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ABSTRACT.

The JET neutron profile monitor coverage of the neutron/gamma emissive region enables tomographic

reconstruction. However, due to the availability of only two projection angles and to the coarse sampling,

tomography is a highly limited data set problem. A comparative study concerning the applicability to

JET tomography of four methods– maximum likelihood, maximum entropy, Tikhonov regularization

and a Monte Carlo back-projection algorithm - is reported. The methods have been tested on numerically

simulated phantoms with shapes characteristic for this kind of tomography. The retrieval of sophisticated

structures in the emissive distribution has been addressed in order to have a complete image of the

quality and reliability of the methods. A both qualitative and quantitative evaluation is reported.

1. INTRODUCTION

JET neutron profile monitor is a unique instrument among neutron diagnostics available at large

fusion research facilities [1-3]. The profile monitor comprises two fan shaped multi-collimator  cameras,

with 10 channels in the horizontal camera and 9 channels in the vertical camera. Neighbour channels

are 15-20 cm apart and have a 7cm width as they pass near the plasma centre. A schematic drawing of

the JET neutron emission profile monitor, showing the 19 lines of sight, is presented in Fig.1. Each

line of sight is equipped with a set of three different detectors: i) a NE213 liquid organic scintillator

with Pulse Shape Discrimination (PSD) electronics for simultaneous measurements of the 2.5MeV

D-D neutrons, 14MeV D-T neutrons and γ  Reach detector is equipped with a  pair of pulse shape

discriminators, one tuned for D-D neutrons and the other one for D-T neutrons, to distinguish neutrons

from γ ray induced events; the upper and lower energy detection biases are set to detect preferentially

unscattered neutrons and to reject scattered neutrons. ii) a BC418 plastic scintillator, insensitive to Eγ
< 10MeV for the measurements of 14MeV D-T neutrons; different detection thresholds can be set for

the proton recoil energy in order to obtain different sensitivity to the scattered neutrons; iii) a CsI(Tl)

scintillation detector for measuring the hard X-rays and gamma emission in the range between 0.2

and 6 MeV. The collimation can be adjusted by use of two pairs of rotatable steel cylinders. The size

of the collimation can modify the count rates in the detectors by a factor of 20. The instrument has

currently a time resolution of 10ms.

The plasma coverage determined by the 19 lines of sight can be used for neutron or γ-ray tomography.

It ensures a 2D arrangement for measurements and distribution determination. The 2D slice is located

in the plane defined by the major torus radius (R) and the major torus axis (Z). The thickness of the

plasma slice along the toroidal direction, determined by the collimation system, is approximately 75

mm. However, the existence of only two views (projections in tomographic terms) and the coarse

sampling in each projection leads to a highly limited data set tomographic problem. For example, in

the case of a reconstruction grid with 20 × 35 pixels (pixel size of 90 × 90mm) an image with 700

pixel values must be retrieved from 19 experimental data. As a consequence, special algorithms which

are suitable and specific to the machine and its constrains, allowing effective tomography from the

available limited data, must be developed.
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A number of valuable approaches were developed in the past for tomographic reconstruction of the

two-dimensional 2-D neutron and gamma emissivity at JET. A hybrid pixel/analytic algorithm,

which involves a poloidal Fourier analysis and a radial Abel inversion, starting from outside and

working inward is reported in Ref.4.  Ingesson et al. [5] applied for γ-ray [6-8] and neutron [9-12]

tomography, a constrained optimization method that was used previously for X-ray and bolometer

measurements at JET. As this method uses anisotropic smoothness on flux surfaces as objective

function and measurements as constraints, it searches for the emissivity distribution that is constant

on flux surfaces and gently varying in the radial direction. The applicability of the minimum Fisher

regularization tomographic method [13], was also extended from soft X-ray and bolometric data to

neutron tomography [14, 15]. In principle, the Fisher information of the unknown 2-D distribution

is minimized, while the measurements are taken into account as constraints, using Lagrangian

multipliers. Recently, it was proved that tomography based on the maximum likelihood principle

provides good reconstructions in terms of shapes and resolution [16]. The method uses a smoothing

operator, defined as median filtering along the magnetic contour lines.

Several other methods were reported in literature for various fusion studies. Among them, most

widely used are the Maximum Entropy (ME) and the Tikhonov Type Regularization (TR). ME has

been actively discussed in the literature in connection with the problem of obtaining the most

probable solution with incomplete data [17-19]. ME was first applied for tomography by Minerbo

[20]. In case of tomography for fusion studies, contradictory results were reported. A moderate

quality of the reconstruction was reported for reconstruction geometries characterized by several

non-uniformly distributed projections around the plasma [13, 21], with an exception [22]. On the

contrary, good results were reported for reconstruction geometries with two projection angles and

simple emmisivity shapes (peak, hollow) [23, 24]. The Tikhonov regularization was also used for

numerically stabilizing the ill-conditioned plasma image reconstruction. [21, 25]. The objective

function to be minimized lead to a linear estimator of the image intensity. The linear regularization

smoothes the solution in addition to providing a reasonable fit to data.

The aim of this paper is to enlarge the variety of tomographic methods tested for JET neutron

and gamma tomography. It reports the comparison of four tomographic reconstruction techniques.

The maximum entropy method and an implementation of the Tikhonov regularization technique

for tomographic reconstruction are introduced together with the recently developed method based

on the maximum likelihood principle. A Monte Carlo Back-Projection (MCBP) technique, that

proved to provide good results in limited data tomography [26, 27] has also been considered for

this study. The methods are tested on numerically simulated phantoms with shapes characteristic

for this kind of tomography. The retrieval of sophisticated structure in the emissive distribution was

addressed in order to have a complete image of the quality and reliability of the methods. A both

qualitative and quantitative evaluation is reported.
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2. METHODS

In 2-D tomography systems, measurements are taken along lines of sight and can essentially be

represented by line integrals; i.e. the measurement p is given by straight line integrals of the emissivity

f (x, y), where x and y are Cartesian coordinates of the plane. The emissivity function can be

appropriately discretized on a 2-D grid. For this purpose, the reconstruction area is divided into

pixels that are sufficiently small for emissivity variations within a pixel to be negligible. The weight

matrix W describes the geometrical layout of the detectors and its element wik indicates the

contribution of the ith pixel to the kth detector.

The basic set of tomographic equations is:

(1)

where Np and Nd are the numbers of pixels and detectors, respectively. This set of linear equations

represents the linear inverse problem. Obviously, even with exact data constraints, this inversion

cannot be uniquely performed when there are fewer data than pixels, as is generally the case in

plasma tomography.

As the tomographic problem is highly undetermined, the reconstruction algorithm can lead to a

solution which satisfy Eq. 1 but has no physical relevance and may bring about wrong interpretations.

A priori information about the expected emission profile can be introduced in order to compensate

for the lack of experimental information. Smoothness can be imposed on the solution of the

tomographic problem as regularization. In order to prevent oversmoothing which may lead to the

blurring of certain features in the reconstruction, it is necessary to find the smoothest function for

which the misfit is equal to the estimated noise.

Referece [5] introduced an anisotropic diffusion-like smoothness function as a term in the objective

function of the tomographic problem, formulated as a regularization factor. It takes into account

that the emission profile is smoother in the poloidal direction than in the radial one. Using

measurements as constraints, the reconstruction method searches for the emissivity distribution

that is constant on flux surfaces and gently varying in the radial direction. The functional used to

quantify the global unsmoothness of the solution is formulated by a scalar product ([7], Appendix C):

    (2)

where Ω is the unsmoothness operator. The a0 term penalizes large values of f (x, y). The first

derivative terms force the solution to be as flat as possible, whereas the second derivative terms

force it to be as smooth as possible.

Smoothness on flux surfaces is assumed also in [16]. The smoothing operator is implemented as one-

dimensional median filtering, using a sliding window which moves on the magnetic contour lines:
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(3)

where mji is the matrix which defines the window-based median filter, wmed is half of the width of

filtering window and Lk designates a close magnetic contour line Lk. The smoothing operator does

not need to be integrated in the objective function of the tomographic problem. It works directly on

the reconstructed image, at different stages of the reconstruction process. This technique was an

appropriate choice for this work, which deals with a variety of methods with different algorithmic

formulations.

Additional smoothing can be obtained by resampling the experimental projection. Projection

resampling implies the introducing of virtual lines of sight which ensures an improved coverage of

the reconstruction domain. Spline interpolation was used for resampling implementation. The

combination of median filtering along magnetic contour lines and projection resampling is strong

enough to allow neglecting the beam-width when calculating the elements of the weighting matrix W.

2.2 MAXIMUM LIKELIHOOD

Bayesian statistics represents an appropriate framework for introducing the ML method. Bayesian

inference provides a numerical measure of the probability of some event with consistent consideration

for prior information. Bayes’ theorem supplies the rule for determining the posterior probability:

(4)

Where f is a particular solution in view of experimental data p and additional parameters z (e.g.

error bars). P ( p | f,z ) quantifies the probability of measuring data p if a reconstruction f and parameters

z  are given. It represents the likelihood function, which contains the new information provided by

the experiment. According to Bayes’ theorem, the likelihood has to be blended with the prior

probability P ( p | f,z ) based on the information z prior to any experiment - of getting the posterior

probability distribution. P ( p | f,z ) is not related to the maximal value of P ( p | f,z ) and so will be

treated as a constant for the present purpose. The most trustworthy reconstruction is that which

maximizes the probability distribution P ( p | f,z ) (see Eq. (4)).

If there is no a priori source information available, P ( p | f,z ) can be assumed as constant,

implying that all possible source distribution are equally likely, therefore maximizing the Bayesian

results in the same way as maximum likelihood. In tomography problems, the likelihood probability

density function follows the error statistics of the experimental data. If it is assumed that each

projection ray p obeys Poisson statistics, with all of them statistically uncorrelated, the likelihood

function P ( p | f,z ) has the form:

(5)

fi
smooth =            mji fjΣ

j=+wmed

j=-wmed
wmed ∈ Lk
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An efficient iterative solution of this nonlinear optimization problem was given in Refs. 28-29:

(6)

where  fi
(iter)is the reconstructed image for the iteration iter, i and j are image element indices,  and

 are projection element indices. The iterative ML algorithm (Eq.6) works directly on the

reconstructed image which is successively updated. This allows image manipulation at each iteration

for introducing a priori knowledge. Therefore smoothing is applied, as described, at each iteration.

2.3 MAXIMUM ENTROPY

The Maximum Entropy (ME) has become a common regularization method and a widely adopted

way to overcome the indeterminacy of ill-posed problems. ME can be derived starting also from

the Bayes formula (4), by a different choice of the prior probability P ( p | f,z ) and also of the

likelihood function P ( p | f,z ).

The total lack of information about the emissive source assumed in the case of ML method is

replaced by the simplest expert knowledge: the emissivity distribution have to be positive. Thus,

within the Bayesian approach, this expert knowledge enters the analysis as prior distribution and

contributes to the shape of the posterior distribution. On the basis of information theory, Skilling

[30] have shown that the most uninformative and most unbiased prior is the entropic prior:

(7)

where:

(8)

is the entropy relative to the default model m and α is a positive constant. The default model m is

that reconstruction where the entropy and the prior have their maximum, and to which f would

default in the absence of any data. Possible prior information about the structure of the solution can

be encoded in the default model. However, the usual approach is to consider complete prior ignorance,

which means a flat distribution for m ( mi = const ). The entropic prior is a positive and additive

distribution function.

The probability of obtaining a certain signal P ( p | f,z ), with f given, is defined by the error

statistics appropriate to the respective experimental problem. Most of the data {p( f )}calculated

with the forward transform (Eq.1) from the manifold of conceivable sets { f } are very different

from the data p actually observed. The ‘misfit’ is characterized by the parameter χ2. For uncorrelated

noise η of the detector signals and Gaussian distribution with variance σi, the likelihood function -

the product of the likelihoods of each observation p – becomes:
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(9)

where:

(10)

Provided α is known, the reconstruction with the largest posterior probability (Eq.(4)) corresponds

to the maximum of

(11)

α can be interpreted as a regularization parameter which controls the balance between prior

information (default model), represented by the entropy term, and data constraints, represented by

the misfit parameter χ2.

The maximization of Ψ with respect to  can be obtained introducing Lagrangean multipliers

which strongly reduce the computational effort. We used the procedure described in Ref.31. The

space of the variables is enlarged to [ fi | i = 1,2,...,Np}∪{Pi | k = 1,2,...,Nd} but the number of unknowns

is reduced from Np to Nd. The equation:

(12)

subject to the constraints Pk = pk ( fk), is maximized. This leads to an unconstrained maximization of:

(13)

with respect to f, P and λ. Maximizing with respect to f gives the Euler-Lagrange equation:

(14)

which constitutes an Nd dimensional basis for possible reconstruction of f. The required Lagrange

parameters, λk, could be found after maximizing Ψ with respect to λ and P, which amounts to solve

the nonlinear equation for l:

(15)

The Jacobian Jkk = ∂Ψ/∂λk, of the expression is:

(16)

P (p| f, z) ∝ exp  -      χ21
2

pi - pi( f )
σi

χ2 = Σ
Nd

i

2

Ψ(α, f ) = α . S -   χ21
2

(pk - Pk)
σk

Σ
k

Ψ(α, f, p) = αS -   
1
2

2

2

(pk - Pk)
σk

Σ
k

Σ
k

Ψ(α, f, P) = αS -              + α      λk [Pk- pk(k)]
1
2

2

2

~

fi = mi exp  -     wik λk Σ
k

Σ
i

Σ
k′

Np

Ψ(λ) =  pk -    Iki mi exp   -   Iki-λk,   + ασ2 λk = 0
~

Σ
k

Jkk, =  ασ2 δ||, +     Iki Ik′i fi

~



7

and is strictly positive. So Eq.(15) has a unique solution and can be efficiently solved by the Newton–

Raphson method.

Therefore the retrieval of the unknown image f implies the maximization of expression (15)

with respect with the Lagrange multipliers λ. After finding the parameters λ, the image can be

obtained using Eq.(14). As the maximization do not manipulate directly the unknown image f,

smoothing can be applied straightforward only at the end of the iterative process. This has a limited

effect and does not improve enough the quality of the reconstruction, especially for distributions

with complicated shapes. ME algorithm may produce noisy reconstruction results compared with

other kinds of reconstruction algorithms due to the absence of correlation among adjacent pixels.

Kim et al. [22] replaced the flat model m with the directly inverted model, obtained by inverting the

weight matrix using the Singular Value Decomposition (SVD) technique. The SVD-based initial

guess of the reconstruction allows the adjacent pixels to link smoothly. This technique succeeds in

enhancing the reliability of the algorithm and improves the quality of the reconstruction for the a

geometry with 16 projections and 192 bins in each projection. However for the JET geometry (2

projections with a total of 19 projection bins), which determines the highly indeterminacy of the

tomographic problem, the directly inverted model is far from the desired solution. This may lead to

a local solution during the maximization of Ψ (a, f, P)  (Eq.13). Therefore we used a multiple run

procedure. We start with a flat model m = const. The smoothing procedure was applied after each

full run of the ME algorithm  (solving Eq.15). Then the reconstructed image was used, in a new run,

as a default model, replacing the flat one. This procedure improves the robustness of the algorithm

and the quality of the reconstruction.

2.4 TIKHONOV REGULARIZATION

The Tikhonov regularization is one of the most well-known form of regularization techniques for

ill-posed problems [32]. Assuming a matricial form of Eq.1: W 
.
 f = p, the Tikhonov regularization

technique is seeking for a solution , defined as the minimizer of the following weighted combination

of the residual norm ||W 
.
 f = p||2 and the 2-norm ||L( f )||

2, where the matrix L is typically either the

identity matrix I or a discrete approximation of the derivative operator (usually the first or second

order derivative operator):

(17)

λ is a regularization parameter. λ controls the weight given to minimization of the side constraint

relative to minimization of the residual norm; λ also controls the sensitivity of the regularized

solution I to perturbations in W and p, and the perturbation bound is proportional to λ-1.

Several choices of the operator L were reported. Second order linear regularization L = ∇
2, where

∇2  is the Laplacian operator in two dimensions, is reviewed in [25]. The gradient is minimized if

first order linear regularization is chosen [21] L( f ) = || fx′)||
2 + || fx′)||

2(where fx′ and fy′ are the partial

˜

Ψ ( f ) = ||W . f - p||2 + λ . ||L( f )||2 = MIN 
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derivatives with respect to  x and y. L (f) = Σ
i

(fi′) 2 

fi
 

 in case of Fisher information reconstruction

algorithm [13], which can be viewed  as belonging also to the class of Tikhonov regularization

methods. The minimization of ||L( f )||
2 introduces different intrinsic smoothing principle in the

algorithm, depending on the particular choice of L . ||L( f )||
2 control the smoothness of the regularized

solution, depending on the particular choice of L. Second order regularization selects the solution

with least curvature. First order regularization minimizes the roughness of the reconstruction.

Minimum Fisher information is essentially a smoothening principle just like linear regularization.

The low value regions of f are more strongly smoothed, whereas smoothing is less pronounced

where f is high and therefore more reliable. In our approach we used L=I, where I is the identity

matrix. Therefore the norm of the solution is minimized together with the residual norm (Eq.17).

The smoothing effect is the one typically associated with a square integrable kernel. However, this

intrinsic smoothing, not connected with the magnetic information, is insufficient to avoid global

distortions in the reconstruction, generated by the limited experimental information. Therefore we

used additional smoothing - median filtering smoothing on flux surfaces and projection resampling

- as described previously.

For solving (17) we used the method based on filter factors and the Singular Value Decomposition

(SVD). The method can be briefly described as follows. The general solution freg of the regularization

problem can be written in the form [33]:

(18)

and ηi are filter factors for the particular regularization method. The filter factors must have the

important property that as si decreases, the corresponding ηi tends to zero in such a way that the

contributions (ui
T p/si) fi to the solution from the smaller si are effectively filtered out [34]. Otherwise

the solution is dominated by the terms in the sum corresponding to the smallest si. As a consequence,

the solution has many sign changes and thus appears completely random. The difference between

the various regularization methods lies essentially in the way that these filter factors ηi are defined.

It can be shown  that for Tikhonov regularization with L=I filter factors are:

(19)

and the filtering effectively sets in for si < λ.

The algorithm is complete if a method for choosing the regularization parameter λ is defined.

The Generalized Cross-Validation (GCV) [35], is‘used in [25]. GCV is based on the philosophy

that if an arbitrary element pk in Eq.1 is left out, then the corresponding regularized solution should

predict this observation well. The mean-square-error in “predicting” the k-th projection pk from the

estimate f (k,λ)obtained from the data excepting pk and regularization parameter λ, can be used to

obtain an optimal value for λ. Taking into account that, in our case, the total amount of experimental

2

^

f =     ηi         vi,      where W = USVT =      ukskvkT
ui

Tp

si
Σ

i
Σ
k

ηi  =
si
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data consists of only 19 projection values, GCV seems not to be appropriate for JET geometry.

A usual and convenient alternative tool to optimally set the value of the regularization parameter

λ is the so-called L-curve. The L-curve is a plot - for all valid regularization parameters λ− of ||L( f )||
2

versus the corresponding residual norm ||W 
.
 f = p|| (see e.g. [36]).  For discrete ill-posed problems

it turns out that the L-curve, when plotted in log-log scale, almost always has a characteristic L-

shaped appearance (hence its name) with a distinct corner separating the vertical and the horizontal

parts of the curve. It can be proved [37] that an optimal choice of the regularization parameter

corresponds to the L-curve’s corner. Unfortunately, due to the high degree ill posed character  of the

JET tomographic problem, in a number of cases, the L-curve has a concave appearance and

consequently, a corner cannot be defined. In such cases the choice of the regularization parameter

was based on the the discrepancy principle [38] which amounts to choosing the regularization

parameter such that the residual norm for the regularized solution satisfies:

(20)

where is a good estimation of the noise accompanying the experimental data. An underestimate of

||η|| is likely to produce an under-regularized solution with a very large norm while, on the other

hand, an overestimate produces an over-regularized solution with too large regularization error.

2.5 MONTE CARLO BACK-PROJECTION TECHNIQUE

This algorithm starts from an empty image fi = 0. Then, mathematically “grains” of fixed intensities

are randomly allocated. The l-th grain is accepted in pixel and therefore fi  is increased with the

quantity do if, for all corresponding projections pk , the following inequality is valid:

(21)

The restored object is built up by such successive successful allocations. In order to generate the position

where we try to allocate the grain, for the two available projections, phoriz         and pvert          two

random numbers, khoriz and kvert, respectively, are generated.  These two numbers select two projection

rays and their intersection defines the point where we attempt to allocate the grain. A uniform

generation of khoriz and kvert has no connection with the experimental available data. So it is more

efficient to generate the two random numbers using pk{k=1..10}
  and  pk{k=1..10}

 as probability

distribution functions. khoriz and kvert will be distributed preferentially where the cumulative sum

cumsum = Σ pk has a higher slope and pk reaches a local maximum. The generation of grain position

by a procedure sensitive to the experimental data increases the speed of the reconstruction process.

The magnitude of the quantity do is important for proper results. Building the image f with big grains

will not allow the calculated projections pk
calc = Σ  fi wik to be more than a coarse approximation of

the experimental projections pk
calc because of residuals. Obviously, the use of small grains will increase

the computation time.

k{k=1..10} k{k=11..19}

horiz vert

k

i

||W . f - p|| = ||η||

pk - (fi - do) = wik  0



10

3. RESULTS AND DISCUSSION

The efficiency of each method has been tested using phantoms with shapes characteristic of JET

neutron/gamma tomography and representative results are presented in Fig.1. Each row corresponds

to a phantom and its reconstruction - from left to right: the phantom and the ML, ME, TR, and

MCBP reconstructions. The virtual magnetic contour lines used for reconstruction are superimposed

on each image.

The peak phantom, (Fig.1 first row) has been constructed using a centred Gaussian

x2

2πσx2

y2

2πσy2
A . exp =  -       - ,  (σy = 2, σx = 4.8 and A = 1). The hollow phantom (Fig.1 second

row) is described by the relation:

(22)

where Npx is the number of pixels on the horizontal dimension of the reconstruction grid. These two

phantoms are the most frequent distribution shapes encountered in experiments. However for a full

characterization of the methods, more complicated shapes must be taken into account. Neutron

emissivity profile in case of DT experiments provide several challenging shapes for tomographic

reconstruction. Three such shapes were used here: “banana”, symmetrically reversed “banana” and

peak plus “banana”. The “banana” shape (Fig. 1 third row) and the symmetrically reversed

“banana” (Fig.1 forth row) phantoms have been derived from the circular symmetrical shape of

the “hollow”, by cutting half of the shape. The “banana” phantom corresponds to an experiment

where the DT-neutron emission was measured in the ohmic deuterium discharge during the off-axis

injection of the T neutral beam. The symmetrically reversed “banana” phantom is, from the

tomographic point of view, a more difficult case. The diverging lines of sight corresponding to the

horizontal camera are more widely spread in the “banana” region on the high field side and this

results in a reduced information density leading to shadow effects: there are more possibilities in

this region to distribute each detector signal among different cells than in the region close to the

detectors and this may result in reduced spatial resolution. For peak plus “banana” phantom (Fig.1

fifth row) the “banana” shape was distorted to a elliptical symmetrical one (the vertical dimension is

twice the horizontal one) and a centred Gaussian was superimposed (σy = 2, σx = 1.6 and A = 0.18).This

case corresponds also to a DT experiment, where the profile was recorded just after a T-puff, and

tritons partly penetrated to the plasma core from the periphery. Virtual magnetic contour lines were

simulated as concentric circles for the first four phantoms and as concentric ellipses for the peak

plus “banana” phantom. The calculations have been performed on a 35×20 pixels reconstruction

grid. To improve the quality of the displayed image, the size of images has been doubled, after

reconstruction, using bilinear interpolation.

Npx

2
Npx

2

(x2
 + y2)3/2 , for (x2

 + y2)1/2 < 

1 - (x2
 + y2)1/2 , for         < (x2

 + y2)1/2 < Npx 
ph (r) =
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Several figures of merit were used in order to complete the qualitative evaluation of the quality

of the reconstruction with a quantitative one.

A global evaluation of the reconstruction is given by the correlation coefficient:

         (23)

which gives a comparison  between the phantom f ph and the reconstruction  f rec. This factor has the

value 1 for an ideal reconstruction. The ratio Remiss between the total volume of the distribution

given by the tomographic reconstruction method and the total volume of the phantom, may assess

the correctness of the total emissivity reconstruction, also by means of a single number.

Finally, also a global evaluation is given by the comparison between the initial projections p(ini)

and the calculated ones p(calc); projections p(ini) were calculated using Eq.1, where  f is the phantom;

projections p(calc) were calculated using the same equation, but in this case f represents the

reconstruction. This comparison must be taken into account cautiously. For a good reconstruction a

good agreement must exists between p(ini) and p(calc). However, since a limited set of projections is

available, a good agreement does not guarantee necessarily a good reconstruction.

The assessment of the spatial resolution can be obtained by means of line profiles. The horizontal

and vertical line profiles describe the image intensity variation along the horizontal and vertical

axes of a coordinate system with the origin in the centre of the image. The main image features, for

all the phantoms, intersect these two axes. Information about the quality of the shape and size

reconstruction is given by line integrals, calculated along the magnetic contour lines, starting from

the centre of the reconstruction and covering the whole image.

The values obtained for the correlation coefficient corr and the ratio Remiss describing the

reconstruction of the total emissivity are given in Table 1 and 2, respectively.

The other figures of merit, which allow a graphical representation, are illustrated in Fig.2 (line

profiles, integrals along magnetic contour lines) and Fig.3 (phantom versus reconstruction projection).

They are normalized to the maximum value. The root mean square difference rms of a generic

figure of merit g, for each phantom g(ph)and reconstruction g(rec), respectively, has been calculated

using the equation:

(24)

where N is the size of vectors g(ph), g(rec). The rms values are listed in Table 3.

For the peak phantom, the most common distribution encountered in experiments, good

reconstructions are obtained using all the methods. The ML method gives the best value for the root

mean square difference between projections calculated using the phantom and the reconstruction.
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The TR method offers optimal results for the line profiles. The correlation coefficient and the ratio

of reconstructed volumes finest results are provided by the MCBP. In fact, all the methods gives

accurate results, with similar values for all factors of merit.

Similar remarks are valid also for the case of the hollow phantom with the exception of the

MCBP method, which gives a reconstruction with lower spatial resolution. Finest results are obtained

using the ML method except the ratio of reconstructed volumes for which the TR method gives the

result closest to 1. It must be noticed that the ML method provides, for this distribution and also for

the next ones, the most regular and symmetric shapes.

The methods give significantly different results when the symmetry of the distribution, with respect

to the two axis, is reduced or eliminated. The line profiles (both horizontal and vertical), but especially

the contour line integral values proves that the best results, in case of “banana” and symmetrically

reversed “banana” are obtained using the ML method. As far as the other methods are concerned, it

is difficult to choose between the TR and ME methods. The images show more similarity between the

shapes reconstructed by the ME method and the phantoms. This is confirmed also by the values of the

correlation coefficient. The images retrieved using the TR method are slightly distorted and affected

by a central artefact. However, the TR method gives better values for the line profiles (both horizontal

and vertical), and also for the contour line integral. But starting with the “banana” phantom, the TR

method does not provide the best values for Remiss anymore. The MCBP method is able to reproduce

the “banana” shapes but with the same low spatial resolution.

The peak plus “banana”  distribution is, from the tomographic point of view, the most complex and

challenging structure. The only reasonable reconstruction is given by the ML method. The TR method

looses spatial resolution and almost equals the MCBP method. Both methods prove unable to completely

resolve the two features in the image. The ME method discriminates the two components in the

image, but introduces shadow artefacts in retrieving the “banana” component which is also shifted

and reproduced incompletely. The hierarchy of the methods is confirmed by the quality factors.

The reconstruction time is an important parameter especially if the method is intended to be

used in inter-shot analysis. The methods have been implemented, as described earlier, in MATLAB

and consequently, the computing time needed for reconstruction is reported, for this specific

implementation, in Table 4. The TR method is the fastest one, due to its formulation which involves

pure matrix manipulation. Most of the computer time needed for this method is spent on smoothing.

However smoothing can not be avoided in order to obtain as correct as possible reconstruction. The

ML and ME methods are iterative non-linear algorithms and consequently the computation time is

one order of magnitude higher. However, the computing time needed for a ML reconstruction is

still practicable for inter-shot analysis. In case of ME method, Kim et al. (see Ref. 23) reported that

the algorithm can be modified in such a way that it uses simple matrix operations instead of treating

a fully nonlinear problem. This may diminish the computation time and make it comparable with

that of the TR method. MCBP, even it is a Monte Carlo method, due to the small scale of the

problem, is able to perform image retrieval in a relatively short time
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In conclusion we can say that the comparative evaluation is able to establish a clear hierarchy of

the tested methods. The evaluation has been performed with phantoms. These numerically simulated

emissive distributions  are characteristic for JET neutron and gamma tomography. They cover most

of the range of possible distributions for this kind of tomography. Simple but frequent shapes are

considered together with the retrieval of sophisticated structure in the emissive distribution which

proved to be essential for a complete image of the quality and reliability of the methods. The

evaluation reveals that the ML method is the only one able to encompass the reconstruction, with a

good quality, of all structures of the emissive distribution. The ML method provides the finest

results in terms of shapes reconstruction and resolution and produces artefact free images. For the

simple shapes (peak and “banana”), the total emissive volume is better retrieved by the TR method.

This can be explained by means of the effects of the smoothing, which determines a blurring effect,

superimposed on the image. The effect is more strong in case of the ML method where the amount

of smoothing is increased: the smoothing operator is applied at each iteration, while for the TR

method smoothing is applied only once, after the reconstruction. However, for more complicated

shapes, the larger amount of smoothing becomes an advantage because it drives the reconstruction

closer to the  shapes to be recovered. For simple, but frequent experimental type of distributions

(peak, hollow), all the methods provide good results. For this cases, if very fast reconstructions are

needed (e.g. for a large amount of data processing), the TR method is an appropriate choice.
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Table 1: The correlation coefficient corr.

Phantom

peak

hollow

“banana”

symmetrically reversed “banana”

peak plus “banana”

Reconstruction method

ML ME TR MCBP

0.993 0.990 0.989 0.996

0.961 0.949 0.951 0.870

0.935 0.931 0.908 0.857

0.875 0.861 0.836 0.832

0.874 0.667 0.837 0.844
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Tabel 3: Root mean square for figures of merit.

Table 2: The ratio of reconstructed volumes Remiss.

1.07 1.27 0.98 1.01

1.23 1.28 1.05 2.05

1.30 1.56 1.64 1.85

1.45 1.59 1.76 1.93

0.86 0.75 1.44 1.86

Phantom

peak

hollow

“banana”

symmetrically reversed “banana”

peak plus “banana”

Reconstruction method

ML ME TR MCBP

PHANTOMFIGURE

OF

MERIT
METHOD peak hollow “banana”

symmetrically
reversed

“banana”

plus peak

“banana”

ML 0.07 0.13 0.12 0.17 0.10

ME 0.11 0.15 0.10 0.28 0.31

TR 0.05 0.13 0.10 0.22 0.22

H
o

ri
zo

n
ta

l
p

ro
fi

le

MCBP 0.06 0.22 0.22 0.34 0.25

ML 0.01 0.10 0.12 0.16 0.19

ME 0.14 0.14 0.20 0.32 0.23

TR 0.04 0.23 0.16 0.28 0.18

V
er

ti
ca

l
p

ro
fi

le

MCBP 0.03 0.34 0.26 0.45 0.25

ML 0.08 0.05 0.14 0.14 0.03

ME 0.07 0.17 0.33 0.40 0.14

TR 0.04 0.14 0.20 0.32 0.18

C
o

n
to

u
r

li
n

e
in

te
g

ra
l

MCBP 0.20 0.30 0.34 0.47 0.27

ML 0.04 0.08 0.11 0.11 0.06

ME 0.08 0.09 0.12 0.12 0.15

TR 0.09 0.09 0.11 0.15 0.12

P
ro

je
ct

io
n

MCBP 0.03 0.16 0.14 0.17 0.11
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Table 4: Computer time needed for reconstruction.

Figure 1: Schematic view of the JET neutron emission profile monitor showing the lines of sight.
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Figure 2: The test phantoms and their reconstruction. Each row corresponds to a phantom - from top to bottom: peak,
hollow, “banana”, symmetrically reversed “banana”  and peak plus “banana”. The first column corresponds to the
phantom image, the other columns corresponds to reconstructions obtained using the different methods used in this
paper – from left to right: ML, ME, TR, MCBP.

http://figures.jet.efda.org/JG08.391-1c.eps
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Figure 3: Figures of merit; each row corresponds to a phantom – from top to bottom: peak, hollow, “banana”,
symmetrically reversed “banana”, peak plus “banana”; each column corresponds to a specific figure of merit – from
left to right: horizontal line profile, vertical line profile, integrals along magnetic contour lines.
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Figure 4: Projections calculated using the phantom and the reconstruction, respectively: peak (top-left), hollow (top-
right), “banana” (bottom-left), symmetrically reversed “banana” (bottom-middle), peak plus “banana” (bottom-
right).
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