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ABSTRACT.

The importance of predicting the occurrence of disruptions is going to increase significantly in the

next generation of Tokamak devices. The expected energy content of ITER plasmas, for example,

is such that disruptions could have a significant detrimental impact on various parts of the device,

ranging from erosion of plasma facing components to the structural damage. Early detection of

disruptions is therefore needed with evermore increasing urgency. In this paper, the results of a

series of methods to predict disruptions at JET are reported. The main objective of the investigation

consists of trying to determine how early before a disruption it is possible to perform acceptable

predictions on the basis of the raw data, keeping to a minimum the number of “ad hoc” hypothesis.

Therefore the chosen learning techniques have the common characteristic of requiring a minimum

number of assumptions. Classification and Regression Trees (CART) is a supervised but on the

other hand a completely unbiased and non-linear method, since it simply constructs the best

classification tree by working directly on the input data. A series of unsupervised techniques, mainly

K-means and hierarchical, have also been tested, to investigate to what extent they can autonomously

distinguish between disruptive and no-disruptive groups of discharges.  All these independent

methods indicate that, in general, prediction with a success rate above 80% can be achieved not

earlier than 180 ms before the disruption.  The agreement between various completely independent

methods increased the confidence in the results, which are also confirmed by a visual inspection of

the data performed with pseudo Grand Tour algorithms.

1. INTRODUCTION

The Tokamak configuration remains the most serious candidate for a magnetic confinement fusion

reactor, thanks to its higher performance in terms of plasma parameters, compared to the most

credited alternatives. On the other hand, Tokamak plasmas are particularly vulnerable to sudden

losses of confinement, called disruptions [1], which produce a violent and unforeseen termination

of the discharge. Disruptions are potentially very harmful events. First of all, in a very short time

the energy content of the plasma is deposited on the first wall, causing very high thermal loads.

Secondly, the fast termination of the plasma current induces eddy currents on the surrounding

metallic structures, which can give rise to high induced forces. The risk involved in disruptions is

already quite significant in present day large devices like JET and it is going to increase significantly

in the next generation of machines like ITER, which will work at much higher plasma currents and

thermal energy. Therefore the need to develop reliable algorithms capable of predicting sufficiently

in advance the occurrence of a disruption, in order to have time to undertake remedial action, are

becoming increasingly more stringent. On the other hand, the multiplicity of causes leading to a

disruption and the nonlinear nature of the phenomenon have so far prevented the formulation of a

consistent theory, capable of providing reliable prediction. As a consequence, in the last year various

“soft computing” methods have been explored, ranging from Artificial Neural Networks (ANNs)

to Fuzzy Logic (FL). The first attempts [2,3,4] with ANNs in the middle of the nineties showed a

good rate of success only very near, typically a few milliseconds, to the occurrence of the disruption.

Later predictors, based also on FL, seem to provide a good predictive capability significantly earlier
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even some hundreds of ms before the disruption [5,6,7,8,9,10]. Significant work ahs also been done at

JET sing supervised methods [11,12] and trying to develop a multi-machine classifiers [13].

On the other hand the studies performed so far have not yet addressed two major issues. First of

all, no systematic investigation of the information contained in the signals has been performed to

determine, in general, how early in the discharge the incoming disruptions manifest themselves

with enough clarity for a predictor to work acceptably. Second, in order to improve the performance

of the predictors in terms of success rate, increasingly more specific training has been performed

and therefore it is not clear how the reported success rates will scale to future devices.

In this paper, the application of various “Learning Methods” (LM) methods to the problem of

disruption prediction is described. The main aim of the study consists of trying to obtain objective

indications about how early in JET discharges, disruptions manifest themselves clearly in the signals.

To increase the applicability of the approach, the most general and least biased methods have been

investigated. First of all Classification and Regression Trees (CART) have been investigated to identify

the signals carrying more information about incoming disruptions (see section 2). Since CART is a

very general, unbiased and fully nonlinear approach, it has also been used to classify new discharges

after having been trained on a validated database. Notwithstanding its generality, CART remains a

supervised method and therefore requires the users to prepare a training set of discharges, already

divided in disruptive and non disruptive, for the algorithm to learn. In order to double-check that no

bias had been introduced in the preparation of the training set, a series of unsupervised methods have

been also applied to the JET database of disruptions. In particular K-means and hierarchical techniques

have been considered to determine to what extent and how early JET discharges could be classified

into disruptive and safe by unsupervised clustering algorithms (see section 3). These two completely

independent techniques, CART and unsupervised clustering, applied to the same or different JET

databases provide very accurate predictions up to about 180 ms before the disruption. Around this

time, their performance significantly degrade, indicating that the information content in the signals is

reduced and that disruptions do not leave a clear footprint of their future occurrence any more. These

results have been finally confirmed by simply visualising the multidimensional signals in a lower-

dimensional representation space (2D) using a Grand Tour algorithm (see section 4). Possible directions

to extend the present work are briefly outlined in section 5.

2. AN UN-BIASED NON-LINEAR APPROCH: CLASSIFICATION AND REGRESSION

TREES

2.1 THE METHOD

CART is an algorithm explicitly conceived to construct trees for classification (if the output variable

is discrete) or regression (if the output variable is continuous) [14].  To explain the basic properties

of the approach, it is better to focus the discussion on the case of our interest, the classification of

discharges into two classes, disruptive or non disruptive. The CART algorithm traverses the entire

database and, for each input variable, tries to find the value that best divides the database into the two

desired groups. In a certain sense, the algorithm seeks to maximize the purity of the two subclasses,

called child nodes, by splitting the database into two subgroups each containing discharges belonging
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only to one class.  In general no variable has such an explanatory power to allow a perfect division of

the entire database into two completely separated child nodes. Therefore at each stage the algorithm

chooses the variable that provides the best division of the database in two homogenous groups and

then the process is repeated for the child nodes until a complete separation is achieved (or all the

variables have been processed). By construction, the resulting tree has the more important variables

toward the root and the ones with less explanatory power toward the leaves.

The CART approach is a supervised technique and therefore a training set containing properly

classified examples is required (in our case a set of discharges with a well diagnosed time of

disruption). Once properly trained the resulting tree can be used to classify further examples. It is

sufficient to take a new set of input signals and traverse the tree to see in which leaf node (disruptive

or safe) the new example is classified. To optimise this aspect of prediction, the final operation of

pruning the tree is particularly important. This phase consists of eliminating the final nodes which

increase the complexity of the tree, without bringing sufficient improvement in the classification.

This pruning operation not only provides way to find a trade-off between complexity and accuracy

but also influences the generalisation properties of the final tree.

It must be emphasised that the method is very general. It is totally unbiased, since no manipulation

of the raw data, not even normalisation, is needed. The algorithm is also fully nonlinear since it

exhaustively traverses the entire database, maximizing the purity of the child nodes simply on the

basis of the information content of the signals. It is therefore particularly suitable to the prediction

of disruptions, which are very variegated and nonlinear phenomena.

2.2 DATABASE AND FEATURE EXTRACTION

The database used for the study, whose results are presented in this section, is extracted from the

JET disruption database and is a subset of the one introduced in [15, 16]. It is composed of signals

from 440 pulses, 220 of which end with a disruption and are, therefore, referred to as “disruptive”,

whereas the remaining 220 are pulses which terminated normally, and are therefore referred to as

“safe”. The dataset for each disruptive pulse consists of several signals (see later) made of 21 points

each (one sample every 20 ms), in the time interval [tD-440, tD-40], where tD is the time the disruption

takes place. For safe pulses, i.e. pulses where a disruption does not take place, the data is composed

again of 21 samples, sampled at 20 ms, taken 7 seconds after the X-point formation. This choice has

been taken with consideration that, on average, this is the time of disruption for the set of disruptive

discharges selected. Finally, the data from the database has been divided into two groups, a training

and a testing set, both composed of 220 pulses, half disruptive and half safe. Both training and test sets

include a selection of discharges belonging uniformly to all the campaigns in the database.

The signals which have been included in the database are listed in Table I. They are all available in

real time from JET diagnostics except the Net Power (Pnet) which is the arithmetic difference between

the total input power (Pinp) and the total radiated power.

This choice of these signals as the most relevant has been based on the use of CART for feature

extraction. This aspect of feature extraction is a major issue in the analysis of big databases and in

our applications consists of deciding which, among the thousands of JET acquired signals, are the
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most relevant to study the problem disruption prediction. As a preliminary step, various experts

have been asked to identify the most relevant quantity for this end. They have converged on a list of

13 signals, which is the one used in previous papers like [15]. To further reduce the number of

variables, they have been used as input to the CART algorithm. By construction, the CART software

locates the most relevant signals towards the root of the tree and the ones with less explanatory

power towards the leaf nodes. This allows the algorithm to be used to classify the input signals in

terms of their relative importance and therefore provides an unbiased and nonlinear method to

select the measurements more relevant to predict the phenomenon. It is worth mentioning that the

assessment of the variable relevance includes also the inputs that do not explicitly appear in the

final optimal tree. This is appropriate since it can happen that variables are masked, which means

that they can be a surrogate of other variables, never occurring in this way as a primary splitter

although they are the best choice after the chosen variables in the selected tree. CART allows this

problem to be overcome by the so-called “variable ranking method”, which consists of summing

across all nodes in the tree the improvement scores that the variable induces when it acts as a

primary or surrogate splitter. In this way, variables that never appear in the tree being always a

surrogate of another input are also considered in the final classification.

The relevance values so produced allow ranking the different input signals from high to low

importance. In this way, CART can be used for feature selection, being able to identify the most

important variables to describe the output. The results of this process of feature extraction using

CART is indeed the selection of signals reported in table I.

During the feature selection process aimed at identifying the most relevant signals, it has

emerged from the available database that this classification depends significantly on the interval

considered before the disruption, as reported in table II (a possible way to overcome this general

problem that the relative importance of the variables depends on the time interval chosen is

discussed later in this section).

In order to assess the robustness of the described signal selection process, Gaussian noise was

added to the input signals to simulate different level of signal to noise (S/N) ratio. The CART

algorithm has been applied again and for reasonable values of the S/N ratio, above 20, certainly

realistic for JET measurements. The results of this sensibility study are reported in table III. The

classification of the variables is quite robust since the most significant variables remain the same.

The small variations in the ranking of some signals is a characteristic intrinsic to the database, in

the sense that these variables have a very similar explanatory power and therefore small relative

variations induced by the noise can affect their relative rating.

2.3 THE CLASSIFICATION RESULTS

In addition to assessing the explanatory power of the input signals, the CART method can be used

for the purpose it was originally conceived, to perform unbiased and non-linear classifications of

discharges in the two groups of disruptive and safe. To accomplish this, first of all a complete

training of the CART for different time intervals was performed using the training datasets. The

time intervals chosen are the same reported in Table II and used to analyze the relative importance
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of the variables at different times. Then the classification of the test dataset was performed with all

these CARTs, trained in their specific subintervals. These results are reported in fig. 1. From a close

look at this figure, it is possible to observe that the three networks performing best in proximity of

the disruption, i.e. the [tD-200, tD-160], [tD-140, tD-100] and [tD-80, tD-40], have a steep slope

around tD-180 ms, which indicates that the footprint of the disruption is unclear for times prior to

tD-180 ms. On the other hand, training data further than 200 ms from the discharge tends to result in

poor performance over the entire dataset confirming that, probably, so far away from the disruption

there is not enough information in the signals for an effective prediction.

The robustness of the results reported in fig.1 have been double-checked by adding Gaussian

noise to the signals and determining the success rate of the various trees with these new input

signals. For reasonable levels of the S/N ratio, above 20, the noise does not have a very significant

impact on the performance of the classifiers and the trends of fig.1 are reproduced, as shown in

fig.2. For S/N ratios below 30 the success rate of the trees is strongly reduced particularly close to

the disruptions. The global performance of the classifiers become flat around 60% over the entire

time interval, showing that the additional information present in the signals is masked by such a

level of noise. This of course emphasizes one more time the need of good measurements for the

prediction of complex phenomena like disruptions.

To summarise, the CART method indicates quite clearly that in general disruptions manifest

themselves clearly only with a maximum notice of about 180 ms. On the other hand expressing the

results of fig.1 in terms of false and missed alarms, as illustrated in fig.3, suggests a possible

strategy to train the predictor depending on the objectives of a certain session or campaign. For

example, on a device with effective tools to terminate discharges quickly (in the order of 100 ms),

it could be a good strategy to train the CART tree with data not earlier than 200 ms before the

disruption. For instance, training with data from the interval [tD-200: tD-160] would grant a very

good rate of success close to the intervention time disruptions at a prize of a high level of missed

alarms earlier. On the other hand, in a device with a need to detect the imminence of disruptions as

soon as possible, it could be a more effective approach to train the tree with data taken earlier than

200 ms before the disruption (for example in the interval tD-260: tD-220) to have a lower percentage

of missed alarms earlier in the discharge, at a price of a higher level of false alarms.

3. UNSUPERVISED APPROACHES: K-MEANS AND HIERARCHICAL METHODS

3.1 THE METHOD

As mentioned in the introduction, CART is a powerful unbiased and nonlinear method but it remains

as a supervised approach. It has therefore been considered important to see if its results could be

confirmed by a general, unsupervised clustering technique. The tested ones have been partition-

based (K-means) and hierarchical algorithms [17] but since the former has provided better results

the discussion will be particularised for it in this paper.

The K-means approach has been developed to identify groups or clusters of datapoints in a

multidimensional space. The main objective of the technique consists of partitioning the data into

separate clusters of similar points, according to an appropriate definition of distance. Intuitively,
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therefore, a cluster can be interpreted as comprising a series of datapoints near to each other compared

to the distance of points outside the cluster. The K-means algorithm has been devised to partition

the original dataset in K clusters of similar points. To achieve this, the algorithm proceeds iteratively

calculating firstly for each new point the most appropriate cluster, on the basis of an mathematical

distance (Euclidean, City Block, Mahalanobis or Correlation), and then recalculating the cluster

barycentre given the new points. The iteration is halted when the points are grouped in such a way

as to minimize an overall global function, which represents the distance between the points in the

database and the barycentre of the clusters.

One of the most significant issues in the implementation of unsupervised clustering methods is

the adequate determination of the number of clusters in which the dataset should be partitioned. In

our application to disruption identification, it would look natural to use only two clusters, one for

the disruptive and one for the non-disruptive discharges. In reality, the problem is more complex

due not only to the nature of the disruptions but to the diversity of the non-disruptive shots.

As will be discussed in more detail in section 5, disruptions can be classified into six main

categories, on the basis of the cause leading to the loss of control of the discharge, and for that

reason the plasma behaviour in each case is necessarily dissimilar. Besides, in each session during

a typical JET campaign, there can be tens of “safe” experiments, every one of them of diverse

nature but with common evolution without major unexpected instabilities. This “a priori” information

is extremely useful to establish the cluster number as 7, under the assumption that six clusters

would naturally classify the different types of disruption and the last one would capture the “safe”

shots. That assumption has been verified after a careful study of the distributions of the discharges

with the K-Means. In figure 4 it can be seen that in two intervals ([tD-80ms, tD-40ms] and [tD-

200ms, tD-160ms], tD being the time when the disruption occurs), the safe shots are mainly grouped

in one cluster while the others in the remaining ones.

3.2 THE DATABASE

In order to simplify the comparison with the results of the CART method, the same database described

in section 2.2 has been selected for the unsupervised analysis. For each discharge the signals adopted

to perform the classification are the nine already identified by CART as the most relevant. Not all

of them have the same time base and therefore they have been re-sampled when necessary to obtain

a time resolution of 1 ms. This choice has proven to give enough samples to perform the analysis

over time intervals of 40 ms, which is a good trade-off between time resolution and statistical basis

for these clustering methods. In order to apply the K-mean algorithms in a convenient way, the 9

signals have been appended, forming a feature vector. The final database consists therefore of a

sequence of these feature vectors, each one containing the samples pertaining to the time slice

chosen for the particular analysis.

3.3 THE FEATURE EXTRACTION

In each discharge, the signals under study represent the evolution in time of different plasma

parameters. Some of the information about disruption precursors is quite hidden in them and therefore,
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as will be shown, careful signal processing is required to extract the most relevant features for the

classification task at hand. In the course of this study, several data processing algorithms have been

applied to each signal and the success rates in the final classification have been compared. The best

results have been obtained with the sequence of operations described in the following.

First of all, it is necessary to normalize the data due to the high amplitude differences in the involved

signals. A standard normalization formula has been implemented:

Where Min and Max are the minimal and maximal values computed in all the dataset for each signal.

Secondly, the FFT (Fast Fourier Transform) has been calculated, discarding the first coefficient,

in each time slice of the signals to extract valuable frequency information. Thirdly, the standard

deviation of the normalized Fourier coefficients has been computed to measure the spread of the

values. This sequence of mathematical operations has proved to be extremely useful in the

construction of the training set. The CART analysis of the previous section, on the other hand,

indicates clearly that different quantities can have a completely dissimilar explanatory value when

it comes to the problem of disruption prediction. To profit from this basic information, each standard

deviation has been multiplied by the corresponding CART coefficient that represents the relative

importance of the signal for disruption prediction. In this way, the various quantities are weighted

by a coefficient representing their relative explanatory power for the problem at hand.

At this point, each shot, initially characterized by a “global” vector of values corresponding to

time slices of 40 ms of the 9 raw signals, each one re-sampled at 1 sample/ms (leading to a total

amount per pulse of 360 samples) has been manipulated into a new feature vector of 9 values (the

concatenation of the 9 values obtained by the previously described steps). This extreme

dimensionality reduction not only achieves better classification results but also provides a simpler

input to the K-Means algorithm, reducing the computational time.

3.4 TRAINING AND RESULTS

One of the most important issues for these unsupervised clustering methods is making sure that the

database is properly chosen. Not only the training and test groups of discharges must be selected

randomly to avoid any biasing but also each obtained result should be repeated and averaged to

avoid misleading results due to unforeseen spurious correlations or statistical fluctuations. To obtain

the most robust results given the available database, n-fold cross validation method [18] has been

applied. It consists in splitting randomly the available database in n groups (each one with the same

amount of haphazardly selected disruptive and “safe” pulses). One of the groups is kept for test and

the other n-1 for training.

For every 40 ms interval, the training dataset is given as input to the K-Means algorithm (with

seven clusters). The algorithm groups the data according to the Squared Euclidean distance (because

of its better performance) and constructs the classification system, which consists basically of the

barycentres of the clusters. Once the positions of the cluster barycentres have been determined, the

Normalized signal =
Raw_signal_Min

Max - Min
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test dataset is used to evaluate the success and error rates of the obtained classifier. The distance

between every new object in the test group and the barycentre of each cluster of the classification

system is measured. The object will be classified into the cluster with the minimal distance. The

rate of success is then expressed in the usual percentage terms. The overall error is divided in 2

groups: when a “safe” shot is classified as disruptive, it is counted as a False Alarm, and in the

opposite case, the error is counted as Missed Alarm.

This procedure is repeated n times, leaving in each occasion a different group for test purposes.

Hence, n error rates are calculated independently and to obtain the final percentages the average of

the n values has been performed.

The results are shown in figure 5. It can be noticed that the CART weighting improves considerably

the performance of the classifier. The Missed and False Alarm rates correspond to the trace that

includes the CART weighting in the feature extraction process.

The global results are in good agreement with the CART classifier, since they confirm that, earlier

than 180 ms before the disruption, the success rate significantly decreases, proving that the information

content in the signals is much lower further away from the sudden termination of the discharge.

4. CONFIRMATION OF THE RESULTS WITH A PSEUDO GRAN TOUR

VISUALIZATION

4.1 DATA TOURS

Human beings are used to detecting patterns in their every day life. We easily recognize faces,

places or follow object’s trajectories. Also, without any significant effort, we can detect differences

or relationships between groups (people, cars, animals, buildings, landscapes etc). Since images

have very high information content and they are the main means for human beings to explore the

external world, it would be beneficial to confirm the results of the previous sections by visualizing

the database. More ambitiously, this visualization could help identify possible structures or tendencies

in the signals that could lead to statistical hypotheses. However, when the dimensions of what is

being seen are significantly higher than the normal three of physical space, our comprehension of

visual information decreases drastically. In the specific case of disruption precursors, the

dimensionality of the raw data base is huge. To overcome this problem, first of all the analysis can

be limited to the most relevant features already identified with the CART method in section two.

Secondly the database can be projected into a subspace of lower dimensions to make the information

visually more intuitive. These projections are indeed performed by a series of methods which fall

in the general category of “data tours”, which provide the most interesting representations of the

available data in a reduced feature space.

     One of those methods, the so called pseudo Grand Tour, is based on the idea of showing the data

from all possible viewpoints in a sequence of lower-dimension projections, so its evolution can be

converted into a running movie of scatterplots, providing an overview of the high dimensional

space in a sequence of 2D plots.

The high dimensionality of the problem at hand becomes manageable, since techniques to project

high dimensional datasets on a 2-D surface, in such a way that the sequence of planes is dense, i.e.
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it comes close to any given 2-D projection, exist. For our investigation we applied a Data Tour

method, which projects the data on a 2-D subspace and shows the results as scatterplots [19]. The

output of the algorithm is an animated sequence of scatterplots, which is representative of all

projections of the original dataset. Visualizing a moving sequence has some additional benefits

because it contains additional information, related to the movement of the data points. The pseudo

Grand Tour implementation, adopted to obtain the results reported in this paper, is similar to the

Torus Winding Method originally proposed by Asimov [20], which exploits the topological properties

of a torus to identify the projecting planes. The pseudo Grand Tour was chosen because it presents

some advantages like speed, uniformity of the tour, ease of recovering the projections and of the

calculations, and also because it was already implemented in MATLAB [18], making possible it

application by a friendly software

The visualizations of the same features used for the K-means clustering, described in section

3.3, are presented in figure 6. In Fig 6.a, the time interval [tD-0.08, tD-0.04] seconds before the

disruption is shown. It is evident that most of the safe discharges are closely grouped (also detailed

in a closer view). Fig.6.b reports other projections with the same characteristics for the interval [tD-

0.26, tD-0.22 s] before the disruption. Two main groups of shots can still be recognized. Finally, in

Fig.6.c, a distant time interval ([tD -0.44, tD -0.4] seconds before the disruption) is considered

showing that that the discharges are mixed and no evidence of clustering is apparent. A systematic

visual exploration of the database with the Grand Tour method therefore confirms that earlier than

200 ms there is no clear footprint of the disruption in the signals.

FUTURE DEVELOPMENTS

An important result of the clustering analysis seems to be the number of relevant groups of discharges.

All tested clustering methods seem to indicate that the database lends itself to the division in seven

clusters. This is a quite significant result because it is coherent with the typical classification of

disruptions in terms of the trigger mechanisms. As reported in various papers and summarised in

[15], the main factors triggering disruptions are believed to be the following:

a) Mode Lock (ML)

b) Density Limit (DL)

c) High Radiated Power (RP)

d) H/L mode transition (HL)

e) Internal Transport Barrier (IT)

f) Vertical Displacement Event (VDE)

A further investigation of the results of the automatic clustering methods, to see if they naturally

tend to partition JET database into groups corresponding to these types of disruptive discharges

would be a very interesting subject for further investigation.

Another interesting development would be to compare the data of machines of different size to

see if the physiology manifests different time scales depending on the dimensions of the device.

This of course would be extremely important in assessing the extrapolations to ITER
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Switching to the subject of earlier disruption detection, it must be emphasized that the approaches

presented in this paper are very general. They therefore provide a good basis for the extrapolation to

bigger devices but on the other hand their results do not exclude the possibility of obtaining better

performance by fine tuning supervised methods to the characteristics of specific machines. Some

further refinements are indeed already under way for JET. Moreover, the signals analysed are the ones

historically present in the JET database. In recent years new sophisticated diagnostics have become

operational, some of which could potentially contain information about the imminence of a disruption

earlier than the signals analysed so far. A good example is certainly the wide angle endoscope recently

installed of JET for imaging of the main chamber [21]. In the case of density limit discharges, both the

infrared and the visible cameras show a clear formation and evolution of a MARFE [22] instability as

shown in figure 7. This instability is always present before this type of disruption and in some cases

evidence of it, in the form of IR emission possibly due to hydrocarbons, has been detected even more

than one second before the disruption. A systematic analysis of these results has not been completed

yet but the potential of IR views for the prediction of at least the density limit disruptions should be

investigated very seriously. Automatic image processing algorithms, to detect this footprint of MARFE

instabilities, can be envisaged since the signature on the IR frames is very clear.
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SIGNAL NAME        UNIT
Plasma current Ipla [A]

Mode Lock Amplitude Loca [T]

Plasma density Dens [m-3]

Total Input Power Pinp [W]

Plasma Internal Inductance Li

Stored Diamag. Energy Derivative dWdia/dt [W]

Safety factor at 95% of minor radius q95

Poloidal beta βp

Net power Pnet [W]

Table I:  List of the signals used as predictors for the classification trees.
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Table III: Ranking of the various signals (primary splitters) as calculated by CART for
various S/N ratios for the interval [tD-140, tD-100]

Table II: Ranking of the most important signals for disruption prediction as calculated by CART for the various time
intervals. The numbers between 0 and 100 simply indicate the relative importance of the signals in the various
intervals but do not have any quantitative absolute meaning. The table includes only the primary splitters.

Figure 1:  Overall percentage of success (including both
safe and disruptive pulses) of the various classification
trees versus time to disruption.

Figure 2:  Overall percentage of success (including both
safe and disruptive pulses) of the various classification
trees versus time to disruption after summing Gaussian
white noise to the input signals to obtain a S/N ratio of
30.
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Figure 3:  Percentage of missed and false alarms of the various classification trees versus time to
disruption for the same database as in figure 1.
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Figure 4: Distribution of the discharges using K-Means for two different time intervals.
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Figure 7: Visible (left) and Infrared (right) views of JET outer region more than one second before a density limit
discharge, showing the early phase of a MARFE instability. Automatic detection of these manifestations of a MARFE
can be obtained with modern image processing techniques.

Figure 5: Overall percentage of success of the K-means.
The performance decreases significantly for times earlier
than 180 ms before the disruption.

Figure 6 Two plane  projections of JET database obtained
with the pseudo Grand Tour technique. a) time interval
[tD-0.08, tD-0.04]   b) time interval [tD-0.26, tD-0.22 s] c)
time interval [tD -0.44, tD -0.4].
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