
A. Murari, G. Vagliasindi, S. DeFiore, E. Arena, P. Arena, L. Fortuna,Y. Andrew,
M. Johnson and JET EFDA contributors

EFDA–JET–PR(08)56

Neural Computing Methods to Determine
the Relevance of Memory Effects

in Nuclear Fusion



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



Neural Computing Methods to Determine
the Relevance of Memory Effects

in Nuclear Fusion
A. Murari1, G. Vagliasindi2, S. DeFiore2, E. Arena2, P. Arena2, L. Fortuna2,

Y. Andrew3, M. Johnson3 and JET EFDA contributors*

1Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova, Italy.
2Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi-Università degli Studi di Catania,

95125 Catania, Italy
3EURATOM-UKAEA Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK

* See annex of F. Romanelli et al, “Overview of JET Results”,
 (Proc. 22 nd IAEA Fusion Energy Conference, Geneva, Switzerland (2008)).

Preprint of Paper to be submitted for publication in
Plasma Physics and Controlled Fusion

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK



.



1

ABSTRACT.

Dynamical systems are often considered immune from memory effects, the dependence of evolution

from the previous history. This hypothesis has been tested for two phenomena in nuclear fusion,

which are believed to sometimes show sensitivity to the previous evolution of the discharge:

disruptions and the transition from the L to the H mode of confinement. To this end, two innovative

neural network architectures, the Tapped Delay Lines and the Recurrent Networks of the Elman

type, have been applied to JET database to extract these potential memory effects from the time

series of the available signals. Both architectures can detect the dependence from the past history

quite effectively. In the case of disruptions, only the ones triggered by locked modes seem to be

influenced by the past history of the discharge. With regard to the L-H transition, memory effects

are present only in the time interval very close to the transition, whereas, once the plasma has

settled down in one of the two regimes, no evidence from the previous evolution has been detected.

1. INTRODUCTION

Very often dynamical systems are studied assuming that memory effects are completely negligible

or, at last, of secondary importance. Conceptually this implicit assumption means that, to understand

the physics involved or predict the future evolution of an experiment, only the status of the system

under study at a single moment in time is needed. The history leading to a certain state is considered

irrelevant and the physical phenomena which comply with this assumption are called without

memory, in the sense that their future behaviour can be predicted by simply knowing their state at

any point in time of their evolution. This is of course the general case of all the systems acted upon

by non dissipative forces, which can be expressed as the derivative of a suitable potential function.

The assumption that memory effects are not relevant to study the dynamics is almost always implicitly

accepted also in magnetic confinement nuclear fusion, in which the history of the plasma is in

general neglected. This hypothesis is maintained even if a lot of dissipative phenomena are present

and also in cases when evidence to the contrary is sometimes found on present day machines. Two

typical examples are disruption prediction [1] and the transition between the L and H mode of

confinement [2]. With regard to disruptions, no systematic analysis of memory effects on the

occurrence of disruptions has ever been performed, even if some causes have a typical historical

character; the most evident is the case of disruptions induced by previous locked modes. The locked

mode consists of the deceleration of certain magnetic instabilities until they become stationary in

the reference frame of the laboratory [3]. Once they are stationary, the stabilising effect of the wall

is far reduced and these instabilities can grow to the point of affecting the entire discharge and even

causing disruptions. It seems therefore appropriate to investigate to which extent the entire evolution

of the plasma, from the triggering event to the actual disruption, has to be taken into account in

order to understand the phenomenon. As far as the L-H transition is concerned, on some machines

a significant hysteresis in the input power has been detected [4]. In these cases, the minimum

power needed to reach the H mode is significantly higher than the power at which the opposite H to
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L transition takes place. Hysteresis is of course a paradigmatic case of memory effect since it

reveals that the system “remembers” its past history and somehow “recognises” the direction from

which it is approaching a certain transition point.

The neglect of memory effects is of course due in part to the difficulties inherent in the analysis

of this type of phenomena and the lack of established and fully general techniques to extract information

about the history of a system from typical time series data. In this paper, the results of an investigation

of memory effects in JET using neural computing methods are reported. Various forms of neural

networks have been tested because of their nonlinear and powerful character, leading to quite general

and unbiased conclusions. In a certain sense, they are used as non linear identifiers to extract historical

information from time series. They have been applied to the aforementioned problems of disruption

prediction and the transition from the L to the H mode of confinement. In both cases, the networks

have been designed and trained for classification purposes, i.e. either to identify discharges which are

going to disrupt or to discriminate between phases of L or H mode of confinement.

With regard to the organisation of the paper, in section 2 the main types of Neural Networks

used in the following treatment are introduced. Both a simple modification of the traditional

multilayer perceptron, called Tapped Delay Lines (TDL) networks [5], and a more substantial

modification of the traditional network architecture, the recurrent networks of the so called Elman

type (ERNN) [5], have been implemented. These specific network architectures have to be deployed

because the original topology of the multilayer perceptron was explicitly devised to avoid memory

effects, by eliminating internal loops. The aforementioned TDL and ERNN have been tested using

synthetic data, to show their potential to extract historical information from time series. Both types

of networks have then been applied first to the evolution of the plasma before a disruption (see

section 3), because in this case an independent method to test the quality of their predictions has

been found. On the basis of the positive results obtained with the synthetic data and the real case of

disruptions, the transition from the L to H mode of confinement has also been studied (see section

4). Stock of the investigations performed so far is taken in the last section, together with some

indications about the lines of further research.

2. TAPPED DELAY LINE AND ELMAN RECURRENT NETWORKS FOR THE

DETERMINATION OF MEMORY EFFECTS

The architecture of the traditional feedforward neural networks does not contain loops exactly for the

purpose of avoiding internal feedback [5], which is essential to introduce memory effects but which

makes the training a much more difficult proposition. Indeed, in order to apply the original

backpropagation algorithms, which were the first training methods devised, the network must not

contain any internal loop. With these traditional neural networks, called MultiLayer Perceptrons (MLP),

the only way of assessing whether the history of the system plays a role in determining the output,

consists of providing the inputs at various times and see how the performance of the network are

modified when additional time slices are provided. With this approach the temporal information is in
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a certain sense converted into spatial information and therefore the traditional backpropagation

algorithms can be used for the training. This approach is sometimes called a “tapped delay line” since,

from the hardware point of view, it can be implemented by storing intermediate time slices in a buffer.

In order to increase confidence in the results and test an alternative approach, a different type of

architecture has also been considered. For the applications discussed in this paper, the main issue

consists of being able to determine to what extent historical information is present in the time series of

the acquired data. Recurrent networks [5] are modifications of the traditional MLP architecture,

explicitly conceived to take into account short term memory effects. They operate not only on the

input space but also on their previous internal state through suitable feedback loops. The inputs to a

recurrent network are therefore propagated not only through a weight layer but also combined with

the previous activation state, using one or more recurrent weight layers. If memory effects are present

in the system, the values of the weights at previous times are expected to have an effect on the

convergence of the network. The Elman network is a recurrent network implementing this idea. It

presents a hidden layer, with the topology shown in figure 1. This type of architecture contains internal

feedback loops that really embody short-term memory, contrary to the TDL solution, in which the

historical information is taken into account by the past inputs presented to the network. This different

approach, which is expected to be more powerful, on the other hand requires specific training procedures,

basically more sophisticated versions of the traditional backpropagation. The training strategy adopted

in this paper is called BackPropagation Through Time (BPTT) [6], which is a form of “unfolding”.

The recurrent weights are duplicated spatially for a suitable number of time steps indicated traditionally

with the symbol τ. Therefore each node in a feedback loop is copied τ times, whose exact number

depends on the memory requirements of the problem at hand. The backpropagation can then be applied

to calculate the weights, taking into account the internal status of the network at previous τ time steps.

In order to get familiar with the operation of these two architectures and to confirm the proper

functioning of the software available, the two aforementioned architectures have been tested using

synthetic data derived from a simple mathematical model. The benchmark chosen has the form:

Z =  aX0 + bY0 + cX-1 + dY-1 + eX-2 + fY-2 (1)

The two inputs X0 and Y0 indicate the samples collected at the reference time, X-1 and Y-1 are the two

inputs at the previous time, X-2 and Y-2 the values two time slices before the current one and so

forth. The input variables can influence the output Z to the extent determined by the value of their

multiplying coefficients (c,d,e,f etc).

The relation (1) has been used to generate a series of synthetic signals, which have then been

given as input to the networks, to see to what extent their performance improve when previous time

slices are given as inputs. This is a regression problem, consisting of estimating the output Z of a

system (or function) on the basis of the inputs X and Y. The results summarised in table I show this

improvement in the regression capability when earlier time slices are given to the TDL networks.
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The parameter used to quantify the increased in the success rate is the Root Mean Square Percentage

(MSEP) error:

(2)

where Zi is the real value of Z, <Zi> is the estimated value ofZ and n is the total number of samples.

The MSEP is an absolute index and it is independent of the input range dimension. As an example,

the values reported in table I indicate clearly that providing the TDL network with two additional

time slices, corresponding to the memory effect generate by relation (1), has very beneficial effects.

The improved performance testifies the ability of the TDL architecture to properly detect and

accommodate historical information present in time series.

Additional analysis has been performed to investigate to what extent the TDL networks are able

to identify the proper delay, which accounts for the memory effects in the data. To this end, again

relation (1) but with a delay of three time steps has been used to generate synthetic signals. Time

sequences up to four sequential time slices have been given to the “tapped delay line” networks to

see whether they can identify the right memory time in the system generating the data. The good

capability of this architecture to extract historical information from the input data is shown in

figure 2. The increase in performance, when the right number of time slices (three) is provided to

the networks, is clearly seen as a minimum in the MSEP. On the other hand, the errors in the

classification typically start increasing again if more than the right number of time slices is provided

as input (the results adding a forth time slice are shown in figure 2). This has been confirmed for all

the various types of generating functions summarised in table I. It seems therefore that the TDL

architecture is capable of identifying the right interval in which historical data are important.

Similar analysis has been performed to investigate the “memory effects capability” of the ERNN.

Figure 3 shows the good capability of the ERNN to extract historical information from the input

data obtained using relation (1) with a delay of three time steps with the generating function GF4 of

table I. The MSEP in the classification decreases when the right number of time slices (again three)

is considered in the training algorithm. Moreover, the errors start increasing again if more than the

right number of time samples is provided during the train process. This behaviour has been confirmed

for all the generating functions of table I. As for the TDL network, also the ERNN performance

improves if inputs covering the right historical interval are provided.

After demonstrating the potential of the various network architectures to capture memory effects

with synthetic data, the same tools have been applied to two important phenomena in tokamak

plasmas, the disruptions and the transition between different modes of confinement, as described in

detail in the next two sections.

3. ASSESSMENT OF THE MEMORY EFFECTS BEFORE DISRUPTIONS

 In this section, the two network architectures have been applied to the problem of identifying

Zi − <Zi>
Zi

n

n
i=1

MSEP =

Σ
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disruptive discharges; this is typical classification problem that  consists of determining which time

slices in the database belong to discharges that are going to disrupt. The most relevant signals for

disruption prediction, which have been retained for the study reported in this paper, are summarised

in table II and were taken from literature as described in [7].

They were sampled at a sample rate of 20 ms and the entire database consists of 292 disruptive

discharges and 220 non-disruptive cases.

For the results described in this paper, the signals reported in table II have been used as inputs to

a set of networks: the first network of the set has been trained with these signals taken only at one

time, the second network has been trained with the same inputs but taking into account also the

previous time slice, the third with data belonging to the two previous time slices and so on. The

signals of the various time intervals have been multiplied by suitable weights, determined empirically

to maximise performance and decreasing with increasing time to the disruption. The actual values

of these weights are reported in the caption of figure 4; they are decreasing with the distance from

the disruption, reflecting the fact that the information content of the time slices is decreasing the

further away from the time of the disruption.

To prove that the first architecture, the TDL, really extracts from the database information about

the historical evolution of the discharge, this architecture has been applied first to the case of

disruptions induced by a previous locked mode. A specific database, whose disruptions have been

classified by the experts as due to a locked mode, has been used to train and then to test the TDL

architecture. The reference time slice is between 300 and 320ms before the disruption. The

performance of the network once earlier time slices are added as inputs is reported in figure 4.

Including information of previous time slices (in the overall interval between 320 and 380 ms

before the disruption) improves the performance of about 2%, which is quite significant given the

high success rate of the network without historical data. In the figure the uncertainty intervals are

due to the statistical fluctuations in the results obtained when changing randomly the training and

test set. They do not have therefore to be considered error bars; when the training and test sets are

kept constant, the improvements has always been consistently detected. The trend of the improvement

in performance with time has been compared with the times before the disruptions when the locked

modes occur. In this set of discharges, the frequency of locked modes has a significant peak around

360 ms before the disruption, as shown in figure 5. The success rate of the TDL network increases

significantly when the time slices corresponding to exactly this interval are provided as inputs. This

is a strong, experimental verification that the network, trained with the proposed method, is capable

of extracting real historical information from the time series of the input signals.

To confirm these results, the same database has been analysed with ERNN networks. The

indications about the memory effects are better than the ones derived from the tapped delay lines,

as shown in figure 6. The improvements in the performance have again a maximum around 360 ms

before the disruption. Moreover the improvement is even outside the confidence intervals due to

the random choice of the training and test sets. The ERNN networks seem also to be capable of
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detecting the second peak in the distribution of locked mode times, which is present around 420 ms

before the disruption (see again figure 5). This feature of the input statistics has not been reproduced

by the TDLs, which indeed show an inferior power compared to the ERNN architecture. The reason

for the lower performance of the TDL approach is believed to be due to the excessive increase in

the complexity of the network with the memory requirements of the problem. If the historical

information to be considered extends too much into the past, the number of inputs becomes too

high and the TDL networks have problems to cope and extract the details of the distribution function.

The same approach has been then applied to the entire database of JET disruptions, without any

distinction about their causes. In this case, the interval between 100 and 180 ms before the disruption

has been investigated. This choice is motivated by previous analyses with exploratory techniques,

which have shown that in the used database, there is not much information about an incoming

disruption earlier than about 180 ms before its occurrence [8]. One example of the results is reported

in figure 7 for the case of the TDL networks. Various time intervals have been chosen for the first

time slice, but the sequence starting at 100 ms before the disruption, the one shown in figure 7,

provides the most significant results. This analysis shows a consistent but very small trend of

improved performance of the predictor when the earlier time slices are provided as additional inputs.

Even if this trend has been consistently recovered in all the different cases performed with random

training and test sets, the improvement in the performance is quite limited in absolute terms.  These

results indicate that some sort of memory effects cannot be completely excluded, since the success

rate of the TDLs is at least not worsened by including earlier time slices in the list of inputs, even if

the information content of these time intervals is lower being more distant from the disruption. On

the other hand the trend is not very strong and difficult to address with the data available. Therefore

from the analysed database a picture emerges, according to which the disruptions due to a locked

mode present clear memory effects. On the other hand, in the general database without distinction

about the disruption causes, not clear indication of strong memory effects has been detected.

4. ASSESSMENT OF THE MEMORY EFFECTS AROUND THE TRANSITIONS FROM

DIFFERENT CONFINEMENT REGIMES

Another important phenomenon, whose memory effects have been analysed with the neural networks

described in section 2, is the transition between confinement regimes.  A database of about 60

discharges has been prepared by the experts to provide clear and validated times for the transitions

between the L and H mode. The most relevant signals to analyse this phenomenology have been

identified with the nonlinear and unbiased method of the CART algorithm [9]. This is a supervised

method which simply traverses the entire database to determine which variable and which value

better divide the examples to be classified in two or more classes. After the most selective variable

has been chosen, the procedure is repeated iteratively for the resulting subclasses until a perfect

classification is obtained. The output of the method is represented as a tree whose nodes contain the

variables in descending order of importance from the root down to the final leaves. The most



7

important quantities to study this type of plasma auto-organisation process are the Magneto-

hydrodynamic energy, the Axial Toroidal Magnetic Field at 80% of the flux, the Electron Temperature,

the Beta Normalized, the X-point Radial Position, the X-point Vertical Position [10]. The details of

the database used can be found in [11]. Various time slices have been provided as input to TDL

networks and they have been trained to identify whether the plasma is in the L or H mode of

confinement. For both the training and the test sets, three couples of symmetric time windows

around the transition have been defined (see figure 8 for the exact definition of these time intervals).

Time slices on both sides of the transition from the L to the H mode are necessary for the networks

to learn the difference between these two plasma states. The time of the transition is therefore

considered the origin of the time axis in all the figures referring to the L-H transition. In this couple

of intervals around the transition, the time slices have been chosen randomly for seven test sets,

whereas an optimal training test has been prepared to properly cover the entire operational space.

To assess the presence of memory effects in the data, time slices of increasingly longer periods (up

to 15ms, see figure 8) have been provided as inputs to the networks

The results indicate that historical information improves the performances of the networks only

in the time interval [-100ms, 100ms] around the transition. Indeed, as can be seen in figure 8, only

in this interval the improved performance is consistent and outside the statistical intervals due to

the random choice of the training and test sets. The improvement also keeps increasing systematically

as more time slices are provided to the network.

Once the plasma is stably in one of the two confinement regimes, as it is likely to be the case for

the intervals [-200ms, -100ms/100 ms, 200 ms] and [-300ms, -200ms/200ms, 300ms], historical

information does not improve the performance of the networks and therefore memory effects seem

to be not relevant any more. It then seems quite natural to conclude that some memory effects are

present only very close to the transition. As in the previous section, the same database and the same

training and test sets have been analyzed with ERNN network to confirm the results. The improving

of the performance has been evaluated in the same time windows as the TDL case and the results

are shown in figure 9 where again performance improves weakly and only in the time interval [-

100ms,100ms] around the transition. Therefore, once the plasma is stably in one of the two

confinement regimes, historical information does not improve the performance of the networks

and memory effects seem to be not relevant any more. This result is coherent with previous

experimental investigations [12], which have never found very strong evidence for hysteresis in

JET plasmas.

5. PRELIMINARY CONCLUSIONS AND DIRECTIONS OF FUTURE

INVESTIGATIONS

The potential of two neural networks architectures, the tapped delay lines and the recurrent networks

of the Elman type, to extract information about memory effects of time series has been investigated.

The two network topologies have been tested first using synthetic data, to confirm their inherent
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sensitivity to the presence of historical information in their inputs. They have then been applied to

the identification of memory effects in JET plasmas. Two main classes of phenomena have been

studied, disruptions and the L to H transition. With regard to the first phenomenology, clear evidence

for memory effects in the data has been found for the disruptions preceded by a locked mode. For

the general database, without discrimination about the causes, no statistically significant evidence

of memory effects has been detected. With regard to the L to H transition, clear evidence of memory

effects has been identified only for the time interval of +/-100ms around the time of the transition.

Further away, when the plasma is more stably in one of the two confinement modes, there is no

impact of the historical information on the output of the neural network classifiers.

With regard to the continuation of this line of research, other phenomena could be investigated.

Among the most interesting, a part from the H-to-L transition, could be the formation of the various

internal transport barrier, which are routinely produced in JET. Instabilities, like sawteeth and

neoclassical tearing modes, would also constitute an interesting subject of investigation. From a

methodological point of view, some information theoretic techniques, based on signal entropies or

conditional probabilities, could also be considered to investigate their potential to identify memory

effects in time series signals.
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Table 1: Improvement of the predictions by TDL networks when historical information is provided. The historical
evaluation has been performed for a memory effect of two time steps, i.e. two time slices before the reference time.  In
the first three columns the results obtained by the network without historical information are shown; the last three
columns report the improvement when the two previous time slices are provided. The results for both the training and
the test sets have been reported for various generating functions of X and Y

SIGNAL NAME UNIT

Plasma current Ipla [A]

Mode Lock Amplitude Loca [T]

Plasma density Dens [m-3]

Total Input Power Pinp [W]

Plasma Internal Inductance Li

Stored Diamag. Energy Derivative dWdia/dt [W]

Safety factor at 95% of minor radius q95

Poloidal beta βp

Net power Pnet [W]

Table 2:  List of the signals used as predictors for the classification trees

MSEP (%) MSEPmem (%)GF
All Train Test All Train Test

1
x=-5:0.1:5;
y=-5:0.1:5;

1.38 1.24 1.67 0.35 0.0000 1.03

2
x=sin(-5:0.1:5);
y=cos(-5:0.1:5);

8.82 3.12 20.04 0.90 0.0000 2.67

3
x=exp(-5:0.1:5);
y=1./exp(-5:0.1:5);

85.51 84.20 88.11 68.52 62.65 80.10

4
x=tan(-5:0.1:5);
y=sin(-5:0.1:5);

68.24 55.03 94.65 0.24 0.20 0.67

5
x=rand(1,100);
y=rand(1,100);

289.96 294.29 281.17 0.06 0.05 0.07
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Figure 1: Topology of the recurrent networks of the Elman type (ERNN) showing the internal feedback with delay.
The symbol u identifies the inputs and the symbol x the internal status of the neurons in the intermediate layer.

Figure 2: Evolution of the TDL classification errors for the system described by relation (1) with the generating
function GF4 of the table I. The memory effect used to generate the synthetic data extends for three time slices. Two
different scales were used for the plot in order to represent in a clearer way the data at low values of MSEP. The red
line show the point at which there is the change in scale. The errors are expressed in percentage.
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Figure 3: Evolution of the ERNN classification errors for the system described by relation (1) with the generating
function GF4 in table I. The memory effect used to generate the synthetic data extends for three time slices. The errors
are expressed in percentage.

Figure 4: Improved performance of TDL networks with historical inputs for the case of disruptions triggered by a
locked mode. The colour code indicates the times before the disruption the various sets of inputs have been taken. The
weights are 1 for the time slice at 300 ms, 0.9 for the time slice at 320 ms, 0.8 for the time slice 340 ms and 0.7 for the
time slice 360 before the disruption and so on. The success rate is the percentage of cases for which the networks
properly manage to identify whether the time slice belongs to a disruptive or not disruptive discharge.
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Figure 5: Statistical distribution of the time which elapses between the locked mode and the disruption for our
database. The x axis is the time between the detection of the locked mode and the occurrence of the disruption.

Figure 6: Improved performances of  ERNN networks with  historical inputs. The same database and the same
notation as in figure 5 have been used.
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Figure 8: Performance of the TDL networks for the identification whether the plasma is in the L or H mode of
confinement. The success rate indicates the percentage of time slices which are properly classified as belonging to the
L or H phase of the discharge. Intervals of various lengths around the transition and different integration times have
been considered.

Figure 7: Performance of TDL architectures with historical inputs. No selection on the type of disruption has been
performed. The nomenclature in the figure and the method to randomly select the various sets of discharges are the
same as in figure 1.The results for the test set do not show any significant improvement
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Figure 9: Success rate of the ERNN for the same database used in figure eight. The results are confirmed: the
success rate improves only for the interval close to the transition.
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