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ABSTRACT.

A new analytic expression is derived for the resonant drive of high n Alfvénic modes by

ICRHaccelerated particles. This derivation includes finite orbit effects, and the foralism is completely

non-perturbative. The high-n limit is used to calculate the complex particle response integrals along

the orbits explicitly. This new theory is applied to downward sweeping Alfvén Cascade quasimodes

completing the theory of these modes, and making testable predictions. These predictions are found

to be consistent with experiments carried out on the Joint European Torus.



I. INTRODUCTION

The behaviour of highly energetic ions in tokamak plasmas is one of the most important

issues in the physics of burning plasmas1,2, and thus of great interest for both theoretical

and experimental study. Alfvénic instabilities which can tap the free energy in the energetic

ion distribution3 are often excited in present-day tokamak experiments. This is due to the

resonant interaction between shear Alfvén waves and ions either accelerated by ion-cyclotron

resonance heating (ICRH)4 or produced by neutral beam injection (NBI)4. It is anticipated

that similar Alfvénic instabilities will be excited in burning plasmas such as ITER by the

fusion-produced alpha particles1,2. The destabilization of Alfvén Eigenmodes (AEs) typically

results in spatial redistribution (potentially global) of the fast particles5, which may lead to

quenching the plasma burn and damaging the first wall. More recently AEs have also been

used for diagnostic purposes6, divulging information about the plasma interior inaccessible

to other diagnostics.

In order to determine the potential effects of AEs and what information they can reveal

we require a complete model for both the modes and their interaction with the energetic

ions. In the analytic study of energetic particle driven instabilities the focus has often been

on the excitation of bulk plasma eigenmodes7–10. There is also a lot of interest in instabilities

associated with non-perturbative energetic particle modes11,12. We continue this progress

here by developing a new analytic model for the resonant drive of shear Alfvén perturbations

due to ICRH-accelerated ions, suitable for analyzing both classes of instabilities.

The distribution of ions created by ICRH-acceleration is a distribution of particles with

predominantly perpendicular energy and sharply peaked in pitch angle13. The spatial dis-

tribution of these particles is such that all the tips of the banana orbits lie on the surface

where the local ion cyclotron frequency resonates with the applied RF wave. In a typical

tokamak this is an approximately vertical surface, R ≈ RRF , and we classify the heating

by where RRF lies compared to the magnetic axis R0. If RRF < R0 we have high-field-side

heating, RRF > R0 gives low-field-side heating and RRF = R0 is known as on-axis heating.

In a typical discharge with ICRH the flux-surface-averaged density of fast particles can be

hollow for low-field-side heating, and is usually centrally peaked when there is high-field-

side or on-axis heating. Given the energetic particle distribution we can calculate the fast

particle effect on any given mode.
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Our considerations will be limited to the case of Alfvénically-polarized fluctuations with

high toroidal mode number (n � 1). In Sec. II we use this approximation to amalgamate

previous results and produce a linearized MHD description of the problem including a kinetic

contribution from the energetic particles through their perturbed anisotropic pressure.

In Sec. III , buliding on previous work10,14,15 , we cast the wave-particle resonance in

Hamiltonian form and explicitly determine the transformation to a set of action-angle coor-

dinates for the complex bounce-precessional energetic particle orbits. In Sec. IV we use these

coordinates to express the linearized drift kinetic equation for the fast particles in a simple

form. We then solve this equation for the fast particle response and use it to calculate the

contribution that the fast particle resonance provides to the Alfvén wave equations devel-

oped in Sec. II. The result is expressed in terms of complex integrals over the unperturbed

orbits, to make further progress we focus on the case of radially extended perturbations, for

which
∂

∂r
� m

r
(1)

(where r is the minor radius of the plasma and m is the poloidal mode number). This

approximation is valid for high-n Alfvénic perturbations if the magnetic shear is sufficiently

low over a substantial fraction of the minor radius. The radial structure of the mode is

known to be sensitive to the radial variation of the q-profile. The Alfvén frequency variation

is itself controlled by the q-profile variation which is amplified by the large mode number.

Thus if the low shear region extends for multiple poloidal wavelengths the relation in Eq.

(1) should hold. The envisioned mode structure is shown schematically in Figure. 1.

This assumption and the thin orbit approximation imply the mode is much broader than

the orbit width, which alllows us to average over a radial distance wider than an orbit width

yet smaller than the mode width. The sheared magnetic field configuration leads to the

result that the energetic particles experience different phases of the mode at different radii

along their orbit; as these differences are multiplied by the large mode number n they lead

to highly oscillatory contributions to the integrals along the energetic particle orbits. The

averaging procedure described allows us to calculate the integrals along orbits in closed form

by only considering the non-oscillatory contributions in the vicinity of the turning points.

This enables us to formulate a local expression for the resonant particle response, which can

then be used in a variety of problems associated with ICRH-driven Alfvénic modes.

Many modes satisfy the condition in Eq. (1), including Low-Shear Toroidal Alfvén Eigen-
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modes16–18, which appear as “tornado” modes in experiments19,20. Eq. (1) is also applicable

to the Alfvén Eigenmodes observed in reversed shear discharges on JET6,21, JT-60U22 and

Alcator C-Mod23. In order to demonstrate the utility of our technique for performing res-

onant drive calculations we apply it in Sec. V to the problem of the Alfvén Cascade (AC)

modes in scenarios with weakly-reversed shear. An explanation for the downward sweep-

ing mode observed in such scenarios as a weakly-damped propagating quasimode has been

proposed24, which we complete by calculating the radiative damping and including the res-

onant contribution from the energetic ions. The damping and the drive can be evaluated

for both downward and upward sweeping modes. We culminate in Sec. VII by comparing

our theoretical results with experimental observations from the JET experiment25.

II. ALFVÉNIC PERTURBATIONS IN A TOKAMAK

Motivated by fusion applications, we will make the following assumptions from the outset.

Firstly, in all cases β (the ratio of thermal pressure to magnetic pressure) will be considered

to be vanishingly small (β � 1/n), secondly we look at modes elongated along the field line,

i.e. having parallel wavenumbers k‖ = (qR)−1 (m− nq) much smaller than perpendicular

wavenumbers k⊥ ≈ m/r, finally we will make the approximation of small inverse aspect

ratio (ε = r/R� 1) and shifted circular flux surfaces where necessary.

Previous works on AEs have computed the contribution to the linear MHD equations

governing Alfvénic perturbations due to an anisotropic pressure26,27, due to pressure gra-

dients in the thermal plasma28 and due to coupling of the shear Alfvén perturbations to

acoustic and compressional Alfvén perturbations29. Assuming a background plasma with

magnetic field B, pressure P and density ρ and that the toroidal mode number n of the

mode is large we can combine these results to give the following wave equation:

1

v2
A

∇2
⊥
∂2Φ

∂t2
−B · ∇

(
1

B2
∇2
⊥B · ∇Φ

)
=
Ze

c

∫
d3vvD · ∇δf +

8πP

B2
b× κ · ∇ [(b×∇ lnP − γH∇× b) · ∇Φ] ,

(2)

where vA = B/
√

4πρ is the local Alfvén speed, b = B/B the magnetic field direction, P the

thermal plasma pressure, κ = b · ∇b the curvature, vD = 1
MΩ

(
µ∇B +Mv2

‖b× b · ∇b
)

the

fast particle drift velocity, µ = Mv2
⊥/2B the magnetic moment and γH the ratio of specific
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heats of the background plasma. The fast particles’ perturbed distribution function is δf

and their mass is M , charge Ze and cyclotron frequency Ω = ZeB/Mc. We have followed

Ref. 29 and expressed the electromagnetic perturbation as

δB = ∇× ((b×∇Φ)× b) , (3)

δE = −1

c
∇⊥

∂Φ

∂t
. (4)

This formulation of the problem relies on β � 1 and k‖ � k⊥ to eliminate the coupling to

the compressional Alfvén wave (fast magnetosonic mode), and on 2q2 � 1 to neglect the

coupling to acoustic perturbations (this is equivalent to assuming that the Geodesic Acoustic

Mode (GAM) is supersonic). This decoupling is carried out in detail in Ref. 29.

To compute the fast particle resonant contribution to Eq. (2), we express the integral over

velocity space as a curvature coupling between the Alfvénic perturbation and the perturbed

anisotropic fast particle pressure (again using the fact that β is small to simplify the drift

velocity),

Ze

c

∫
d3vvD · ∇δf =

4π

B2
b× κ · ∇δP⊥, (5)

where we have neglected the small parallel pressure in comparison to the perpendicular

pressure. We now merely have to complement Eq. (2) by expressing the perturbed fast

particle pressure δP⊥ in terms of Φ. This has already been done in Ref. 26 for the non-

resonant component of δP⊥ , thus we only need consider the resonant component here.

III. HAMILTONIAN FORM OF THE UNPERTURBED ORBITS

In this section we reduce the dynamics of the particles to a completely integrable Hamil-

tonian form, keeping finite orbit width effects but neglecting finite Larmor radius (FLR)

effects. We start from the Hamiltonian form of the Littlejohn Lagrangian30 as presented in
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Ref. 14,

L = Pθθ̇ + Pϕϕ̇+ Pζ ζ̇ −H(Pϕ, Pθ, θ, Pζ), (6)

Pζ =
Mc

Ze
µ, (7)

Pθ =
Ze

c
Aθ +Mv‖

Bθ

B
(8)

Pϕ =
Ze

c
Aϕ +Mv‖

Bϕ

B
, (9)

H =
Ze

cM
PζB +

1

2M

(
Pϕ −

Ze

c
Aϕ

)2(
B

Bϕ

)2

. (10)

Here subscripts denote the covariant component of a vector quantity. In addition ζ is the

gyroangle about the equilibrium field and we have picked orthogonal coordinates r, θ, ϕ

corresponding to flux surface label, poloidal angle and toroidal angle respectively. The

definition of these coordinates is chosen such that Br vanishes (equivalently r is orthogonal

to θ). We have also picked a gauge such that the unperturbed Ar vanishes. This is critical

to being able to write the v · ẋ term in the Lagrangian in Hamiltonian form14,31. It is

understood that all quantities should now be viewed as functions of Pζ , Pθ, Pϕ and ζ, θ, ϕ as

one can define r and v‖ implicitly from Eqs. (9) and (8).

In order to express the motion in action angle form, we follow Ref. 14 and introduce

a generating function g for the transformation to new canonical coordinates ϕ̄, θ̄, ζ̄ and

momenta Pϕ̄, Pθ̄, Pζ̄ . We now consider a function g that leaves Pϕ and Pζ unchanged i.e.

g = Pϕ̄ϕ+ Pζ̄ζ + g∗(Pϕ̄;Pθ̄;Pζ̄ ; θ), (11)

which gives the following equations for ϕ̄ and θ̄:

ϕ̄ = ϕ+
∂g∗

∂Pϕ̄
, (12)

θ̄ =
∂g∗

∂Pθ̄
. (13)

The function g∗ is determined from

Pθ =
∂g∗

∂θ
. (14)

In order to solve this we need an explicit form for Pθ as a function of θ and conserved

quantities Pϕ̄, Pθ̄, Pζ̄ or equivalently Pϕ, Pζ and H. This nessecitates picking an explicit

form for both A and B subject to the orthogonality constraint mentioned above.
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In a large aspect ratio tokamak we can do this by expanding all quantities in the inverse

aspect ratio to find31,

Aϕ = −B0

r∫
0

rdr

q(r)
, (15)

Aθ =
1

2
B0r

2 −B0α(r) cos θ, (16)

Bϕ = B0R0, (17)

Bθ = B0
r2

R0q(r)

(
1− α′(r)

r
cos θ

)
, (18)

with the function α defined by

α(r) =

r∫
0

 r2

R0

+ r∆′ + r

r∫
0

∆′(s)

s
ds

 dr, (19)

with primes denoting radial derivatives, ∆(r) the Shafranov shift , s a dummy variable, B0

the magnetic field strength on axis and R0 the major radius of the magnetic axis. We also

note that there is a simple transformation from orthogonal coordinates to straight-field-line

coordinates r, θ̂, ϕ̂ which are convenient for describing Alfvénic modes (see Ref. 31),

θ̂ = θ − α′(r)

r
sin θ, (20)

ϕ̂ = ϕ. (21)

In what follows we replace Pϕ by a new radial coordinate r̄ such that

Pϕ ≡ −
Ze

c
B0

r̄∫
0

r dr

q(r)
. (22)

We thus have Pθ given by Eq. (8) as a function of r, θ and v‖ and must use Eqs. (22) and

(9) to eliminate r in favour of r̄, Pζ and θ. We start by neglecting the FLR correction in

Eq. (8), finding that Pθ is now a function only of the spatial coordinates,

Pθ ≈
Ze

c
Aθ. (23)

We now make use of the fact that we are dealing with ICRH-accelerated particles, which

are poloidally trapped between bounce points where v‖ changes sign. The majority of these
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particles perform banana orbits where they deviate only slightly from the flux surface of the

bounce points, thus we write,

r = r̄ + δ, (24)

where δ is the deviation from the flux surface and we identify r̄ as the radius of the bounce

points. We will now assume r, r̄ � δ. This means that in most places we can replace r with

r̄, as effects of the order of δ/r are the smallest effects we wish to keep (finite orbit width,

but not FLR effects). However in doing so we limit ourselves to orbits that do not pass close

to the magnetic axis as r ∼ δ there, and such orbits are no longer banana orbits but so-called

potato orbits. The thin orbit approximation allows us to find δ explicitly and eliminate r

in favour of r̄ and δ as required. In the potato orbit regime a different approximation must

be used to eliminate r. As the AC modes under consideration here are well away from the

magnetic axis we make the thin-orbit approximation in all further analysis.

We thus obtain,

r = r̄ +
R0q(r̄)

r̄

v‖
Ω
. (25)

We also introduce the bounce angle θb, being θ at the v‖ = 0 point, which we will use instead

of Pθ̄. Eliminating r we find,

Pθ =
Ze

c

(
1

2
B0r̄

2 −B0α(r̄) cos θ

)
+ q(r̄)

√
R0r̄

√
2Ze

c
PζB0

√
cos θ − cos θb. (26)

We can now solve Eq. (14) for g∗ by substituting the following ansatz,

g∗ =
ZeB0

c

(
1

2
r̄2θ − α(r̄) sin θ

)
+ q(r̄)

√
R0r̄

√
2Ze

c
PζB0G, (27)

where G now satisfies (
dG

dθ

)2

= cos θ − cos θb. (28)

Using Eq. (27) in Eqs. (12) and (13) results in:

ϕ̄ = ϕ− qθ +
qα′

r̄
sin θ −G(θ)χ1(r̄) +

(
ωϕ̄
ωθ̄
− χ2(r̄)

)
θ̄, (29)

θ̄ = ωθ̄r̄q

√
2M

ΩPζ

(
R0

r̄

)3/2
1

sin θb

∂G

∂θb
, (30)
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where the functions χ1(r̄) and χ2(r̄) are defined as follows,

χ1 =
q(r̄)

r̄

∂

∂r̄

√
2Pζ
MΩ

r̄R0q2(r̄) (31)

χ2 =
Pζ cos θb
Mωθ̄R0r̄

q(r̄) (32)

The general solution of Eq. (28) is,

G = ±23/2 sin

(
θb
2

)
E

(
θ

2

∣∣∣∣ csc2

(
θb
2

))
+ A, (33)

with E(z|m) the elliptic integral of the second kind with modulus m32, and A an arbitrary

constant. Choosing our orbit to start from θ = −θb, θ̄ = −π, pass through θ = θb, θ̄ = 0,

and end at θ = −θb, θ̄ = π determines the constants and the ambiguous signs, giving:

G = 23/2 sin

(
θb
2

){
E

(
θ

2

∣∣∣∣ csc2

(
θb
2

))
− E

(
θb
2

∣∣∣∣ csc2

(
θb
2

))}
when θ̄ ∈ (−π, 0), (34)

G = − 23/2 sin

(
θb
2

){
E

(
θ

2

∣∣∣∣ csc2

(
θb
2

))
− E

(
θb
2

∣∣∣∣ csc2

(
θb
2

))}
when θ̄ ∈ (0, π), (35)

and

dθ̄

dθ
= ωθ̄

R0q

|v‖|
when θ̄ ∈ (−π, 0), (36)

dθ̄

dθ
= −ωθ̄

R0q

|v‖|
when θ̄ ∈ (0, π), (37)

with

v‖ =

√
2B0r̄

R0M2

Ze

c
Pζ
dG

dθ
. (38)

This completes the description of the transformation to the coordinates θ̄, ϕ̄ from the or-

thogonal coordinates θ, ϕ.

To complete the analysis of the orbits, we must determine the frequencies with which

the particle performs its periodic motion in θ̄, ϕ̄. These frequencies however are merely the

particle bounce frequency and toroidal precession frequency which in the large aspect ration

limit are given by,33

ωθ̄ =
π

2R0q(r̄)K(κ)

√
r̄µB0

MR0

(39)

ωϕ̄ =
c

Ze

µq(r̄)

R0r̄

{
4s(r̄)

E(κ) + (κ2 − 1)K(κ)

K(κ)
+

2E(κ)−K(κ)

K(κ)

}
(40)

with κ = sin(θb/2) and K and E the complete elliptic integrals of the first and second kinds

respectively. We also write the magnetic shear as

s(r) =
r

q(r)

dq

dr
. (41)
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IV. CALCULATION OF THE FAST PARTICLE RESONANT RESPONSE

Having found action angle coordinates in which the unperturbed motion of the energetic

particles is completely integrable, we now turn to the problem of calculating the energetic

particle response to shear Alfvén perturbations. Similar derivations for perturbative modes

and deeply trapped particles have been done before in Ref. 10 and Ref. 15. For the case we

will consider in Sec. V we expect the resonant instability drive to be small compared to the

wave frequency and thus for simplicity we will only consider the leading order contribution

to the resonant fast particle distribution function in the current section. We start by writing

the collisionless kinetic equation for the energetic particle distribution function as

df

dt
= 0, (42)

with the time derivative being taken along the particle orbit. This can then be linearized

by expanding the distribution function as f = F + δf where δf is the perturbation due to

the mode and F is an equilibrium distribution function that only depends on the constants

of motion. The resulting equation is

d

dt
δf = − d

dt
F, (43)

with the derivative on the left evaluated along the unperturbed orbits, and the one on the

right along the perturbed orbits. We now write the left hand side of Eq. (43) using the

coordinates found in Sec. III and average over the fast motion in ζ to obtain

d

dt
δf =

(
∂

∂t
+ ωϕ̄

∂

∂ϕ̄
+ ωθ̄

∂

∂θ̄

)
δf. (44)

If we pick F = F (U, µ, Pθ), where U = 1
2
mv2 is the particle energy, then the right hand side of

Eq. (43) can be evaluated by conventional means14,34,35 for the electromagnetic perturbation

given by Eqs. (3) and (4), which results in

d

dt
F =

Ze

c

∂

∂ϕ

(
∂Φ

∂t

)
∂F

∂Pϕ
− Ze

c
vD · ∇

∂Φ

∂t

∂F

∂U
, (45)

where derivatives of F are taken holding µ and either U or Pθ constant. We note that the

second term on the right hand side of Eq. (45) is smaller than the first term by a factor of

r/R and thus we neglect it and focus on radial gradients of the energetic particle distribution

as the main instability driving mechanism. Combining Eqs. (44) and (45) results in(
∂

∂t
+ ωϕ̄

∂

∂ϕ̄
+ ωθ̄

∂

∂θ̄

)
δf = −Ze

c
nω
∑
m

Φme
inϕ̂−imθ̂−iωt ∂F

∂Pϕ
, (46)
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where we have made use of a Fourier expansion of Φ in time and in straight-field-line coor-

dinates (ϕ̂,θ̂) as follows:

Φ =
∑
m

Φm(r)einϕ̂−imθ̂−iωt. (47)

Axisymmetry implies (due to Eq. (29)) that Fourier harmonics in ϕ̄ are decoupled, and thus

one ϕ̂ harmonic only gives rise to one ϕ̄ harmonic. Expanding δf in a series of θ̄ harmonics

and a single ϕ̄ and time harmonic then gives an immediate solution of Eq. (46) :

δf = −inω
∑
l,m

Ze

c

Φm(r̄)K(l,m)einϕ̄−ilθ̄−iωt

ω − nωϕ̄ + lωθ̄

∂F

∂Pϕ
. (48)

To transform from r, θ̂, ϕ̂ straight-field line coordinates to r̄, θ̄, ϕ̄ coordinates, we have made

use of the slow radial variation of Φm to replace Φm(r) by Φ(r̄) and defined the internal

integral K, which transforms straight-field-line Fourier harmonics to action-angle Fourier

harmonics, by

K(l,m) =
1

4π2

2π∫
0

dϕ̄

π∫
−π

dθ̄einϕ̂−imθ̂e−inϕ̄+ilθ̄. (49)

In general, the evaluation of K involves a complex integral over the entire orbit. However,

in the high-n approximation, with k‖ � k⊥, we can evaluate K asymptotically, which we do

in Appendix A.

We now use δf as given by Eq. (48) to compute δP for inclusion in the mode equation

(Eq. (2)), via Eq. (5). In order to integrate δf , we write integrals over all velocities as

integrals over U, µ and ζ. However it is important to note that whilst in the definition of

the pressure the velocity integration is done at constant r, δf is a function of r̄. We make

use of the thin orbit apprixmation and slow radial variation of all quantities to replace all

instances of r̄ with r in the integrand, and perform all integrals at constant r. Thus∫
d3v =

∑
σ

∫
dUdµdζ

B

M2|v‖|
≈
∑
σ

∫
dUdµdζ

B0

MR0q(r̄)ωθ̄

∣∣∣∣dθ̄dθ
∣∣∣∣ , (50)

where Eq. (36) has been used to replace |v‖|, and σ ≡ v‖/|v‖|. This simplifies the expression

for δP⊥ to

δP⊥ = 2π
∑
σ

∫
dUdµ

B2
0

M2R0q(r̄)ωθ̄

∣∣∣∣dθ̄dθ
∣∣∣∣µδf. (51)

Subsituting δf from Eq. (48) we then have

δP⊥ = −2πinωΩ
B0

MR0q

∑
l,m,σ

Φm

∫
dUdµ

∣∣∣∣dθ̄dθ
∣∣∣∣ µωθ̄ K(l,m)einϕ̄−ilθ̄−iωt

ω − nωϕ̄ + lωθ̄

∂F

∂Pϕ
. (52)
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We now expand δP⊥ as a Fourier series in ϕ̂ and θ̂, and interchange integration over ϕ̂ and

θ̂ with integration over U and µ to find

δP⊥ =
∑
j

δP⊥j(r)e
inϕ̂−ijθ̂−iωt (53)

δP⊥j = −2πinωΩ
B0

MR0q

∑
l,m

Φm

∫
dUdµ

µ

ωθ̄

K(l,m)Kext(l, j)

ω − nωϕ̄ + lωθ̄

∂F

∂Pϕ
. (54)

We have defined the external integral Kext, which is similar to K except involved with the

inverse transformation back to straight-field-line harmonics, by

Kext(l, j) =
∑
σ

1

4π2

2π∫
0

dϕ̂

π∫
−π

dθ̂

∣∣∣∣dθ̄dθ
∣∣∣∣ einϕ̄−ilθ̄e−inϕ̂+ijθ̂, (55)

and again defer its evaluation to Appendix A.

We now simplify δP⊥j by selecting only the resonant contribution, i.e. we use the formula∫
dx

x
= −i

∫
dxδ(x) + P

∫
dx

x
, (56)

with P
∫
dx denoting the Cauchy principal value of the integral. We define δPR

⊥ to be the

part of the perturbed pressure associated with the resonant delta function. We then use

the nature of the background fast-ion distribution F to perform the integration over U ; the

approximation that all the fast ions bounce at the resonant magnetic field strength (where

the ICRH deposition is localized) is equivalent to factorising F into

F = F0(Pϕ, µ, U)δ (U − µBres) . (57)

We finally combine Eqs. (54) and (57) into

δPR
⊥j = −2πnωΩ

B0

MR0q

∑
l,m

Φm

∫
dµδ (ω − nωϕ̄ + lωθ̄)

µ

ωθ̄
K(l,m)Kext(l, j)

∂F0

∂Pϕ
, (58)

with all instances of U evaluated at the resonant energy µBres. If we average this over a

small radial region (larger than the orbit width but less than the radial wavelength of the

mode) or equivalently neglect components of δP that vary rapidly in radius we can use the

explicit expression for K(l)Kext(j) from Eq. (A21) to ultimately obtain

δPR
⊥j = −2πnωΩ

B0

MR0q

∑
l,m

Φm

∫
dµδ (ω − nωϕ̄ + lωθ̄)

µ

ωθ̄

ei(m−j)θb

2π2n2χ2
2

∂F0

∂Pϕ
, (59)
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if θb <
π
2

or

δPR
⊥j = −2πnωΩ

B0

MR0q

∑
l,m

Φm

∫
dµδ (ω − nωϕ̄ + lωθ̄)

µ

ωθ̄

8

π|nG∗|
cos ((m− j)θ∗) ∂F0

∂Pϕ
,

(60)

if θb >
π
2
. All quantites in these expressions are now functions of r and not r̄ (see discussion

after Eq. (49)). The quantities G∗ and θ∗ are defined by

G∗ ≡ 2Pζ
M

Ωr̄χ1

q2R3
0ω

2
θ̄

(
− sin θ∗

√
cos θ∗ − cos θb

)
, (61)

cos θ∗ =
1

2
cos θb. (62)

V. APPLICATION TO ALFVÉN CASCADE DRIVE

In this section, we apply our analysis to the problem of Alfvén Cascades in shear-reversed

discharges driven by ICRH-accelerated ions. We expect the resonant ions to have signifi-

cantly lower energies than the non-resonant ones. We therefore use the small orbit width

approach detailed above for the resonant ions and the large orbit width limit considered

in Ref. 26 for the nonresonant ions. Alfvén Cascades can be adequately described by a

single Fourier component Φm of the perturbed field (see Eq. (47)); taking the corresponding

component of Eq. (2) results in:

∂

∂r

(
ω2

v2
A

− k2
‖ −

ω2
G

v2
A

)
∂Φm

∂r
− m2

r2

(
ω2

v2
A

− k2
‖ −

ω2
G

v2
A

− ω2
∇
v2
A

)
Φm

=
4πem

B0cr
ω
∂n0h

∂r
Φm +

2π

iB0R0

(
m

r

(
δPR
⊥m+1 + δPR

⊥m−1

)
+

∂

∂r

(
δPR
⊥m+1 − δPR

⊥m−1

))
.

(63)

We have introduced the geodesic acoustic frequency ω2
G = 2

MR2

(
Te + 7

4
Ti
)

and the pressure

gradient induced frequency shift ω2
∇ = − 2

MR2 r
d
dr

(Te + Ti) in accordance with Ref. 24 and

13



Ref. 28. We can write the resonant pressure contributions using Eq. (58) as:

1

2

(
δPR
⊥m+1 + δPR

⊥m−1

)
(64)

= −2πnωΩ
B0

2MR0q
Φm

∑
l

∫
dµδ(ω − nωϕ̄ + lωθ̄)

µ

ωθ̄
K1(l,m)

∂F0

∂Pϕ
,

1

2

(
δPR
⊥m+1 − δPR

⊥m−1

)
(65)

= −2πnωΩ
B0

2MR0q
Φm

∑
l

∫
dµδ(ω − nωϕ̄ + lωθ̄)

µ

ωθ̄
K2(l,m)

∂F0

∂Pϕ
,

K1 =
∑
s=±1

K(l,m)Kext(l,m+ s), (66)

K2 =
∑
s=±1

sK(l,m)Kext(l,m+ s). (67)

With these expressions Eq. (63) reduces to a second order differential equation for the shear

Alfvén perturbation Φm,

∂

∂r

(
ω2 − ω2

A

) ∂Φm

∂r
−
(
ω2 − ω2

A − ω2
H

) m2

r2
Φm = iD1Φm +D2

∂Φm

∂r
, (68)

where we have abbreviated the fast particle terms by defining D1 and D2 as follows:

2πv2
A

iB0R0

m

r

(
δPR
⊥m+1 + δPR

⊥m−1

)
= iD1Φm, (69)

2πv2
A

iB0R0

∂

∂r

(
δPR
⊥m+1 − δPR

⊥m−1

)
= D2

∂

∂r
Φm, (70)

and defined frequencies of the Alfvén continuum (ωA) and the offset (ωH) from the continuum

as follows:

ω2
A = k2

‖v
2
A + ω2

G, (71)

ω2
H = − ω

m
Ω
r

ni

∂n0h

∂r
+ ω2

∇. (72)

Before engaging in a detailed analysis of Eq. (68), we can immediatly determine several

general features of the modes. Making a local approximation, and neglecting the small

radial derivatives we have

(
ω2 − ω2

A − ω2
H

)
= −Ai∂F

∂r̄
K1, (73)

where A is a positive constant, and K1 is defined by Eq. (A22). This leads to the conclusion

that the fast particle contribution is destabilizing if:

14



• θb > π
2

and ∂F
∂r
< 0, i.e. High field side ICRH and a peaked radial profile,

• θb < π
2

and ∂F
∂r
> 0, i.e. Low field side ICRH and a hollow radial profile.

As these are the expected profiles of ICRH ions, we expect the mode to be observed indepen-

dent of heating location. We also note that these results are for n > 0. Looking at the exact

expression in Eq. (64) we see that the destabilizing term is proportional to n. Therefore

we do not expect any modes with negative n for normal profiles of ICRH-accelerated ions.

Returning to Eq. (68), we proceed as in Ref. 24 and use our assumption of small radial

gradients (Eq. (1)) to determine that the second term on the left hand side of Eq. (68) is

larger than all the other terms. This results in

ω2 ≈ ω2
0 = ω2

A + ω2
H , (74)

i.e. the real frequency of the mode must be close to the local Alfvén frequency with the offset

determined by the nonresonant fast particle density gradient and plasma pressure gradient.

This means that we can neglect the small spatial dependence in the radial derivative term,

∂2

∂r2
Φm −

m2

r2

ω2 − ω2
A(r)− ω2

H(r)

ω2
H(r0)

Φm =
1

ω2
H(r0)

(
iD1(r0)Φm +D2(r0)

∂

∂r
Φm

)
. (75)

We order the radial dependence of ωA (which is predominantly from the radial variation of

q) through ∣∣ω2
A(r)− ω2

A(r0)
∣∣ ∼ ωH(r0)

r2

m2

∂2

∂r2
. (76)

As ωH � ωA, this means that we can neglect the spatial dependence of ω2
H everywhere.

Expanding about q = q0, the value of q at the reverse shear point, where r = r0 , we find

(writing ω2
0 = ω2

A(r0) + ω2
H(r0) to the required accuracy)

∂2

∂z2
Φm =

(
λ− ηz2 − z4

)
Φm + iEΦm + F

∂

∂z
Φm, (77)

z =
r − r0

r0

(
m2vAq

′′
0r

2
0

2ωHq2
0R0

)1/3

, (78)

λ =
ω2 − ω2

0

ω2
H

(
4ω2

Hq
4
0R

2
0m

2

v2
Aq
′′2
0 r

4
0

)1/3

, (79)

η = (nq −m)

(
16mv2

A

ω2
Hq0r2

0q
′′
0R

2
0

)1/3

, (80)

E =
r2

0

ω2
H

(
2q2

0ωHR0

vAm2r2
0q
′′
0

)2/3

D1, (81)

F =
r0

ω2
H

(
2q2

0ωHR

vAm2r2
0q
′′
0

)1/3

D2. (82)
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We then introduce the auxiliary quantity Ψ = e−Fz/2Φm, which reduces Eq. (77) to

∂2

∂z2
Ψ =

(
λ+ iE − 1

4
F 2 − ηz2 − z4

)
Ψ. (83)

We also find it convenient to reintroduce explicit time dependence by writing Φm =

Φm(t)e−iω0t with Φm(t) a slowly varying envelope. This results in (ω2 − ω2
0) Ψ ≈ 2iω0

∂
∂t

Ψ.

We can then rescale time by t = t′ 2m
2ω0

ω2
H

(
2q2

0ωHR0

vAm2r2
0q
′′
0

)2/3

to obtain the final mode equation,

i
∂

∂t′
Ψ̃ =

∂2

∂z2
Ψ̃ +

(
ηz2 + z4

)
Ψ̃ (84)

Ψ = e−Et
′+i 1

4
F 2t′Ψ̃ (85)

which is a time-dependent Schrödinger equation with a quartic potential hill for large z and

a local hill or a well for small z, depending on the sign of η. The expression for ω0 shows

that a downward sweeping Alfvén Cascade will have η > 0 and an upward sweeping cascade

will have η < 0. Thus we naturally see that the upward sweeping modes are generally real

eigenmodes localized in a potential well and the downward sweeping modes are decaying

quasimode solutions of Eq. (84) atop a potential hill. The transformation to Ψ̃ means that

if we find a solution of Eq. (84) with damping rate γ(η) we have a solution of Eq. (75) with

damping rate Γ given by,

Γ =
r2

0

m2

D1

2ω0

+
1

2ω0

(
ω2
HvAq

′′
0r

2
0

2mq2
0R0

)2/3

γ(η) (86)

VI. ANALYSIS OF EQ. (84)

Having reduced the problem to the simple form of Eq. (84) we now proceed to analyse

this equation to find γ(η). Our goal is to find the least damped solution of Eq. (84) in the

absence of a drive. This corresponds to the most unstable/least-damped solution for Φm

through Eq. (86) in the presence of drive. Examining the form of Eq. (84) we see that for

large |z| the solutions are asymptotically WKB solutions of the form,

Ψ̃ ∼ 1

z
e±iz

3/3, (87)

which are radially ingoing / outgoing waves. By analogy with the Schrödinger equation the

z-flux of |Ψ̃2| is given by i
(

Ψ̃∂zΨ̃
∗ − Ψ̃∗∂zΨ̃

)
, which shows that the outward flux of |Ψ̃2|

at large z is proportional to z2|Ψ̃2|. We therefore expect perturbations near the origin to
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last longest before radiating away to large |z|. It is also seen immediatly from the WKB

solutions that as the energy is radiated away from the origin, it quickly reaches ever shorter

scales and thus formally our assumption in Eq. (1) becomes invalid. However, if we assume

that there is some (presumably kinetic) dissipation at small scales then we can envisage a

situation in which the region around z = 0 is well described by our model, and it radiates

energy away at a rate that is independent of the exact small scale dissipation mechanism.

In order to calculate the characteristic lifetime of a perturbation we use an initial value

code to solve Eq. (84). We discretise both in space and in time, using a standard Crank-

Nicolson scheme. In order to mimic a generic small scale damping mechanism at large z

at each timestep we multiply the solution by a smooth windowing function that artificially

damps fluctuations far from the origin. This provides an absorbing boundary away from the

origin allowing energy to radiate away from the origin realistically.

As this is a Schrödinger equation with a potential hill, we expect there to be a complete

set of solutions with outgoing wave boundary conditions and quantized damping rate. Thus

any initial perturbation can be expanded in these functions, and after a few damping times

only the least-damped of these solutions (quasimodes) remains. The resulting damping rate

is thus independent of initial conditions. We find this damping rate by taking the absolute

value of Ψ̃ at the origin and fitting ln(|Ψ̃|) to a linear function of time, after removing the

initial transient phase where many modes are still present.

We also seek an analytic approximation to this damping rate in order to validate our

code. For large positive η the problem can be transformed into the standard anharmonic

oscillator with a complex quartic term.This problem has been studied before, and so we can

use standard results36 to obtain for large η

γ(η) = −√η
(

1− 3

4
iη−3/2 +

21

16
η−3

)
. (88)

However, as we only require the real part of γ we can neglect the η−3/2 term. We note that

the analysis in Ref. 24 of Eq. (84) for large η contains misprints and should read (in our

notation) that Ψ ∼ ei
√
ηz2/2 with λ ∼ i

√
η, in agreement with Eq. (88). As a further check we

confirm that in the case of η = 0 we reproduce the ground state of the anharmonic oscillator

correctly37. In Fig. 2 we present the analytic approximation for γ with the numerical results

obtained by our finite difference solver. We note that the exponential tail for negative η

gives the small radiative damping of the usual upward sweeping eigenmode.
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It is important to compare our results to alternative interpretations of downward sweeping

ACs. Whilst we consider a weakly-radiatively-damped mode atop a potential hill, it is

possible to construct solutions where kinetic effects provide a potential well for standing

waves38,39 via coupling to kinetic Alfvén waves.

We work in the same regime as Ref. 39 where Γ, given as the sum of the drive and the

continuum damping by Eq. (86) is not vanishingly small. In this regime, the discrete kinetic

modes have a spectrum consisting of multiple eigenmodes with a frequency spacing δω given

by:39

δω

ωA
= 2ρi

√
Te
Ti

+
3

4

√
q′′

q

(nq
m
− 1
)−1/2

. (89)

We compare this to the damping rate γd of our longest lived mode in the limit η � 1, i.e.

away from the lowest frequency of the cascade or for very small q′′,

γd
ωA

=
ωH
ωA

1√
8

√
q′′

q

r

m

(nq
m
− 1
)−1/2

. (90)

Thus, if the condition
r

ρim

ωH
ωA

> 1 (91)

is satisfied, we expect the resulting behaviour to be well described by our continuum approx-

imation. This is because the radiative damping is in reality due to phase mixing that arises

from the many different kinetic modes that make up the initial perturbation. The discrete

nature of these modes is only apparent on timescales longer than δω−1 by which time the

mode has either decayed to zero or grown beyond the applicability of linear theory. In the

opposite limit, where Eq. (91) is violated, the results of Ref. 39 have been extended in Ref.

38 to find a discrete kinetic mode with a broad radial scale.

We now consider the condition given by Eq. (91) for typical experimental parameters.

Using Eq. (72) and neglecting the pressure gradient allows us to estimate ωH by

ωH
ωA
≈
√

1

m

Ω

ωA

nh
ni

r

Lh
, (92)

where Lh is the density gradient scale length of the fast particles. For typical JET parameters

( Ω
ωA
≈ 103, m ≈ 10, nh

ni
≈ 10−3, r0

ρ
≈ 100 and r

Lh
≈ 3) we find

ωH
ωA
≈ 1

2
(93)
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and
r

ρim

ωH
ωA
≈ 5� 1, (94)

so that the continuum-like description for the mode is suitable for the problem under con-

sideration. Near marginal stability, i.e. for the case γL − γd � γd, where γL is the linear

drive due to resonant particles, an extra factor γL−γd
γd

appears in Eq.(94) , which may violate

the applicability condition for the quasimode approach and a more delicate description of

the discrete spectrum would be required.

VII. COMPARISON WITH EXPERIMENT

In relating our results to experimental data, we need to highlight the fact that the down-

ward sweeping ACs are very rare compared to upward sweeping ACs. Since 1997, when

magnetic spectrograms became available for every JET discharge, downward sweeping ACs

have been detected in only 26 discharges as opposed to more than 5000 discharges where

upward sweeping ACs have been observed ( magnetic probes, O-Mode inteferometry40 and

X-Mode reflectometry41 contribute to this data). Due to the scarcity of downward sweeping

ACs, some essential plasma diagnostics were unavailable at the time of their observation.

In particular, MSE measurements42 of the q(r)-profile were only made in 5 discharges out

of the 26. Although 26 examples of downward sweeping ACs provide very limited statistics

they are still indicative of why downward sweeping ACs are so rare.

First, there is no obvious correlation between downward sweeping ACs and the type of

energetic particle population in the discharge. The downward sweeping ACs were observed

in discharges with NBI only (3 discharges), combined ICRH and NBI (9 discharges), and

ICRH only (14 discharges). In the cases of plasmas with ICRH, high-field side (up to

RRF −R0 ≈ −30cm in discharge #56947, t = 3.8 s), low-field side (up to RRF −R0 ≈ 35cm

in discharge #65550, t = 5.2 s), and on-axis ICRH were used. It is therefore unlikely that

downward sweeping ACs require an extraordinary energetic particle distribution.

Second, downward sweeping ACs are seen in discharges with magnetic fields ranging from

1.8 T (discharge #72691) to 3.45 T (discharge #46863). Although no measurements of ion

temperature exist for most of the downward sweeping ACs, the variation of the magnetic

field, together with the difference in the types of heating, is likely to cause a significant

spread in Larmor radii across the data base. In the discharges where ion temperature was
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measured, ion Larmor radius is found to be about 3 mm, no different from many discharges

with upward sweeping ACs. We then conclude that the downward sweeping ACs are unlikely

to be due to some anomaly in Larmor radius present in all 26 pulses of the data base.

Third, we investigate whether the downward sweeping ACs are associated with a specific

type of plasma equilibrium. With plasma currents varying from 1.1 MA (discharge #68822

at t = 1.95 s) to 3.5 MA (discharge #46863 at t = 4.8 s), downward sweeping ACs are

observed with qmin ≈ 2, qmin ≈ 3, and even qmin ≈ 4 (discharge #68822, t = 1.95 s).

However, equilibrium reconstructions for the discharges where MSE diagnostic data was

available show that such discharges have very flat q-profiles (See Table I) . We note that

downward sweeping ACs were never observed in JET discharges with strong shear reversal

and current holes43. These discharges are typical for JET advanced scenarios and they

usually exhibit very clear upward sweeping ACs. One can than conjecture that downward

sweeping ACs require low shear values, which are quite rare in JET discharges with qmin > 1.

This conjecture is consistent with what follows from Eq. (86) and Fig. 2: shallow q-profiles

(small q′′) minimize continuum damping making it easier for the mode to be destabilized

and grow to an observable level.

Toroidal mode numbers were determined from Mirnov coil data for 19 discharges con-

taining downward sweeping ACs. All these numbers were positive and lie in the range n = 1

to n = 5. It is noteworthy that upward sweeping ACs also have only positive toroidal

mode numbers6. The absence of negative toroidal mode numbers agrees with the theoretical

conclusion that the corresponding modes are stable and damped.

An idealized model of quiescent plasma with a population of hot ICRF heated ions and a

shallow (|s| � 1) q-profile appears to be relevant to reverse-shear discharges with downward

sweeping ACs. As follows from Eq. (80), these modes must have positive values of η. The

time evolution of η is dominated by that of nq − m. We thus notionally hold all other

parameters constant and examine what happens as q (or equivalently η) decreases with

time. As the continuum damping decreases with η the mode eventually becomes unstable.

If the critical value of η is above zero we expect to see a downward sweeping trace until η

reaches zero whereupon the mode becomes the Geodesic Acoustic Mode29. As η decreases

further to negative values, we expect to see an upward sweeping trace until the mode reaches

the TAE frequency.

We now consider an example of downward-sweeping ACs shown in Figure 3. Figure 4
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shows the corresponding power waveforms for the ICRH, NBI and Lower-hybrid current drive

(LHCD) systems in JET discharge #66550 with toroidal field BT = 2.46 T and plasma

current Ipla . 1.9MA. It is typical for scenarios aiming at the creation of an internal

transport barrier that the inductive current drive is still ramping up (see Figure 4) when the

main heating power is applied. This creates the non-monotonic q-profile shown in Figure 5

(reconstructed from MSE data), with qmin = 2.1 at t = 4.96s when the MSE data was taken.

This profile has a broad region of very low shear (|s| < 0.1 in the shear-reversed region)

with r2q′′/q = 0.4 at the shear reversal point.

Figure 6 shows the resonant surfaces for the ICRH antennas at the time of observation.

Most of the RF power was deposited at R = 3.5m. We thus expect a hollow profile of

fast ions in the region 3m < R < 3.5m. The SELFO code44 confirms this expectation,

predicting a hollow profile for the fast particle energy density. As seen from Eq. (73), an

energetic particle population with such a hollow profile and θb < π/2 provides a drive for

AC quasimodes making them observable.

It is important to emphasize that the quasimodes discussed here do not require a potential

well, which distinguishes them from the AC eigenmodes discussed in Ref. 45. The drive

calculated here is destabilizing only for positive toroidal mode numbers, in the typical off-

axis ICRH scenarios. Downward sweeping ACs have also been observed in on-axis heated

discharges. In order to apply our theory to this case we need to include a broader profile

in bounce angle in our derivation. The generalization of Eq. (58) to a localized distribution

with finite width is fairly simple, and one can see quickly that it will be a weighted average

of Eq. (58) over the range of possible bounce angles. However as K1 is larger in the high field

side region (by one power of n) we can neglect any contrbution from the low-field-side region

and conclude that, for on or near axis heating, positive n modes are unstable if ∂F
∂Pϕ

< 0 at

the zero shear point. This agrees with experiment where, unless the zero shear point is very

close to the magnetic axis, we indeed expect the profile to drop off radially ( ∂F
∂Pϕ

< 0) at the

zero shear point. Due to the scarcity of downward sweeping modes on JET, the inability to

run with hollow profiles and high-field-side IRCH and the scarcity of toroidal mode number

data it is not possible to completely verify the predictions made after Eq. (73). However

none of the experimental results on downward sweeping modes from JET contradict our

predictions.
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VIII. CONCLUSION

In this paper we have used the action-angle formalism for the bounce-precessional mo-

tion of the fast ICRH-accelerated ions to calculate the resonant response of the ions to shear

Alfvén perturbations without making the deeply trapped orbit approximation used previ-

ously10,11. By exploiting the characteristic features of Alfvén Eigenmodes, we reduce the

complex orbit integrals to local contributions from a few critical points.

Using this local formulation of the energetic ion response we calculate the resonant ion

drive for Alfvén Cascades (ACs) and AC quasimodes. Based on the expression for the

drive, and an asymptotic expression for the radiative damping, we conclude that the AC

quasimode should be observed predominantly in weakly reversed shear configurations and

that, in such a configuration, it can explain downward sweeping Alfvén Cascades below the

TAE frequency. Furthermore, we conclude that the quasimode should only be excited with

positive mode numbers in experimentally relevant plasma configurations.

We reinforce this conclusion via a comparison to experiments carried out on JET. A

database of JET pulses where quasimodes were observed is compiled and examined, along

with advanced equilibrium reconstruction to determine the q-profile. The results obtained

demonstrate that the observation of downward sweeping Alfvén Cascades is indeed linked

to the presence of a weakly reversed shear plasma. In the few cases where mode number

information is available only positive mode numbers are excited, agreeing qualitatively with

our predictions for the resonant excitation mechanism due to trapped energetic ions.
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Appendix A: Evaluation of Eqs. (49) and (55)

In this Appendix we evaluate the integrals K(l,m) and Kext(l,m) defined in Eqs. (49)

and (55) respectively in the high-n limit. These integrals relate harmonics in straight-field-

line variables in which the fields are naturally expressed to the action-angle variables ϕ̄ and

θ̄ adapted to the particle orbits.

The major simplifying assumption that allows us to proceed in this appendix is the high

mode number limit n,m → ∞, however we immediatly observe that k‖qR ∼ 1 and so

nq −m doesn’t scale with n as n→∞. We also neglect the small difference θ − θ̂ unless it

is multiplied by the large mode number n or m.

We note the symmetry in the definitions of K and Kext and so manipulate Kext using

Eqs. (29) and (30) to find

Kext(l,m) =
∑
σ

1

2π

θb∫
−θb

dθ

∣∣∣∣dθ̄dθ
∣∣∣∣ e−inG(θ)χ1(r̄)e−i(nq−m)θ̂e

i n
ωθ̄

(ωϕ̄−χ2(r̄))θ̄
e−ilθ̄. (A1)

Now we can convert this to an integral over θ̄,

Kext =
1

2π

π∫
−π

dθ̄e−inG(θ)χ1(r̄)e−i(nq−m)θ̂e
i n
ωθ̄

(ωϕ̄−χ2(r̄))θ̄
e−ilθ̄, (A2)

and comparing this to the definition of K in Eq. (49) we find

Kext(l,m) = K∗(l,m), (A3)

with ∗ denoting the complex conjugate.

Proceeding now with the explicit evaluation of K we use Eq. (49) and Eqs. (29) and (30)

to obtain

K(l,m) =
1

4π2

2π∫
0

dϕ̄

π∫
−π

dθ̄ei(nϕ̂−mθ̂)e−inϕ̄+ilθ̄, (A4)

=
1

2π

π∫
−π

eil̂θ̄einG(θ)χ1(r̄)+inχ2θ̄ei(nq−m)θdθ̄, (A5)
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where l̂ ≡ l − nωϕ̄
ωθ̄

. If we are near resonance then l̂ does not scale with n. This integral is

now of the form:
x2∫
x1

g(x)einf(x)dx as n→∞,

for which a standard expression exists,46

x2∫
x1

g(x)einf(x)dx ∼ −ig(x2)einf(x2)

nf ′(x2)
+
ig(x1)einf(x1)

nf ′(x1)
+

∑
c:f ′(c)=0

g(c)einf(c)+iπµ(c)/4

√
2π

|nf ′′(c)|
,

(A6)

where µ(c) ≡ nf ′′(c)/|nf ′′(c)|. From this expression we note that such integrals are domi-

nated by contributions from stationary phase points where f ′(x) = 0 and from the ends of

the interval if no such points exist. We will consider both contributions as stationary phase

points do not always exist. The result should be interpreted as providing the leading term.

If a stationary phase point exists then the endpoint contributions must be ignored.

To find the stationary phase points, which we denote by θ = θ∗, we solve,

∂

∂θ̄

(
G(θ)χ1(r̄) + χ2θ̄

)
= 0, (A7)

which we can rearrange to give

∂G

∂θ
+
χ2

χ1

∂θ̄

∂θ
= 0, (A8)

where ∂θ̄
∂θ

is related to ∂G
∂θ

by Eqs. (36)–(38) , and the ratio χ2/χ1, in the low-shear limit,

becomes
χ2

χ1

=
cos θb
R0ωθ̄q

√
2PζΩ

M

r̄

R0

. (A9)

Eq. (A8) can then be rewritten as

2

(
∂G

∂θ

)2

= cos θb, (A10)

which using Eq. (28) finally gives

cos θ∗ =
1

2
cos θb. (A11)

If, without loss of generality, we let θ∗ be the positive solution of this equation we have

stationary phase points at θ = ±θ∗, and thus four stationary phase points in total as each

θ occurs once on each branch of θ̄(θ) (see Eqs. (30),(34) and (35)).
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Dividing the θ̄ integral in Eq. (A5) into two intervals, corresponding to the two branches

of θ̄(θ) (see Eqs. (36) and (37)), we have

K(l,m) =
1

2π
(I + J) (A12)

I =

0∫
−π

ei(nq−m)θeil̂θ̄einG(θ)χ1(r̄)+inχ2θ̄dθ̄ (A13)

J =

π∫
0

ei(nq−m)θeil̂θ̄einG(θ)χ1(r̄)+inχ2θ̄dθ̄ (A14)

We now calculate I and J in the limit of n→∞.

Applying Eq. (A6) to I we find the following contribution from the endpoints θ = −θb,θ̄ =

−π and θ = θb,θ̄ = 0:

e−i(nq−m)θbe−il̂π−inχ2π−iχ1G(−θb) i

nχ2

− ei(nq−m)θb
i

nχ2

(A15)

At the stationary phase point, θ∗, we have

χ1
d2G

dθ̄2

∣∣∣∣
θ=θ∗

=
2Pζ
M

Ωr̄χ1

q2R3
0ω

2
θ̄

(
− sin θ∗

√
cos θ∗ − cos θb

)
≡ G∗. (A16)

Noting that G∗ is odd in θ∗, we have the contribution to I from θ = +θ∗ and θ = −θ∗,

ei(nq−m)θ∗einG(θ∗)χ1−in(l̂+χ2)(θ̄∗)+iπµ/4

√
2π

|nG∗|

+ e−i(nq−m)θ∗einG(−θ∗)χ1−in(l̂+χ2)(π−θ̄∗)−iπµ/4

√
2π

|nG∗|
.

(A17)

Where we introduce θ̄∗ which is the absolute value of θ̄ when θ = θ∗, also µ = nG∗/|nG∗|.

Thus the two stationary phase points in the interval θ̄ ∈ [−π, 0] are θ̄ = θ̄∗−π and θ̄ = −θ̄∗.

Combining the above results gives,

I =e−i(nq−m)θbe−il̂π−inχ2π−inχ1G(−θb) i

nχ2

− ei(nq−m)θb
i

nχ2

(A18)

+ ei(nq−m)θ∗e−i(nχ2+l̂)(θ̄∗)einG(θ∗)χ1+iπµ/4

√
2π

|nG∗|

+ e−i(nq−m)θ∗e−i(nχ2+l̂)(π−θ̄∗)einG(−θ∗)χ1−iπµ/4

√
2π

|nG∗|
.
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In this expresssion and hereafter G(θ) is understood to be evaluated on the branch where

G(θ) < 0. We perform the same analysis for J to give:

J =ei(nq−m)θb
i

nχ2

− e−i(nq−m)θbeil̂π+inχ2π−inχ1G(−θb) i

nχ2

(A19)

+ ei(nq−m)θ∗ei(nχ2+l̂)(θ̄∗)e−inG(θ∗)χ1−iπµ/4

√
2π

|nG∗|

+ e−i(nq−m)θ∗ei(nχ2+l̂)(π−θ̄∗)e−inG(−θ∗)χ1+iπµ/4

√
2π

|nG∗|
.

We can then calculate K(l,m)

K(l,m) =
1

2π
(I + J)

=
1

2π

2

nχ2

e−i(nq−m)θb−inχ1G(−θb) sin
(
l̂π + nχ2π

)
+2

1

2π

√
2π

|nG∗|

{
ei(nq−m)θ∗ cos

(
(nχ2 + l̂)θ̄∗ − nG(θ∗)χ1 − πµ/4

)
+e−i(nq−m)θ∗ cos

(
(nχ2 + l̂)

(
π − θ̄∗

)
− nG(−θ∗)χ1 + πµ/4

)}
(A20)

To calculate products of K and K∗ in a simple form we employ an averaging over r̄,

which is permitted by Eq. (1) as Φ doesn’t have small scale structure in r̄. Thus we drop all

terms containing expressions of the form einf(r̄) leaving only those terms which vary slowly

in the radial direction. This procedure gives,

K(l,m)K∗(l,m+ s) =
e−isθb

2π2n2χ2
2

+
2

|nπG∗|
(
eisθ

∗
+ e−isθ

∗)
, (A21)

from which we can calculate K1 and K2 as defined in

K1 =
∑
s=±1

K(l,m)Kext(l,m+ s) =
cos θb
π2n2χ2

2

+
8 cos θ∗

π|nG∗|
, (A22)

K2 =
∑
s=±1

sK(l,m)Kext(l,m+ s) = −i sin θb
π2n2χ2

2

. (A23)

∗ Electronic address: Ian.Abel@jet.uk

† See Appendix F of F. Romanelli et. al. in Proceedings of the 22nd IAEA Fusion Energy Con-

ference, Geneva, 2008
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Figure 1: Schematic mode structure, depicted by one equipotential surface, superposed with the
poloidal cross section of an energetic particle banana orbit.

Figure 2: Numerical solution for γ (η) compared to analytic result for large   (color online).

Table 1: Discharges with downward sweeping ACs, for which MSE measurements are available

θ = π/2

θ = 0

δθb

JG08.3
14-

4c

-1

-

-2

-3

γ 
(η

)

0
Numeric solution

0 4 8-4
η

η

JG
09

.2
59

-1
c

Pulse No: tAC s qmin at tAC tMSE s (r 2/q )q Maximum s

66539 5.15 2 4.96 0.14 -0.06

66550 5.2 2 4.96 0.4 -0.1

72961 2.7 3 2.21 0.9 -0.22

72818 3.9 2 3.06 0.4 -0.11

74896 2.25 2 2.4 0.35 -0.07
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Figure 3: Spectrogram of O-Mode interferometry from JET Pulse No: 66550 showing ACs (color online).
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Figure 4: ICRH, NBI, LHCD power waveforms, and plasma current signal for JET Pulse No: 66550, shaded time
interval corresponds to the time shown in figure 3 (color online).
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Figure 6: ICRH resonant surfaces at time of AC, with reconstructed flux surfaces shown (color online).

Figure 5: Reconstructed q profile, from MSE and polarimetry data for JET Pulse No: 66550.
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