode, and the Advanced Scenarios

(AS) with Internal Transport Barriers (ITBs). The plasma is assumed to access the H mode or

trigger an ITB when the power input reaches a certain threshold and the times for the onset of these

two types of regimes are fixed in advance and not detected in real time. In case of anomalous

behaviour of the discharge, for whatever reason, if the plasma is not in the expected confinement

regime, the feed forward control can be inadequate; the other active feedback controls can have a
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detrimental effect on the performance and even increase the chances of disruptions. Another important

aspect of the plasma configuration, which is not sufficiently controlled in feedback, is certainly the

internal topology of the magnetic fields. Even if the plasma boundary is typically well determined

and controlled in practically all present day devices, the internal current profile is not.

One of the main difficulties, which has prevented so far a more systematic use of real time

feedback in MCNF, is certainly the problem of the identification of the plasma. i.e. the proper

measurement of the plasma parameters relevant to the control objectives. Any form of control

requires a careful determination of the system status and this is a major challenge in the case of

thermonuclear experiments. Even if in modern machines the parameters of the discharge are measured

by a wide range of diagnostics, deriving sound and reliable information in the short time available

for control has proved to be a significant difficulty in the last decades. One of the reasons, for the

relative slow pace of progress in this field, has certainly been the lack of data analysis tools adequate

for control. Indeed the offline analysis methods developed to understand the physics behaviour of

the plasma do not have the same objectives as the real time feedback and therefore are not always

satisfactory in this respect. In modern, reactor grade Tokamak machines the data processing for

control is complicated by several issues. First of all many quantities have to be measured. Secondly

the amount of information to be processed can be enormous. JET real time system includes about

30 diagnostics for a total number of more than 50 signals to be handled by the Asynchronous

Transfer Mode  (ATM) network.  Another important peculiar aspect of control for Fusion to be kept

in mind is the fact that high temperature plasmas are systems very difficult to access for measurement.

A lot of crucial information is therefore derived from measurements taken outside the plasma

exploiting their natural emission. The interpretation of these signals needs solving sophisticated

inversion problems, which are difficult, sometimes ill-posed and can require significant

computational resources. This is aggravated by the nonlinear interactions between various phenomena

and subsystems.

In this paper various innovative data analysis tools, explicitly conceived for application of feedback

control in a Tokamak environment, are reviewed. They have been tested on JET and therefore they

are expected to provide a good reference for the development of analogous techniques in ITER.

First of all, to address the real time determination of the magnetic topology, a couple of alternative

methodologies are described: the first is based on a fully probabilistic treatment based on Bayesian

statistics [1], the second on a more traditional solution of the Grad-Shafranov equation [2] (see

section 2.1). A very powerful hybrid method, combining Support Vector Machines (SVMs) with

the Parzen window using Bayes formula [3], is shown to be able to identify whether the plasma is

in the H or L mode of confinement with practically 100% success rate within the error bars of the

measurements (see section 2.2). Some advanced data analysis techniques have also been applied to

the issue of prediction. In Tokamak operation, the main event to avoid is certainly disruptions,

which are not only harmful to the experimental programme but can also severely damage the device.

Some refinements of the SVM methodology have been explicitly implemented for this purpose and
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have allowed an unprecedented level of accuracy on a large JET database of disruptive discharges

(see section 3). The developed controllers are very robust and their prediction capability remains

very high even more than ten campaigns, covering and interval of more than three years, after the

last one used for the training; it is worth mentioning that this capability has been verified using a

database of more than 2000 discharges, the largest one even considered to test machine learning

applications for disruption prediction. In the last years, the improvements in camera technologies

have allowed a much higher deployments of video diagnostics in fusion. On JET the number of

instruments using cameras, both visible and infrared, has increased significantly and now some of

them can produce even Gbytes of data per shot. New methods and techniques to make use of all this

information for feedback purposes are therefore strongly required. The technology of Cellular

Nonlinear Networks [4] has been successfully deployed to analyse in real time infrared images and

detect hot spots on JET inner wall (see section 4). The use of feedback control for direct study and

understanding of physical phenomena has become much more common recently with the installation

of two new sets of antennas [5] to excite and study Toroidal Alfven Eigenmodes (TAE) [6] (see

section 5). Real time tracking of TAE modes provides a lot of information about the properties of

these instabilities, like their damping rate. Another important subject is the simultaneous control of

both the current and pressure profiles. In addition to the operational relevance, these studies are

expected to help clarify the physics of ITB triggering [7].  Feedback for physical understanding

requires often more sophisticated real time signal processing than usually available and indeed in

the last years a lot of progress has been made in adaptive filtering techniques like the Kalman filter

[8] for various applications (see section 6). The new prospects of advanced signal processing and

data analysis tools for feedback control are reviewed in the last section of the paper.

2. IDENTIFICATION: MAGNETIC TOPOLOGY AND CONFINEMENT REGIME

2.1 MAGNETIC TOPOLOGY

An important weakness of practically all present day feedback schemes for Tokamak plasmas is the

lack of a reliable real time identification of the magnetic topology. The plasma boundary is routinely

determined and controlled in many devices but when it comes to the internal configuration of the

fields, only offline codes are available. They are typically based on the solution of the Grad-Shafranov

equation, which assumes complete equilibrium between the magnetic and kinetic pressure inside

the plasma. In the main implementations of the Grad-Shafranov equation in the codes for the

determination of the magnetic topology, like EFIT [9], additional hypotheses about the physics are

normally assumed, like zero plasma velocity or the absence of plasma currents at the separatrix. In

order to avoid assumptions about the physics and to provide directly an interval of confidence on

the magnetic reconstructions, a different method, purely probabilistic and based on Bayesian statistics,

is being tested in JET [10]. In this approach, the plasma and the surrounding structures are modelled

with a series of current beams. The configuration of the internal fields is determined by calculating

the most probable distribution of the currents in the beams given the measurements available. The
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full implementation of this method requires the complete statistical model of the diagnostics providing

the measurements used to reconstruct the fields. Properly devising such models can be a quite

labour intensive task but the advantages are potentially very significant. First of all a coherent and

complete estimate of the confidence intervals can be provided directly since the approach is

probabilistic in nature. Secondly no assumptions about the physical behaviour of the system are

made and therefore the exploitation of the available information in the measurements is maximised.

An example of the results is shown in figure 1, where the obtained magnetic topology for both

limiter and X point configurations are reported, together with the confidence intervals in the most

important topological parameters of the magnetic configuration.

Since significant efforts have been devoted to obtain an analytical solution for the inversion

problem, no iterations are required and therefore the approach can also be easily used for feedback

control. Even without any particular optimisation to improve real time performance, the

computational time required is already more than acceptable. As an example, in figure 2 it is shown

how the magnetic topology with the highest posterior probability for a JET discharge is calculated

in about 1 ms on a 2GHz clock laptop computer. The good performance in terms of speed is good

enough to provide even the confidence interval in real time. An example of this is also shown in

figure 2. The formulation of the uncertainty intervals is a bit more computation intensive but, with

a minimum of optimisation, this can also be easily provided with a time resolution of the order of

tens of ms and therefore still within the constraints of typical real time applications. Another important

advantage of the Bayesian method is that any constraint or smoothing can be accommodated in the

“a priori” probability of the Bayesian treatment. For feedback control several alternatives are

potentially promising. Priors derived from similar previous discharges are expected to be often

adequate but also additional information obtained from other sources, like simulations or theoretical

models can also be accommodated. Moreover the method is perfectly suited to exploit the synergy

between different measurements techniques. The information of diagnostics different from the

traditional pickup coils can be integrated inside a unique estimator. In particular, the positive impact

of internal measurements of the magnetic fields is illustrated in figure 3, which shows the

improvement in the uncertainty intervals which can be achieved by combining the measurements

of different systems.

Despite the fact that the method just described is quite fast to compute and potentially very

innovative, it is necessary to compare its results with some more traditional methods, which solve

the Grad Shafranov equation

(1)

with ψ(r,z) the poloidal flux and ∇* the linear elliptic operator, defined as
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in which µ0 is the magnetic permeability of vacuum.

The magnetic field can be decomposed as B=Bp+Bφ where Bp =(Br, Bz) is the poloidal component

and Bφ is the toroidal component. Using this decomposition, the poloidal flux ψ(r,z) can be expressed

as follows:

 (3)

If ef indicates the unit vector in the toroidal direction and ψ the diamagnetic function, the poloidal

and toroidal component of the magnetic field can been written as in the following formulas:

 (4)

The right hand side the Grad Shafranov equation involves the functions p(ψ) and f(ψ), which are

not directly measured inside the plasma. It can also be noted that in vacuum, where no plasma

currents are present, the magnetic flux y satisfies:

(5)

In order to find the plasma equilibrium, the non linear bidimensional differential Grad Shafranov

equation (1) must be solved. The right hand side of this equation is composed of two functions

representing the pressure p and the diamagnetic function f. The numerical identification problem is

formulated as a least-square minimization based on available measurements with a Tikhonov

regularization [11]. In the present version of the solver, the experimental measurements that are

planned to be used for the identification are the magnetic pick-up coils on the vacuum vessel, the

interferometric and polarimetric measurements and the Motional Stark Effect (MSE). From the

flux loops measurements located around the vacuum vessel, the poloidal flux Ψ(Mi)=hi on particular

positions Mi on Γ can be derived,

 (6)

where Γ is the reference surface outside the plasma.

Thanks to an interpolation between the points Mi, these measurements provide the Dirichlet boundary

conditions hi. The magnetic probes give the component of the magnetic poloidal field which is

tangent to the vacuum vessel:
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(7)

The interferometric measurements provide the density integrals over the chords Ci

       (8)

where ne represents the electronic density which is approximately constant on each flux surface.

The polarimetric measurements give the Faraday rotation of the polarization angle of infrared laser

radiation crossing the plasma along the same chords Ci as the interferometer:

    (9)

In the last relation the component of the poloidal field tangent to Ci is B// and d/dn represents the

normal derivative of Ψ with respect to Ci.

The Motional Stark effect (MSE) angle gi is taken at different points xi=(ri,zi):

       (10)

and can be linked to the local pinch of the magnetic field lines.

The problem is thus reduced to finding a solution that minimizes a cost function defined as:

     (11)

with

            
(12)

with mse the reconstructed measurement and K1 to K3 the weighting parameters enabling to give

more or less importance to the corresponding experimental measurements. The inverse problem of
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    (13)

where ε1, ε2 and ε3 are the regularizing parameters.

Recently at JET an ambitious project has been launched to implement and validate accurately

the method previously described with a new specific code called EQUINOX [11] explicitly developed

for real-time applications. The version of the code using only magnetic measurements has already

been completely validated. A set of 130 JET discharges has been carefully selected exactly for this

purpose. This database covers the vast majority of JET operational space. The plasma current range

covered is between 1.12 and 3.09 MA, the magnetic field is between 1.68 and 3.42 T, the range in

triangularity is 0.06<δ<0.51. It is also worth mentioning that also advanced scenarios like the hybrid

have been included. The validation strategy consists of comparison of the EQUINOX results of

global and local quantities with EFIT, the reference code at JET for magnetic reconstructions.

Some of the most important plasma parameters which have been compared systematically are: the

plasma volume, the plasma current, the safety factor at 95% of the minor radius, the safety factor

on axis, the plasma internal inductance, the poloidal beta, the horizontal and vertical position of the

X point.  For the main parameters of the last closed flux surface, the EQUINOX estimates have also

been compared with the code used at JET for boundary control: XLOC. All these tests have given

very positive results. In figure 4 the time evolution of the radial position of the βpol + li/2 is reported,

together with a statistical comparison of the distance RIG between the last closed magnetic surface

and the inner wall in the equatorial plane. It is worth mentioning that an evaluation of the sensitivity

of the code to the magnetic measurement errors is also being performed. The validation of the

version of EQUINOX including internal magnetic measurements (polarimetry and MSE) is under

way together with the cross validation with the Bayesian approach.

2.2 CONFINEMENT REGIME IDENTIFICATION

In the ASDEX device it was discovered in 1982 that, increasing sufficiently the input power, the

plasma tended to transit spontaneously to an enhanced confinement mode called the High

confinement or H-mode [12]. The H-mode is characterized by the presence of a thin, edge region of

very low transport. Steep gradients in the density and temperature profiles are observed across this

layer, which is commonly referred to as the ‘H-mode pedestal’. The thickness of the pedestal is

typically 1-5% of the radius of the plasma, and therefore on JET the measured pedestal widths are

of the order of a few centimetres. The low transport region at the edge of the H-mode plasma is

known as the Edge Transport Barrier (ETB). Once the correct conditions are met, the transition

from L to H mode occurs with the spontaneous formation of an ETB and, once the ETB is starting

to develop, the confinement at the edge of the plasma improves with consequent further growth of

the H-mode pedestal.

The first step, in the work described in this section, is the off-line training of a classifier for the
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application to the real time identification of the confinement regime, L or H mode, in JET. The

approach adopted has been a “hybrid classifier” [3], combining via the Bayes formula a SVM

system with a non parametric statistical classifier based on the Parzen window.

SVM is a universal constructive learning procedure, based on statistical learning theory [13]. It

consists of projecting the feature vectors into a high dimensional space – typically of much higher

dimensions than the original feature space. With an appropriate linear or nonlinear mapping to a

sufficiently high dimensional space, data from two categories can always be separated by a

hyperplane. In more detail, given a training set of l samples (x1, y1),...,(xl, yl) xi ∈ ℜn in the case of

a binary classification problem (i.e. yi ∈{+1,-1}), SVM proceeds estimating the following decision

function:

                (14)

H (xi, x) is a kernel function [14] and the parameters αi, i = 1,...,l are the solutions of the following

quadratic optimization with linear constraints:

maximization of the functional

          (15)

subject to the constraints

                (16)

where C is a regularization parameter.

The data points xi associated with the nonzero αi are called support vectors. Once the support

vectors have been determined, the SVM decision function can be expressed as

where D (x) is the distance of the feature point  to the hyper-plane that separates the two classes

and, hence, the hyper-plane points satisfy D (x) = 0.

The rule to classify a feature vector  as L mode (class CL) or H mode (class CH) can be expressed

as:

if sgn (D(u)) ≥ 0

u ∈ CL

otherwise

u ∈ CH

where sgn(t) is the sign function.
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The database, used to assess the performance of the predictor developed for JET, is a set of 50

discharges, with the divertor MARKII Gas Box with the Septum, for which the transition times

have been determined by the experts with a high degree of confidence [15]. Only for 42 shots all

signals are available during 2s segments around the transition from low (L) to high (H) confinement

regime. 80% of them are used for training purposes (33) and the rest constitute the corresponding

test set. Regarding the H/L transition, 48 shots have been analysed by the specialists. Only 38

discharges have all the signals available during 2 s around the transition and again, an 80% of them

(30 shots) are used for the training and the remaining ones for the test.

To study JET L/H transitions, 35 signals have been selected, on the basis of expert knowledge, to

provide the basic information to discriminate between the L and H mode phases of the discharges.

They include also geometrical parameters to take into account the position/shape of the plasma inside

the vacuum vessel. The signals have then been provided as inputs to a tree structured methodology for

classification: CART (Classification And Regression Trees) [16]. The CART outputs provide as result

the variable ranking of the most relevant signals for the classification problem. For JET discharges

with the Septum divertor configuration, six signals are determined as the most important ones for the

L/H transition (table I) and a different set of six variables for the H/L transition [17].

Therefore, the feature vectors to identify the confinement regime belong to a 6-dimensional

space, where each coordinate is the value of one of the physical quantities that appear in table I. It

should be emphasised that these quantities correspond to the same time instant. They have also

been properly normalised according to the relation

           (17)

so that they all assume values in the interval [0,1], in order to avoid bias in the classification due to

the different numerical amplitudes of the various quantities.

Instead of using SVM, the classification problem can be addressed with more classical statistical

methods and in particular density estimators. Probability density estimators are mathematical

expressions which can be used to derive a probability distribution function from individual samples.

Among the various non-parametric probability density estimators, the Parzen window method is

one of the most widely used [18]. For univariate distributions, i.e. probability distributions depending

on just one variable, the kernel estimator is given by

                 (18)

where l is the number of samples, h the window width and the function K (t) is called a kernel. The

above equation expresses the estimate of  as an average of functions of x and the samples Xi.

Practically,  K (t) is used for interpolation and each sample contributes to the estimate depending on
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mathematical conditions: K (t) ≥ 0 and ∫K (t) dt = 1. The parameter h determines the amount of

smoothing of p (x): a small value of this parameter yields a rougher curve, whereas a large value

increases the level of smoothing. For a normal density kernel, the one used in the application

discussed in this paper, the width h can be selected using the following criterion (called the “normal

reference rule”) [19]:

               (19)

where a suitable estimate for σ is the standard deviation. This treatment can be easily generalised to

multivariate probability distributions giving, for the case of a Guassian Kernel, the following

expression

          (20)

The same examples used to train the SVM classifiers can also constitute the elements of the

probability density estimation with the Parzen window. Two different probability distributions can

be calculated, one for the H mode pH(x) and one for the L mode pL(x). Then any new example Xn

can be classified by calculating which of the two probabilities, pH(Xn) or pL(Xn), is higher.

The two approaches just described, SVM and probability density estimators, provide very good

results in terms of success rate but there are margins for improvement. The main idea behind “hybrid

methods” consists of combining different classifiers using Bayes decision theory. Given the task of

determining to which of M classes, ω1, ω2, …, ωM, a new feature vector x belongs, the final decision

can be made using Bayes rule

   (21)

In practice, the posterior probability that the unknown pattern belongs to the respective class wk, is

expressed by the Bayes formula in terms of the likelihood p(x|ωk) and the a priori probability

P(ωk). The hybrid approach applied to the discrimination of the confinement regime consists of
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probability P(ωk) after proper normalization. Secondly, the probability density estimator derived
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The detailed of the methods and the relative calculations can be found in [3]. Here we simply report

the most important results in table II. The success rates for SVM with both linear and nonlinear

(Radial Basis Function RBF) kernels are compared with the density estimator using the Parzen

window and a hybrid classifier (density estimator plus SVM with RBF kernel). The performance of
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the hybrid classifier is clearly the best for both the L to H and the H to L transition. The extremely

high success rate motivated directly the systematic use of the approach on wide database and the

deployment in concrete real time applications.

3. DISRUPTION PREDICTION

Disruptions are sudden losses of global plasma stability, which lead to abrupt confinement

degradation and the termination of discharges in Tokamak devices. In addition to slowing down or

even compromising the research programme, they can cause damage to the plasma facing components

and even constitute a hazard for the structural integrity of the machines [20]. Various instabilities

can trigger disruptions and force the plasma out of its safe operational space even on time scales of

the order of milliseconds. Up to now, control of these instabilities has proven to be elusive and

disruptions constitute an unavoidable aspect of Tokamak operation particularly in high performance

configurations.

The detailed understanding of the plasma evolution, from the onset of the dangerous instabilities

to the final triggering of disruptions, is an extremely difficult task. The physics of these instabilities

is very often highly complex and nonlinear and the relevant information for prediction and control

must be extracted from an enormous amount of signals, routinely acquired in a Tokamak. Since no

theoretical model is available to detect the incoming of a dangerous situation, in the last decade,

various machine learning techniques, mainly Neural Networks and Support Vector Machines, have

been tried for disruption prediction. These computational tools are trained using known examples

and they can therefore be tuned to learn from the data and recognise the specific behaviour they

were designed to identify. The data driven models of disruptions obtained so far have been more

useful for the physical understanding but have rarely been tested in real-time situations, where the

need of predicting disruptions extends to the whole evolution of the pulse.

For the analysis reported in this section, the complete evolution of every shot has been followed

to detect the approach of a disruption. In the set of discharges originally selected, all the pulses with

the available diagnostic information have been considered. The training and test sets, summarised

in table III, have been selected completely randomly to avoid any bias. In detail, 80% of the disruptive

shots (263 discharges) and 80% of the non disruptive shots (175 discharges) of the training database

have been chosen randomly for the training process.

The most important signals for disruption prediction have been identified using a nonlinear

correlation technique based on the CART method. The final thirteen signals retained are reported in

table IV. In any case, the vast majority of these signals had also been employed in previous

investigations on the subject and are in general considered a reasonable choice by the experts.

Because each measurement has been acquired by a different diagnostic, a simple interpolation has

been applied to every signal to standardize the time basis; a sampling rate of 1 kHz has proved to be

adequate for the purpose of the analysis.

To represent the relevant characteristics of the 13 signals it is necessary to condense the main
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features of a shot in a compact way. This feature extraction procedure is based on the results of a

previous investigation [21]. There each signal has been divided in temporal segments of 30 ms, a

time interval that proved to be long enough to show plasma tendencies. These 13 temporal segments

are concatenated in a single “feature vector” per pulse after suitable normalization. In the present

case, a visual inspection indicates that the high frequency components in the signals become more

important close to the disruptions. Consequently, the FFT (Fast Fourier Transform) has been applied

to each temporal segment and only the standard deviation of the positive frequency spectrum has

been retained.”

After the selection of the features vectors as just described, the training of the classifiers has

been performed by providing the learning systems with the two classes of inputs: the aforementioned

features for time slices belonging to disruptive and non disruptive discharges.

One of the main innovative aspects of the approach described in this section has been the choice

of training a series of SVM predictors optimised for various intervals before the disruptions. These

predictors are then deployed in parallel, each one analysing a different time interval of the signals

being measured during the evolution of the discharge. The main idea is illustrated graphically in

figure 5. Each predictor has been optimized for a different 30 ms slice of the discharge and they are

then used to analyse the corresponding time interval of the shot.

Originally, to cover the whole possible window of interest, 7 intervals of 30 ms each have been

considered ([-60,-30], [-90,-60], [-120,-90], [-150,-120], [-180,-150], [-210, -180], [-240,-210] where

the various numbers indicate the ms before the occurrence of the disruption). In the end the sequence

of the first three classifiers has proven to provide the best results.

In any case, the number of predictions provided by the sequence of classifiers is equal to the

number of classifiers. Moreover, being the SVMs independent, each one provides a different

prediction about the incoming of a disruption. Therefore, a decision function is necessary to determine

automatically whether an alarm has to be triggered or not. The implementation of this function with

another SVM system, using as inputs the outputs of the n SVM classifiers analysing the plasma

signals, is the second main innovative aspect of the described technique.

The details of the procedure used to develop this additional SVM implementing the decision

function are reported in [22]. The overall results of this predictor based on a two layers of SVM

systems are quite positive. They are reported for all the various sequences of the seven original

predictors in table V. It can be seen that, as mentioned before, the sequence of three SVM predictors

provides the best results, since it probably strikes the best balance between simplicity and

completeness of information. The global success rate of about 93% and the level of less than 1% of

missed alarms are very encouraging. It is worth mentioning that the global predictor has been

optimised with the aim of minimising the number of missed alarms, implicitly considering machine

protection the top priority. In case of experimental programmes with other objectives and reduced

risks of damage, of course a different trade off could be found to maximise the scientific exploitation

of the device.
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The success rate and the false alarms obtained for a series of JET experimental campaigns are

shown in figure 6. The interval covers the period of JET operation under EFDA from the first

campaign in the year 2000 up to C19, which took place in 2005. The predictor has been tested with

example up to campaign C7 in 2002 and it has then been applied to the following campaigns

without any further adjustment. The decline in performance with time is very slow. The relatively

unusual low performance in C11 can be explained in terms of the characteristics of this campaign.

C11 was the 2003 Trace Tritium Experiments, in which particular attention was devoted to avoid

disruptions. Since the predictor has been optimised to minimise missed alarms at the price of more

false alarms, in this campaign the extremely low number of disruptions decreases the statistical

performance of the method. The increase in the false alarms after C14 can easily be explained by

various modifications of JET implemented in the shutdown just after that campaign, which have

implied significant changes in the signals acquired and in the type of configurations run on the

machine. The ones affecting the predictor most are: a) the increase in the elongation and triangularity

allowed by the Load Bearing Septum Replacement Plate b) the most frequent use of Error Field

Correction Coils affecting the Mode Lock signal 3) the installation of a new bolometer system that

provides different signals the predictor was originally trained with.

These results are extremely relevant because, contrary to most previous works, in the present

case the complete evolution of the considered discharges is followed from the beginning to the end,

without any selection of the time slices. Moreover the predictor provides robust results in terms of

success rate even for shots performed years after the ones used for the training. The applied database

is also the biggest used so far at JET for studying real-time disruption prediction using learning

systems since it includes more than 2100 discharges.

4. IMAGE PROCESSING

In the last years, the continuous progress in camera technologies has further motivated the use of

these instruments for plasma diagnostics. Video movies indeed provide a lot of information in a

form which is particularly intuitive for scientists to interpret, even if extracting quantitative

information from the images can be a complex task. Cameras have therefore become much more

common tools to monitor the radiation emitted from the plasma and the first wall, both in the

visible and in the infrared range of frequencies.  On the other hand, the use of images for feedback

control is still in its infancy in the fusion community. In JET a new technology has been tested with

the dual purpose of processing heavy images in short time and to test a potentially radiation hard

technology. The implemented solution is based on Cellular Nonlinear Networks (CNNs), which in

our application are two dimensional arrays of dynamical systems called cells (see figure 7) [4].

Various linear and nonlinear operations can be performed on the cells, taking into account also the

values of the neighbours, within an interval which can be defined by the user. These operations,

called templates, are now provided in suitable libraries and allow performing a wide set of basic

calculations on the cells. One of the main advantages of this architecture resides in its parallel
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nature, which can be very useful in tasks like image processing for real time, which can pose severe

requirements on the computational power. The flexibility of the CNN approach in any case has

promoted a wide series of applications, raging from the solution of nonlinear differential equations

to robotics and the simulation of biological systems.

In the application tested at JET and whose results are reported in the following, the implementation

of the CNN architecture is the chip platform ACE16K [23]. This chip consists of two layers of

CMOS components: the first one is a traditional CMOS sensor like those used in commercial digital

cameras. The second layer consists of a series of capacitors and resistors implementing the CNN

architecture, to perform the desired operations on the individual pixels. A picture of the chip is reported

in figure 8. The chip so far has been utilised as a parallel processor to perform several operations on

the images provided by JET wide angle infrared camera. One of the most interesting applications

consists of the real time detection of the hot spots, which can be induced on JET plasma facing

components by concentrated losses due to various operational reasons. The main rationale behind the

application is the need to detect when the temperature of parts of the wall exceeds machine protection

limits and therefore remedial action has to be undertaken.  A series of algorithms have been developed

to automatically analyse the IR frames. They typically consist of a first thresholding step, to extract

only the higher emitting points, followed by an analysis meant to determine the actual danger of the

high temperature regions. Some of the most successful solutions for this real time image processing

are described in detail in [24]. In figure 9 the hot spots detected by the CNN are compared with an IR

image of JET wide angle camera, where the hottest parts are identified by the brightest emission. The

good accuracy of the CNN detection is apparent in this picture and has been verified statistically. The

computational time required for a full analysis of the entire frame is of less than 60 ms, more than

adequate for machine protection given the relative long time scales of thermal phenomena in a large

Tokamak. It is worth mentioning that the CNN technology is not the most widely used and it is not

particularly supported by the market. The main objective of the study was more the proof of principle

of the algorithms for the real time detection of the hot spots than the qualification of the technology. In

the future, the algorithms will be transferred to other alternatives like FPGAs, to insure that solid

market technologies are available to implement the detection methods.

5. CONTROL FOR PHYSICS UNDERSTANDING

5.1. REAL TIME TRACKING OF TAE MODES

Up to now the main feedback control strategies applied to the Tokamak configuration have been

aimed mainly at operational and protection objectives. Goals like controlling the shape of the plasma

boundary or sweeping the position of the strike points to reduce power loads are essential aspects of

the operation of a reactor relevant device but are not explicitly conceived to improve the understanding

of the physics involved. On JET in the last years, significant efforts have been devoted to the application

of control strategies also to improve the understanding of physical phenomena. One of the principal

activities in this direction has benefited from the installation of two new sets of Toroidal Alfven
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Eigenmode antennas, each one comprising of four loops. These sets have been explicitly designed to

excite superalfvenic modes with a toroidal mode number up to about 10, in order to cover the interval

of interest for ITER [5].  These antennas inject suitable frequencies into the plasma, which are capable

of exciting instabilities of the Alfven type. Once these instabilities start growing by absorbing energy

from the waves injected by the antennas, they can be detected using traditional pick-up coils, as

shown in a simplified pictorial form in figure 10.

From the point of view of real time control, one of the most interesting experiments consists of the

tracking of the frequency of these superalfvenic modes, by sweeping the frequency of the exciting

antenna around the resonance frequency. This allows not only following the drift of the mode frequency

but more generally to measure the dynamic response of the absorption peak. From the width of the

absorption peak, the damping rate of the modes can be determined, which is an essential parameters

to assess the behaviour of these modes and their potential negative impact on the confinement of the

alpha particles in ITER [6]. An example of the real time tracking of one of these Toroidal Alfven

Eigenmodes is shown in figure 11. As can be seen by this example, the main original aspect of this

real time control scheme is the objective, which clearly consists of deriving direct information about

the physics of a class of instabilities, in particular their damping rate. This is a completely different

task than the control of global plasma parameters for machine protection or operational purposes.

5.2. SIMULTANEOUS CONTROL OF THE CURRENT AND KINETIC PROFILES

Another ambitious real time control scheme, meant not only to obtain certain plasma conditions but

also to improve the physics understanding, is the simultaneous control of the current and kinetic

profiles. Simultaneous control of the plasma shape, the magnetic and kinetic plasma profiles (such

as the safety factor, q(x), and gyro-normalized temperature gradient, ρTe*(x), respectively) and the

boundary flux is being investigated on JET, and has potential impact on steady state advanced

tokamak programme in ITER. The control of radially distributed parameters was achieved for the

first time on JET in 2004 [25-26]. The controller was based on the static plasma response only. The

approach newly implemented on JET aims to use a dynamical plasma model, all the available

heating and current drive (H&CD) systems, and the poloidal field (PF) systems in an optimal way

to achieve a set of requested magnetic and kinetic profiles.

The structure of the model stems from a set of transport equations,

(22)

in which couplings are retained for the sake of generality. Sn and ST are the source terms for the

electron density and temperature respectively. The system of equations (22) is linearised around an

equilibrium reference state so that it can ultimately be cast in the generic form of a state space

model. For the purpose of this linearisation, the natural state variables are the variations of the

internal poloidal magnetic flux, Ψ, and of the temperature, T, and the state space model reads:

  3
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                                                                                                                        (23)

with inputs P = [PLH, PNBI, PICRH], the heating and current drive input powers, and Vext, the surface

loop voltage. The distributed variables Ψ(x) and T(x), where x is a radial coordinate, are projected

onto a finite set of trial functions using a Galerkin scheme so that the original partial differential

system of equations reduces to an ordinary linear differential system, where U is known and Ai,j,

Bi,j are matrices of appropriate dimensions, which are to be identified from experimental data. The

small (constant) parameter, ε, represents the ratio between the energy confinement time and the

characteristic resistive diffusion time (ε<<1).

To take advantage of the small parameter (ε ≈ 0.05 in JET), the control technique is based on the

theory of singularly perturbed systems and multiple-time-scale expansions. This further development

consists of trying to optimize two models of reduced orders, a slow model,

 (24)

and a fast model

(25)

where T = Ts + Tf, and where us and uf are the slow and fast components, respectively, of a vector,

u = us + uf, containing all the inputs (P, n and Vext).

Having identified a set of relevant state variables, it can prove advantageous to apply the control

to some output parameters which are more directly linked with MHD stability or internal transport

barrier physics. The inverse of safety factor, i (x), and gyro-normalized temperature gradient, ρTe*(x)

[27], have been chosen and are thus introduced into the state-space model. As for Ψ(x) and T(x), a

Galerkin approximation is used and in the following, the notations Ψ, T, µ and ρ will refer to the

coefficients of the Ψ(x), T(x), ι(x) and ρTe*(x) expansions, respectively. Noticing that ι(x) ∝ ∇Ψ(x)

and ρTe*(x) ∝ ∇Ψ Te(x)/√Te(x)_, linearising these expressions, differentiating the basis functions and

assuming that the time variations of factors such as the toroidal magnetic field and toroidal magnetic

flux are not essential and do not depend intrinsically on the power inputs, it appears natural to seek a

model with direct matrix relations between the Galerkin coefficients of Ψ and µ, on one hand, and

between T and ρ on the other hand. Within the two-time-scale approximation, this yields:

(26)

(27)
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which complete the system of equations 24-25. Ci.j and Di,j are the transfer matrixes of the quantities

specified by the indices i and j. The identified two-time-scale model is then used to construct and

design a controller, which can respond faster to rapid plasma events, while converging slowly

towards the requested high performance plasma state (on the resistive time scale) [28].

Open loop modulations of the actuators have been performed around a reference state in order to

identify the plasma model. A highly triangular (δ = 0.45) configuration has been chosen to perform

both open and closed loop experiments with a toroidal magnetic field of 3T, a plasma current of

1.5MA and an average density of about 3.5×1019 m-3.

Control of q profile has been performed over a period lasting more than 7s using the 3 H&CD

systems while keeping the loop voltage at a constant value (see Figs. 12 & 13). These preliminary

forms of control of the q profile are pioneering results, achieved for the first time on JET. The

systematic application of this control scheme has been hampered mainly by two problems. The

most severe has certainly been the lack of margins in the actuators. During the experiments the

additional heating systems have been marginally capable of producing the power with the required

reliability. This aspect has been strongly improved in the last campaigns and should become less of

an issue with the routine operation of the present upgrade of the ICRH antennas and the neutral

beams. Sometimes in the past also some diagnostics, particularly the polarimeter, have not been

able to produce data of a completely satisfactory quality. This difficulty is being addressed using

more sophisticated data analysis tool of the type described in the rest of this section.

6. ADVANCED SIGNAL PROCESSING: ADAPTIVE FILTERING

In the case of feedback schemes for the understanding of the physics, like the two described in the

previous section, the requirements in terms of measurements can be very stringent. In traditional real

time control for operations, very often a limited accuracy in the results can be tolerated provided the

practical goals aimed at are properly achieved. In the case of physical studies, the problems to be

investigated are typically much more sensitive to the details and therefore the quality of the

measurements needs to be of a very high level. Very often the diagnostics have to be pushed to the

limits and even transient spurious effects can jeopardize the objectives of the control strategies. The

previous example of the current profile control is a case in point, since the real time measurements of

the internal poloidal field are certainly one of the most challenging tasks for real time diagnostics on

a Tokamak. One experimental technique to obtain information about the current profile is based on

the Motional Stark Effect (MSE). The diagnostic measures the radiation emitted by the particles of a

neutral beam, a heating beam in the case of JET, which is injected into the plasma. The line emission

of the radiation is split in wavelength, the motional Stark effect [29], due to the presence of a quite

strong Lorentzian electric field (of the order of a few MV/cm to be compared with a plasma radial

electric field of the order of 100kV/cm). Indeed, assuming the Lorentzian electric field experienced

by the beam particles (E = vb × B, where vb is the velocity of the particles and B the local magnetic

field) is larger than the electrostatic field of the plasma, it is possible to derive information about the
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local poloidal component of the magnetic field since the velocity of the beam particles is known (see

figure 14).

In the implementation at JET, the red shifted π+ component of the Dα emission, with polarization

angle γ parallel to E, is analysed with polarimetric techniques. For each line of sight, a series of

interference filters and two photoelastic modulators followed by an avalanche photodiode are used.

The detection scheme with the main frequencies of the modulation is shown in figure 15.

For the purposes of this paper, the only relevant aspect of the detection is the fact that the angle

γ to be measured is in fact linked to the various modulated components of the current at the output

of the photodiode by the relation:

         (28)

where the Aij are the amplitudes of the various modulated frequencies and the Cij are simple constants

to be determined during the calibration of the diagnostic.

The described configuration of the diagnostic works very well in the Ohmic or L mode

configurations and in general when the Edge Localised Modes (ELMs) are small. On the other

hand, it can strongly be affected by the intense radiation emission due to large ELMs. An example

of the problem is reported in figure 16, where it can be seen how an ELM can induce a spurious

signal much higher than the real one, seriously compromising the output of the detectors, particularly

in the case of real time applications, when ad hoc post processing is not an option. In order to

overcome this issue, a form of adaptive filtering is necessary since the level of spurious radiation

changes of about one order of magnitude in different periods of the same discharge.

To alleviate this problem a filter of the Kalman type [30] has been designed, optimised and

implemented on JET. Indeed a lock-in like model of the measurement is available (equation 28).

Therefore the approach of the Kalman filter, which guarantees a minimal error in the least square

sense given the noise statistics, is appropriate. The equation for the model estimate of the

measurements is of the form:

(29)

where F is the  process matrix and m the  process noise. For the measurements the equation is:

(30)

 where H is the  transfer matrix and e the  measurement noise. It is assumed that both µ and ε are

uncorrelated zero mean Gaussian distributed white noise. The two equations can be combined to

yield the a posteriori estimate xk from the a priori counterpart xk:^ ^-

C21 ADC (t) + C22 A23 (t) + C23 A46 (t) + C24 A40 (t)

C11 ADC (t) + C12 A23 (t) + C13 A46 (t) + C14 A40 (t)
tan (2γ(t)) =

xk = Fx k-1  + μk

zk = Hxk + εk  
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(31)

It can be demonstrated that the optimal gain Kk is:

(32)

where

(33)

(34)

Intuitively, in this JET application, the value of the gain follows a sigmoid function and therefore it

is high when the measurements are similar to the model and becomes very low when the

measurements are too far away from the model due to the ELM spurious radiation. The global

strategy therefore consists of weighting more the measurements when they are not too far away

from what is expected. On the contrary, in case of completely different measurements from what

expected on the basis of the previous time slice, the model is deemed more realistic and used as the

basis for the estimated true value.

The final results are very positive. The Kalman filter has proved to be much more resilient to the

ELMs than the previous scheme, founded on the traditional single phase lock-in amplifier method

with moving average DC filtering. A representative comparison between the results of the two

filters is reported in figure 17, showing clearly the superior quality of the Kalman solution.

CONCLUSIONS AND FURTHER DEVELOPMENTS

On JET several important aspects of information processing for feedback are being addressed.

From a technical point of view, various solutions are being tested for the real time identification of

the plasma, particularly the confinement regime and the internal topology of the magnetic fields.

Machine learning methods for disruption prediction are attracting a lot of attention for the implications

on machine protection particularly in the perspective of ITER. Image processing is receiving

increased interest, to keep pace with the more systematic use of cameras in Fusion devices.

With regard to the scientific exploitation of JET, new feedback schemes are being pursued to

improve the physics understanding of various phenomena from the triggering of ITBs to the impact of

TAE modes on the fast particles. They have also motivated the implementation of more sophisticated

signal processing tools like the Kalman filter. On the other hand, this is a field in which more could

probably be done. Feedback control to study impurity transport or real time control of other instabilities,

in addition to the TAEs, are just two aspects, which come immediately to mind.

It is worth mentioning that one of the main future developments, particularly in the perspective

of ITER, is the development of more centralized controllers. Operation closer to the limits increases
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the links among all the crucial aspects of Tokamak operation. Therefore the typical solution of

developing independent controllers, each one in charge of the feedback required by a different

subsystem, becomes increasingly dangerous. This approach, shown in the top of figure 18, cannot

guarantee to achieve an optimal control and can even run into serious difficulty if contradictory requests

are pursued by different subsystems. Therefore the integration of more controllers below the umbrella

of a single supervisor becomes progressively more essential. A global view of feedback control will

become also more important after the installation on JET of the new ITER-like wall.

From the point of view of control theory, another  possible line of research, which could be useful

to investigate, is the one of Fuzzy Control. Indeed Tokamak plasmas are very complex and nonlinear

systems. Many are the sources of uncertainties, not least the error bars of the measurements. Therefore

the potential of Fuzzy logic to handle uncertainties in a robust way could prove to be a very important

advantage. In this perspective also the combination of Fuzzy Logic with Neural Networks in hybrid

systems could provide interesting results.
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Transition Signal Signal description

L/H Bndiam Beta normalised with respect to the diamagnetic energ

Ptot Total heating power

Wmhd Magneto-hydrodynamic energy

RXPL R coordinate lower X point

ZXPL Z coordinate lower X point

Bt80 Axial toroidal Magnetic Field at a psi = 0.8 surface

H/L Bndiam Beta normalised with respect to the diamagnetic energy

Bt Toroidal magnetic field

FDWDT Time derivative of diamagnetic energy

Q95 Safety factor

RXPL R coordinate lower X point

ZXPL Z coordinate lower X point

Table I : The most important signals for the study of the L to H and H to L transitions as determined
with the CART algorithm.

L/H transitions       H/L transitions

SL 96.61%    89.38%

SR 99.11%    94.44%

(245) σ = 10     σ = 39

PW 98.61%     95.88%

(60)       0.5hj,REF ≤ H ≤ 0.71hj,REF h = 0.95hREF

σ = 10     σ = 39

BSR          99.17%    96.25%

       h0.5hREF  h0.53hREF

          k = 27      k = 2

Table II : Success rates achieved for the test set and different classifiers: SL (SVM, linear kernel),
SR (245 classifiers based on SVM and RBF kernels), PW (60 models based on Parzen window estimators)

and BSR (Bayes/SVM (RBF kernel) combination).
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Databases Number of discharges

Disruptive train 263

Non disruptive train 219

Disruptive test  66

Non disruptive test  44

Total disruptive 329

Total non disruptives 219

Total discharges 548

Table III:  The discharges used to train and test the SVM disruption predictor.

Signal name Units

1. The plasma current. A

2. The poloidal beta.

3. The poloidal beta time derivative. s-1

4. The mode lock amplitude. T

5. The safety factor at 95% of minor radius.

6. The safety factor at 95% minor radius time derivative. s-1

7. The total input power. W

8. The plasma internal inductance.

9. The plasma internal inductance time derivative. s-1

10. The plasma vertical position. m

11. The plasma density. m-3

12. The stored diamagnetic energy time derivative. W

13. The net power (total input power minus total radiated power). W

Table IV: The most informative signals for disruption prediction as identified with CART.
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Figure 1: Top: magnetic surfaces reconstructed with the Bayesian method for a limiter configuration (left) and X-
point configuration (right).  Bottom: uncertainty in two important topological parameters the position of the magnetic
axis (left) and X point position (right). JET Pulse No: 66271.

       MA     FA    PA    TE    SR  AVG

Sequence 1 (M2, M1) 0 5.4545 5.4545 10.909 89.091 128.01

Sequence 2 (M3, M2, M1)      0.909 4.5455 1.8182 7.2727 92.727 146.23

Sequence 3 (M4, M3,…, M1) 0 4.5455 5.4545     10     90 132.23

Sequence 4 (M5, M4,…, M1) 0 5.4545 9.0909 14.545 85.455 128.84

Sequence 5 (M6, M5,…, M1) 0 4.5455 7.2727 11.818 88.182 136.45

Sequence 6 (M7, M6,…, M1) 0 5.4545 5.4545 10.909 89.091 136.23

Sequence 7 (M8, M7,…, M1) 0 5.4545 6.3636 11.818 88.182 121.01

Table V: The various sequences of SVM classifiers tested and their performance. MA are the missed alarms, FA are the
false alarms, PA the premature alarms, TE are the total errors, SR is the global success rate, AVG is the average time
before the disruption that the sequence manages to detect the disruption itself. All the various performance estimators
are expressed in percentage terms except AVG whose unit is ms. The sequence of classifiers with the best results is
shaded.

 
Magnetic Axis X-Point

Joint posterior distribution
for magnetic axis position

Joint posterior distribution
for x-point position

Uncertainty: -68cm Uncertainty: -23cm

JG
09

.3
60

-1
c

1

0

-1

2 2 33

Pulse 66271, t=18s

R (m)R (m)

1

2

0

-1

-2
2 3 4

R (m)

Z
 (

m
)

1

2

0

-1

-2
2 3 4

R (m)

Z
 (

m
)

http://figures.jet.efda.org/JG09.360-1c.eps


25

Figure 2: Left: the magnetic topology with the maximum posterior probability Right: the uncertainty intervals on the
magnetic surfaces for JET Pulse No: 66271.

Figure 3: Reduction of the uncertainty intervals on the magnetic topology when additional  diagnostic measurements
are provided as inputs. Top: uncertainty intervals when only the pick-up coils are used Bottom:  uncertainty intervals
when also polarimetry and motional Start effect measurements are included in the analysis.
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Figure 4: Top: comparison of the time evolution of βpol + li/2 calculated with EQUINOX and two other validated
offline JET codes (EFIT and betali). li is the plasma internal inductance Bottom: statistical comparison between
EQUNOX and XLOC for the distance of the plasma from the internal wall on the equatorial pane (RIG)

Figure 5 :The sequence of SVM classifiers used to analyse
in parallel subsequent time intervals of plasma signals.

Figure 6: The success rate of the SVM predictor for
various campaigns. The pink shaded region on the left
indicates the campaigns used for the training. The white
intermediate region covers the campaigns not used for
the training but without major modifications to the JET
machine. Between C14 and C15 significant changes in
the device were implemented.
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Figure 7: Architecture of a 2D CNN array. Figure 8: The chip platform ACE16K

Figure 9: Left: an infrared image taken with JET wide angle camera Right: the hot spots automatically detected by
one of the algorithms implemented with the CNN.
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Figure 10: Pictorial view of the excitation of TAE instabilities via injection of waves. The detection is performed with
pick-up coils.

Figure 11: Real time tracking of an Alfven Eigenmode and measurement of the absorption peak. The blue curve on the
right plot indicates the shape of the absorption peak around the main mode frequency, from which the damping rate
can be derived.
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Figure 12: Requested (blue) and delivered (red) powers
(LHCD, NBI, ICRH) for the controlled Pulse No: 70395.
These plots show how JET heating systems have managed
to deliver almost exactly the powers requested of them.

Figure 13: Control of the safety profile at 3 normalised
position using the 3 H&CD actuators for Pulse No:
70395. The horizontal lines are the requested values. V

loop
constant (32 mV/rad).

Figure 14 : Layout of the Motional Stark Effect diagnostic
at JET.

Figure 15: Detection scheme of one channel of JET MSE
diagnostic, showing the photoelastic modulators,
polariser and detector.
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Figure 18: Left: distributed controller Right: centralised controller.

Figure 16: Top: the Da emission  during an ELM. Bottom:
the spurious radiation on one of the MSE channels. The
estimated DC component with ELM correction is
indicated by the gray, smoother curve: this is the signal
to be  used for the calculation of the real Stark effect.

Figure 17: Top: result showing the superior performance
of the Kalman filter (red) with respect to the moving
average approach (blue). The variations due to the ELMs,
identified in the bottom plot by the Da emission, are much
lees evident in the signal output of the Kalman filter.
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