
I.T. Chapman, C.G. Gimblett, M.P. Gryaznevich, T.C. Hender,
D.F. Howell, Y.Q. Liu, S.D. Pinches and JET EFDA contributors

EFDA–JET–PR(08)32

Stability of the Resistive
Wall Mode in JET



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



Stability of the Resistive
Wall Mode in JET

I.T. Chapman1, C.G. Gimblett1, M.P. Gryaznevich1, T.C. Hender1,
D.F. Howell1, Y.Q. Liu1, S.D. Pinches1 and JET EFDA contributors*

1EURATOM-UKAEA Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK
* See annex of F. Romanelli et al, “Overview of JET Results”,

 (Proc. 22 nd IAEA Fusion Energy Conference, Geneva, Switzerland (2008)).

Preprint of Paper to be submitted for publication in
Plasma Physics and Controlled Fusion

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK



.



1

ABSTRACT.

The kinetic effects influencing the stability of the Resistive Wall Mode (RWM) are investigated by

applying a drift kinetic code to calculate the change in the potential energy of the mode in the

presence of thermal and energetic particles. The analysis is carried out for typical JET high-  plasmas.

It is found that the strongest kinetic damping of the RWM arises due to mode resonance with the

precession motion of the trapped thermal particles. The stability of the RWM in JET plasmas is also

probed by using active MHD spectroscopy. The frequency spectrum of the plasma response to

oscillating externally applied fields has been measured and fitted to parameter models in order to

infer the stability of the RWM. A new model retaining information about the plasma response is

presented to describe the resonant field amplification in the presence of a stable RWM and favourably

compared with the calculated response.

1. INTRODUCTION

The ultimate performance limit in advanced tokamak scenario operation is often set by the Resistive

Wall Mode (RWM). The RWM is a macroscopic pressure-driven kink mode, whose stability is

mainly determined by damping arising from the relative rotation between the fast rotating plasma

and the slowly rotating wall mode. In the absence of a surrounding wall, the plasma is stable to kink

modes until the normalised plasma pressure, β = 2µ〈p〉/B2, exceeds a critical value, β∞. In the presence

of an ideally conducting wall, the plasma is stable to a critical value, βb, with the range β∞ < β < βb

called the wall-stabilised region. In practice, the vessel wall has a finite resistivity. Thus, on the

time scale required for eddy currents to decay resistively, the magnetic perturbation of the external

kink mode can penetrate the wall and so wall-stabilisation is inhibited. Operation above the no-wall

beta limit is important in advanced tokamak regimes, which aim at steady-state operation with high

plasma pressure and a large fraction of non-inductive bootstrap current. However, advanced scenarios

are particularly susceptible to the pressure-driven kink mode due to broad current profiles and the

associated low no-wall beta limits. Hence, it will probably be necessary to operate these scenarios

in the wall-stabilised regime in order to achieve economically-attractive plasma performance.

Various experiments have shown that the RWM can be stabilised in such a way that the plasma

can operate above the no-wall beta limit in the presence of rotation generated by unidirectional

Neutral Beam Injection (NBI) [1–7]. The critical rotation at which the RWM was able to grow has

been estimated by braking the plasma by  applying non-axisymmetric magnetic fields. Such magnetic

braking experiments have indicated that RWM stability requires the toroidal plasma rotation to be

of the order of a few percent of the Alfv´en velocity [6,8]. However, the application of non-

axisymmetric magnetic fields to brake the plasma can also partially drive the RWM [9]. More

recent experiments with nearly balanced NBI [10–12] have found a critical velocity well below

that found in the magnetic braking experiments. Furthermore, preliminary results from NSTX suggest

that operation above the no-wall limit can be attained even with no plasma rotation at the resonant–

q = 2 surface [13]. Hence, it is important to understand the stabilisation mechanism, especially
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given that the rotation in ITER is uncertain and predicted to be relatively low [14]. Various models

have been presented to explain the RWM damping due to kinetic effects relative to the particle motion.

For instance, RWM stabilisation has been attributed to sound-wave damping [15], ion Landau damping

[16], or more recently, precessional drift resonance with the trapped thermal ions [17, 18].

In order to assess the role of these kinetic effects in damping the RWM, the driftkinetic particle-

following Hagis code [19] has been used to calculate the change in the potential energy of the kink

mode in the presence of both trapped and passing ions. The code can be used in a perturbative

manner to study kinetic resonance damping effects by diagnosing which particles cause the strongest

wave-particle interactions. Whilst this gives an exact treatment of the kinetic effects, it does not

self-consistently evolve the eigenmode structure in the presence of the particles, which has been

shown to affect the RWM stability [20].

A weakly damped mode, such as the RWM in the presence of rotation or kinetic damping, can

amplify the resonant component of magnetic field asymmetries [21]. One way to probe RWM

stability experimentally is to examine the plasma response to externally applied non-axisymmetric

magnetic fields. When the plasma pressure exceeds the no-wall β-limit, strong Resonant Field

Amplification (RFA) occurs. The measured frequency spectrum of the RFA to externally applied

rotating magnetic fields has been described by a single-mode approach [22]. This allows an absolute

measurement of the damping rate and natural mode rotation frequency of the RWM.

In this paper, we first outline a model for determining the stability of the RWM from the resonant

field amplification measurements, which includes the plasma response. Experimental measurments

of the RFA in JET are presented in section 3, and the results are compared with our model. In

section 4 the kinetic resonance damping effects on the external kink mode are considered for a

typical JET discharge. The kinetic effects upon the growth rate of the RWM in JET plasmas is

assessed in section 5 and compared to the RFA fitting model. Finally, conclusions and implications

for RWM stability are discussed in section 6.

2. RESONANT FIELD AMPLIFICATION MODELS

The resonant field amplification amplitude is usually defined as the ratio of the plasma response to

the externally applied field, Br
ext. It can be found by measuring the perturbated radial magnetic

field at the wall, Br, so

(1)

The resonant field amplification, ARFA, is a complex number, whose phase angle refers to the toroidal

phase of the plasma response with respect to the externally applied field [22]. The normal mode

approach [23,24] predicts that the interaction of the RWM with the applied fields is well described

by a system model for the evolution of the perturbed resonant field at the wall. In the presence of an

applied field with angular frequency !ext, the single-mode model employed in reference [22] gives

Βr(r = rsensor)−Βr

Βr
ARFA  =

ext

ext
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(2)

where γ0 is the growth rate of the RWM in the absence of any external perturbations, τW is the

resistive diffusion time for wall currents and cS is the ratio of the resonant component of the applied

field to the applied field detected by the sensors at the wall.

Whilst this empirical model agrees quantitatively well with the RFA data from experiments in

DIII-D [22], it is possible to include the plasma response to the applied fields more rigorously,

following a similar approach as in reference [25]. In a cylindrical equilibrium surrounded by a

resistive wall, the dispersion relation for the resistive wall mode takes the form [26, 27]

(3)

where  ∆′∞ and  ∆′0 are the stability indices for the case with a perfect wall at the location of the real

resistive wall and without a conducting wall respectively. ∆s and  ∆w are the jumps across the

resonant surface inside the plasma and across the resistive wall respectively, and both are functions

of the complex growth rate, p.

Now consider the case when a magnetic field is applied by a coil carrying a current, Ic, just

inside a thick resistive wall at radius b and the perturbation is measured by a detector positioned at

a thin resistive wall at radius a. Assuming a vacuum, the flux function, ψ = rBr, is given by

(4)

(5)

where B, C and D are constants. Here m is the poloidal mode number, λ2 = p/ηb, ηb is the thick wall

resistivity and Km is a modified Bessel function [28] defined in terms of Kelvin functions as

Km(xeiπ/4) = eimπ/2[kerm(x) + ikeim(x)]. The continuity of the flux function and the jump in its

derivative [29] at the thin resistive wall, r = a, lead to

(6)

(7)

where τa = aδw/ηa, ηa is the thin wall resistivity and σ = (a/b)m. At r = b the continuity condition and

the presence of the coil current IC [30] give

(8)

1 + γ0τw)
iwextτw −  γ0τw

ARFA = cs

∆∞ (1+ λ∆0∆w(p))

1+ λ∆∞∆w(p)
∆s(p) =

′ ′

′

r
b

m
a < r < bψ = B

r
b

-m
 + C

b < r < ∞ψ = DKm (λr)

ψa = Bσ + C/σ

pτaψa = m(Bσ + C/σ)- aψa-′

B + C = DKm(z)
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(9)

where z = λb. Linear combinations of equations 6 and 7 give

(10)

(11)

Substituting equations 10 and 11 into equations 8 and 9 leaves us with

(12)

(13)

where we have used the recurrence relationship that zK′m + mKm = -zKm-1 [28].  Finally eliminating

D gives

(14)

Next we consider the RWM stability as measured by the stability index ∆′s at the resonant

surface, s,

(15)

where ψs- and ψs+ are the values of the flux function in the limit approaching the resonant surface

from the inside and outside respectively. Using the generic relationships [29] that ψs+ = α1ψa-+

α2ψ′a-, rsψ′s+ = α3ψa-+ α4ψ′a- and rsψ′s-/ψs = c, we have that

(16)

When no current is applied to the external coils and in the absence of a wall (ie ηw → ∞, aψ′a-/ ψa

→ −m), equation 16 gives ψ′0 →(1-mα1)/(α2-mα3), whereas in the perfect wall limit (ψa → 0),

∆′∞ - α1/α3. Combining these limits with equation 16 gives us

(17)

-imIcb = DzKm -m(B-C)′

2mB  = a a- + a(p a + m)'

-2mC/σ = aψa- + ψa(pτa - m)′

DKm = 
2mσ (1-σ2) + [m(1+σ2) + τa(1-σ2)]
aψa- 

2mσ
ψa′

-DzKm-1 = -imIcb + 
σ + ( τa 1-m)

aψa- 

  σ
ψa′

= a

+

1 + + m + 
 imIcbσ ψa- 

ψa 
ψa

(1 - σ2)zKm-1

2mKm

1 +pτa 
(1 - σ2)zKm-1

2mKm

1 +
(1 - σ2)zKm-1

2mKm

′

=
∆s

rs

ψs+ - ψs-

ψs

′ ′ ′

=∆s

aψa- 
ψa 

1 + α1

aψa- 
ψa 

α2 + α3

′

′

′

(∆0 − ∆s) − mα3∆s (∆0 − ∆ )

3∆0 (∆s − ∆ )

aψa- 

ψa
=

′ ′ ′ ′ ′ ′

′ ′ ′
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which can be written as

(18)

where

(19)

Now we recast equation 14 in the form

(20)

Since, in the vacuum case aψ′a-/ψa = m, equation 20 yields

(21)

Recasting equation 1 as ARFA = (ψw- ψvac)/ψvac, substituting in C1 defined through equation 14 and

assuming that the applied frequency, ωext, is much larger than the growth rate of the mode (which is

typically the case in the RFA experiments in JET) yields

(22)

where we recall that z = z(ωext, τb). This results in a two-parameter (namely, the real and imaginary

parts of X) model which can be employed to estimate the stability parameter, ∆′s of the RWM from

the RFA measured experimentally. Note that there is an additional parameter, α3, but since the

second term in square brackets in equation 19 is an order of magnitude smaller than the first, the

model can be considered independent of α3. The benefit of using this scheme is that the information

about the no-wall and with-wall beta limits is retained, exemplified by the presence of ∆′∞ and ∆′0
stability parameters in equation 19. Consequently, this model potentially offers greater insight into

the plasma response to the applied fields.

3. RESONANT FIELD AMPLIFICATION IN JET

In JET, oscillating non-axisymmetric magnetic fields can be applied using the Error Field Correction

Coils (EFCCs), which consist of four coils arranged symmetrically around the outside of the vacuum

vessel, each spanning 70o toroidally [31]. The coils are located in octants 1, 3, 5 and 7 of the vessel,

with toroidally opposite coils having oppositely directed currents to produce an odd-n spectrum.

The plasma response is detected using six saddle coils, with a pair above, below and on the midplane

respectively. The plasma response to the magnetic perturbation is calculated by comparing with

w w

'

X - m
a a- 

a
=

(∆s − ∆0)  ∆
∆0(∆s − ∆ )

1
α3∆0

aψa- 

ψa
= m[ [′′′

′ ′′′

'

C1
C2a a- 

a a
+ =

m + C2a

avac a-/ a + C1
=

iwext a + X +  
ARFA  = 2mzo2Km-1

2mKm+(1-o2)zKm-1

2m − X
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measurements of the externally applied field in a vacuum.

In these JET experiments, the external field is applied in H-mode discharges which reach βN ~ 3.5.

The plasma parameters are fixed as Ip = 1.1MA, BT = 1.35T, ne ~ 2.5×1019m-3 with NBI power, PNBI

≤ 20MW. The large NBI power raises the plasma pressure above the no-wall limit found from ideal

MHD stability calculations performed with the Mishka-1 code [32]. The external field is applied in

identical discharges with a frequency of 3Hz, 6Hz or 10Hz either co- or counter- to the direction of

plasma rotation. During each discharge the neutral beam power injected is increased so that βN is

increased and the plasma response is measured for different values of the plasma pressure. Figure 1

shows the evolution of βN in JET Pulse No: 68962 as PNBI increases. The toroidal rotation also

increases, keeping the RWM stable throughout. By measuring the plasma response using the saddle

coils, the amplitude of the resonant field amplification can be found according to equation 1

Experimentally the RFA is determined as a ratio of signals from combinations of orthogonal saddle

loops, from Octants 1-5 and Octants 3-7 (EFCCs in Octants 3-7 were used in this case), which is close

to the total RFA defined by equation 1 at  N values below or close to the no-wall limit [33]. The RFA

varies with the frequency of the applied field, as illustrated in figures 2 and 3. The dependence of the

RFA amplitude with respect to the frequency of the applied field has been fitted to the predicted

onepole form given by equation 2 [22] (figure 2) as well as our parametric plasma response model

given by equation 22, as shown in figure 3. Here we use vacuum response data to find that the thin

wall time is τa = 13.6ms and the thick wall time is τb = 280ms when a = 1.5 and b = 2.5. We arbitrarily

set the parameter α3 = 1 (although the fit is rather insensitive to α3). Whilst the thick wall model

outlined in section 2 is not geometrically representative of the JET vacuum vessel and support structures,

it does provide a good fit with vacuum data which cannot be obtained with a model using two thin

walls between the EFCC and the plasma.

Figure 2 shows that the magnitude of the plasma response peaks with an applied field rotating at 2-

4Hz. Whilst the magnitude of the plasma response in figure 2 increases with βN, the frequency at

which the RFA is maximised remains constant, in good agreement with results from DIII-D [22].

These experimental data fit the parameterisations reasonably well, especially at low βN. The value of

cs from the parameterisation in equation 2 is approximately constant, since this depends upon the

location of the sensors relative to the mode (as well as other equilibrium factors). When the RFA is

fitted to equation 22, the stability parameter can be found by employing equation 19 and supplying

∆′0 and  ∆′∞ scaled according to the growth rate of the perturbation calculated by ideal MHD simulations

[29], ∆′∞ ,0 ~ -π/γ∞,0τA, where τA = R0/vA, the Alfvén speed vA = Bφ /   ρµ0 and ρ is the mass density.

This demonstrates how this parameterisation for the RFA can be used to ascertain information about

the RWM stability limit. A comparison between the JET data and the kinetic damping modelling is

given in section 5.

4. ASSESSMENT OF KINETIC DAMPING

Recent experiments [10–13] have shown that tokamak plasmas can be sustained above the no-wall
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limit, even when the toroidal rotation is small. There is naturally much interest in understanding the

passive stabilisation occurring from kinetic effects which is thought to underlie these results. The

earliest models for kinetic damping of the RWM were based upon parallel viscosity or sound wave

damping of the mode [15,34]. Later it was suggested that the RWM would be damped due to a

resonance between the mode frequency and the transit (bounce) frequency of the passing (trapped)

energetic ions in the plasma [16]. More recently, kinetic theory has also been applied to suggest that

the RWM will be damped in the presence of trapped thermal ions due to a resonance between the

mode and the drift precessional motion of the particles [17,18]. Hence, it is interesting to model the

contribution to RWM stability from all the species of particles to ascertain which of these effects

contribute to mode damping, and whether such kinetic damping significantly alters the   limit.

The growth rate of the RWM can be formulated in terms of the MHD perturbed energy, as [35]

(23)

where δWb,∞ represents the sum of the plasma and vacuum energy with and without a wall

respectively. Equation 23 can be extended to include the kinetic contribution to the plasma energy,

δWK, for low-frequency modes [18], such that

(24)

where δW∞ < 0 and δWb > 0, indicating that the plasma is in the region where the ideal external

kink mode is stable, but the RWM is MHD unstable. Here, the Hagis drift kinetic code [19] is used

to compute the change in the potential energy of the kink mode in the presence of a population of

thermal and energetic particles, δWK. Hagis is a particle-orbit code following the guiding centre

motion of the particles. Consequently it includes any finite orbit width effects which have been

neglected in previous studies [18]. The kinetic terms are evaluated using the with-wall marginally

stable eigenfunction, which represents the best approximation of the actual RWM eigenfunction.

There has been significant recent progress in establishing high βN regimes in JET [36,37]. The

JET plasmas analysed here are above the no-wall limit with respect to the ideal external kink mode,

as indicated in figure 4. For Pulse No: 68875 at t = 5.0s, the no-wall   limit is found to be δN = 2.7.

Experimentally, JET Pulse No: 68875 reached N = 3.1 although the RFA occurs at a much lower

pressure, as seen in figure 5, where the RFA in Pulse No: 68875 is compared with two other identical

pulses. In each of these discharges the RFA limit seems to agree well with the calculated no-wall

limit. However, it should be noted that the δ-limits cannot be firmly ascertained because of the

uncertainty in the current profile, most notably the edge current density [33]. The static eigenfunction

is computed using the Mishka-1 code [32] for the no-wall case, and then input into Hagis together

with the equilibrium generated by the Helena code [38]. The equilibrium is reconstructed by taking

the plasma shape and current density profile from the Efit equilibrium code [39] together with the

δWb
γ w =- δW∞

δWb + δWk
γ w =-δW∞ + δWk
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thermal pressure profile obtained from the LIDAR diagnostic, and assuming that pi = pe. The q-

profile is constrained by matching the frequency of MHD modes in the plasma to the rotation

measured by the Charge Exchange diagnostic, and inferring the radial location of the resonant

surfaces from the rotation profile. The charge exchange recombination spectroscopy measures the

rotation of C6
+ ions, though the correction to deuterium is expected to be small. Figure 6 shows the

q-profile generated, together with the radial location of the 3/2 and 5/3 resonant surfaces. When the

RWM stability in JET Pulse No: 68875 is assessed with an ideal wall at the position of the actual

JET vacuum vessel with respect to the plasma, the β-limit is found to be βN = 2.9. However, the

plasma reaches   values above this limit experimentally, implying that either the RWM stability is

significantly affected by the metal structures that support the limiter tiles and are electrically closed

to the vaccum vessel or that the equilibrium profiles are inaccurate. Therefore, we also assess the

mode stability when the wall boundary is taken as that of the vacuum vessel modified to form a

closed path around any brackets and restraint rings that are grounded to the vessel. Using this

optimised wall, the βN-limit is increased to βN = 3.95. This assumes that the wall is axisymmetric,

when in reality a full three-dimensional geometry is required. In order to show the sensitivity of the

modelling to the wall location, we also consider a case with the wall taken between the vacuum

vessel and the optimised geometry including support structures, equivalent to a conformal wall

position at r = 1.3a. This produces a β-limit of  βN = 3.7. This arbitrary wall position is justified by

the fact that this wall position gives a with wall limit of  βN = 3.9 for JET Pulse No: 62650, which

agrees well with the plasma pressure achieved in the experiment before an MHD instability limited

plasma performance [40]. Full three-dimensional modelling of the JET wall using the CarMa code

[41, 42] will appear elsewhere. It should be noted that Mishka-1 does not include a resistive wall, so

the eigenfunction used in the kinetic calculations is that of an ideal external kink mode, as shown in

figure 7. This perturbative method does not allow for changes to the eigenfunction due to the presence

of the resonant particles, which has been shown to somewhat alter the stability boundary including

kinetic damping [20, 43]. Nonetheless, the analysis presented here gives a qualitative assessment of

the kinetic damping, and importantly treats the wave-particle interaction rigorously without assumption.

Assuming that the equilibrium pressure goes to zero at the plasma edge, then the change in the

potential energy of the kink mode can be calculated as [44, 45]

(25)

where φ is the toroidal angle, θ is the poloidal angle, k = b . ∇∇∇∇∇b is the curvature vector, b = b/B and

δf is the perturbed distribution function. Analytic theory developed for large aspect ratio circular

plasmas shows that the contribution from the perturbed distribution function, found by solving the

drift kinetic equation, leads to a kinetic potential energy of the form

(26)

b

b

b

b

1
2

(m)*δWk =     dΓ(mv|| +µB)δf Σ κ •  ξ (r, t)e-i(n -m )

w-nΩ-nw
* .

w-nΩ-n  φE〉md -  θ〉l
δWk ~ Σ 〉 〉

l =-
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where ω is the mode frequency, Ω is the plasma rotation frequency, φE has been redefined to be in

a frame rotating with the E×B velocity, the dots represent the time derivative and 〈...〉 is the orbit

average, 〈φE〉md = 〈φE〉 − ΩE×B(r) and ω* is the diamagnetic frequency,

(27)

where ε = v2/2. When the toroidal and poloidal bounce(transit)-averaged frequencies are calculated,

it is found that there are three regimes in which resonance can occur, that is to say, the magnitude

of the denominator in equation 26 is minimised. Ignoring plasma rotation, these are when the

mode frequency coincides with the transit frequency of passing particles, ω ≈ ωt ~ (vth/R); when

the mode frequency is approximately the same as the bounce frequency of trapped particles, ω ≈
ωb ~   r/R(vth/R); and when the mode frequency balances the precession drift motion, ω ≈ ωd ~

ρr(vth/R), with ωd << ωb < ωt.

It is possible to use Hagis to calculate ω - nΩ- n〈φE〉-l〈θ〉for a population of markers spread

evenly across phase space. The distribution function of thermal ions and electrons is assumed to be

isotropic in pitch angle and Maxwellian in energy whereas the energetic ions are given by the

distribution function generated by the Transp transport code [46]. Figure 8 shows the contribution

from these markers to the change in the mode energy as a function of pitch angle λ = v||/v and

energy. Here the markers are evolved in the presence of a perturbation with frequency, ω = 10kHz.

The lines of resonance are shown by plotting the magnitude of 1/(ω - nωφE - lωθ) on a logarithmic

scale, where ω = ω - nΩ is the Doppler-shifted mode frequency. The areas of strongest interaction

indicate that the particles in that region of phase space have appropriate toroidal and poloidal

frequencies to maximise equation 26. In the presence of very small rotation, only the precession

drift of the particles can contribute, which happens when the quantum number l = 0. This limit is

appropriate for the passive stabilising effect on the RWM exhibited experimentally in very slowly

rotating plasmas. It should be noted that the drift precession frequency may be larger in the NSTX

experiments since ωd ~ q/R0B0, so a larger mode frequency would be required for resonance to

occur. When the plasma frequency is increased more lines of resonance appear in phase space since

more particles are moving with appropriate bounce/transit frequencies.

Furthermore, it is also possible to examine where the strongest interaction between the particles

and the kink mode occurs. Figure 9 shows the change in the mode energy due to the particles as a

function of radius, where for each data point the markers were only loaded in a narrow radial

region, ∆r = 0.1a, where a is the plasma minor radius. It is clear that the strongest wave-particle

interaction occurs when the particles are born at mid-radius. Since only thermal particles are

considered here, the orbit widths are small compared to the radial bins. It should be noted that in

Hagis, when a particle orbit reaches the separatrix, the particle is considered as lost. This means

that the role of particles near the plasma edge may be underestimated.

It is also of interest to consider the interaction arising from the precessional drift resonance of

. .

.

˜

.

˜

˜

+ ΩE × Bw*i,e = 
mi,e δfi,e/δψ|ε
Ze  δfi,e/δε|ψ
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the trapped thermal ions as the plasma rotation frequency varies. Figure 10 shows δWK as a function

of Ω for JET Pulse No: 68875. The thermal particle distribution function is considered to be isotropic

with respect to pitch angle and Maxwellian with respect to energy. Evidently, the plasma rotation

plays a significant role in determining the kinetic stabilising effect upon the mode. The wave-

particle interaction is strongest when the Doppler shifted mode frequency is approximately the

same as the average precession drift frequency of the ensemble of trapped particles. As the rotation

was decreased in the magnetic braking experiments in JET [8], as well as reducing the fluid

stabilisation of the RWM caused by the flow shear, the rotation also reduced the stabilising effect

arising from the resonance with the precessional motion of the trapped ions. With reducing plasma

rotation frequency the stabilising contribution from the precessional drift resonance continues to

decrease until some minimum, after which it suddenly increases once more. The implication of this

is that if the toroidal rotation is reduced at a sufficiently low βN that the weak rotation still present

is able to stabilise the RWM, then βN may be subsequently raised above β∞, since the damping from

the kinetic effects strongly increases at low rotation. This may partially explain how recent

experiments have found the RWM stable at very low rotation when β > β∞ [10,11,13].

From equation 26 it is evident that the kinetic contribution to the stability of the RWM is also

strongly determined by the magnitude of the diamagnetic frequency, ω* = (Tdp/dr)/ZeBp. Due to

the strong pressure gradients present at the pedestal in H-mode plasmas, the diamagnetic frequency

is large at the plasma edge, coincident with the dominant component of the RWM eigenfunction.

Consequently, the kinetic damping of the RWM can be enhanced by the presence of strong pressure

gradients at the plasma boundary. In the magnetic braking experiments performed on JET [8] and

DIII-D [6], the application of external fields leads to a significant reduction in the edge density

gradient [47, 48]. It has been suggested [10] that the anomalously high critical rotation for RWM

onset found in these magnetic braking experiments was due to the applied error field amplifying

the mode. However, it could also be envisaged that applying these non-axisymmetric magnetic

fields also degrades the edge density gradient, so reducing the diamagnetic frequency, and

subsequently reducing the kinetic damping of the RWM.

Figure 11 shows the change in the potential energy of the external kink mode in the presence of

thermal particles when the pressure gradient is changed. The pressure profile is obtained from the

Transp code, then the pedestal pressure gradient is artificially scaled by a Gaussian multiplication

factor. For a reduction in the pressure gradient associated with a typical experimental reduction in

density, δWK is reduced by nearly 25%. It should be noted that the change in the edge pressure

gradient is only one effect influencing the RWM; the change in the rotation profile from magnetic

braking and the direct drive of the mode by error fields will also affect RWM stability.

5. MODELLING KINETIC DAMPING RATES IN JET

By using equation 24, the RWM growth rate can be found when the kinetic damping effects are

included by calculating accurately δWK due to both ions and electrons using Hagis. The MHD and
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kinetic contributions to the mode energy have been calculated for JET Pulse No: 68875 for a

Maxwellian isotropic population of thermal particles. The ideal no-wall limit is found to be β∞ =

2.7, though the plasma reaches βN values greater than this, up to βN = 3.1. The contributions to the

kink mode potential energy are shown in figure 12. The Mishka-1 MHD stability code cannot find

δWMHD with a wall when βN <  βb. Therefore, the curve indicating MHD stability in the presence of

a perfect wall has been extrapolated in order to find the RWM growth rate in the wall-stabilised

region. The growth rate of the RWM, γτW, calculated using equation 24 is illustrated in figure 13.

Including the kinetic effects increases the RWM stability limit by over 10%, beyond the no-wall limit.

Another comparison can be made between the RWM stability measured from the RFA experiments

detailed in section 3 and the stability calculated by numerical modelling. In order to compare the

kinetic damping modelling with the experimental data, we find the parameter X, as defined in

equation 19, using two different methods. Firstly, X is found by fitting the JET RFA data according

to equation 22. Secondly, we employ the visco-resistive model for the resistive wall mode [49], use

∆′s = i/Ωq=2τA, and find ∆′∞,0 = -π/γ∞,0τA, where the growth rates include the kinetic damping

effects. In order to find γ∞,0, a β scan is performed by reconstructing JET Pulse No: 68962 early in

the shot when  βN = 2.5 and scaling the plasma pressure in the Mishka-1 code. In this scan both the

realistic geometrical representation of the JET wall (including the limiter support structures grounded

to the vacuum vessel) is used (wall1), and the less optimistic case approximately equivalent to

having a conformal wall at r = 1.3a (wall2) is also tested to illustrate the sensitivity of the results to

the wall position. The comparison between the RFA data fitting and the kinetic damping modelling

calculation of X is given in table 1.

The reasonable agreement between the experimental data and the kinetic modelling suggests

that the damping of the RWM in JET is strongly influenced by the mode resonance with the precession

motion of the thermal ions. For these JET plasmas, it can be diagnosed that the strongest contribution

to δWK arises due to the presence of a thermal population of particles. The drift precession frequency

of a large number of these thermal particles is very similar to the Doppler-shifted mode frequency

of the RWM, hence facilitating strong resonant damping. By examining the markers with the largest

δf, the orbits and frequencies of the particles that incur the greatest kinetic damping of the mode

can be obtained. Such a diagnosis has found that the strongest damping is from trapped particles

with frequencies near the average precessional drift frequency. Whilst the stability calculated by

our drift-kinetic modelling agrees reasonably well with the JET measurements, there remains some

discrepancy. One reason for this could be that in the experiment the RWM experiences rotational

damping which is not included in the modelling presented here. Also, the kinetic modelling uses a

full toroidal geometry whereas the model presented in section 2 assumes cylindrical geometry,

which alone could account for the ~20% difference in X. Furthermore, since the growth of the

RWM is an inherently non-linear process, as the mode interacts with error fields, plasma rotation

and the plasma particle populations, this linear modelling can only provide a qualitative insight into

the mode stability. Nonetheless, this analysis does provide valuable information concerning which
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species of plasma particles has the strongest influence in kinetically damping the mode, and by

how much this kinetic damping can typically affect RWM stability. Non-linear MHD modelling

including kinetic effects will be addressed in future studies.

CONCLUSIONS

The stability of the resistive wall mode in JET plasmas has been analysed by considering experimental

measurments of the resonant field amplification and through modelling to assess the kinetic damping

of the mode. The kinetic effects upon the RWM have been analysed for typical JET discharges

using the Hagis drift-kinetic code. Hagis calculates the change in the potential energy of the mode

due to the presence of both trapped and passing particles. By considering a range of energies and

pitch angles, the particles which contribute most to the damping of the RWM have been diagnosed.

It is found that the strongest kinetic damping arises due to the presence of trapped thermal particles,

whose precessional drift frequency is similar to that of the RWM. Whilst stabilisation of the kink

mode can occur due to resonance in other frequency regimes, for instance, at the transit or bounce

frequencies, the very low mode frequency of the RWM dictates that more particles will interact

with the mode at the precession drift frequency. The effects of equilibrium toroidal rotation and

pressure gradients upon the kinetic damping of the RWM have also been considered. As the plasma

rotation frequency varies, the kinetic stabilisation of the mode varies significantly. Together with

the change in the kinetic contribution to mode stability at different edge pressure gradients, this

may help to explain the different critical rotation for RWM onset found in experiments using magnetic

braking compared with those using balanced neutral beam injection.

Also presented are results from JET showing the resonant field amplification of an oscillating

applied field in the presence of a weakly damped RWM. Measurements of the RFA allow the

application of parameter models to infer the stability of the RWM. A new fitting model is presented

which allows the stability parameter of the RWM to be calculated from the RFA data, whilst retaining

the information about the with-wall and no-wall β-limits. Consequently, this model potentially

offers greater insight into the plasma response to the applied magnetic fields.
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Figure 1: (a) The oscillating applied field in JET Pulse No: 68962. (b) The strong toroidal rotation at (c) increasing
beam power means that the RWM is stable even at (d) high βN.
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Figure 2: Magnitude of the n = 1 resonant field
amplification in JET plasmas as a function of the
frequency of the applied field, fitted to equation 2.

Figure 3: Magnitude of the n = 1 resonant field
amplification in JET plasmas as a function of the
frequency of the applied field, fitted to equation 22.

Figure 4. The fluid no-wall and with-wall β-limits for
JET Pulse No: 68875 calculated using the Mishka-1 code
with the JET vacuum vessel and support structures. Shown
for comparison is the RFA threshold.

Figure 5. The RFA in JET Pulse No’s: 68875, 69921 and
69922 as a function of βN. The RFA limit is in broad
agreement with the no-wall limit, βN = 2.7.
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Figure 6: The q-profile for JET Pulse No: 68875 at t = 5s
constrained by the location of MHD activity at resonant
surfaces in the plasma.

Figure 7: The eigenfunction for an unstable pressure-
driven external kink mode in JET Pulse No: 68875.

Figure 8: Lines of resonance in ε−λ  phase space showing
the dominant regions of wave-particle interaction,
occurring when ω ≈ Ω + nh 〈φE〉 + l〈θ〉.

Figure 9: The radial location of the strongest wave-
particle interaction. Note that whilst the eigenfunction is
large near the edge, since most particles born near the
separatrix are lost, the largest interaction is at mid-radius.
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Figure 10: The real part of the change in the potential
energy of the kink mode as a function of the plasma
toroidal rotation. The influence of the kinetic damping
changes significantly as the rotation varies.

Figure 11: The real part of the kinetic contribution to the
mode energy as a function of pressure gradient in the
pedestal. Since δWK depends upon the diamagnetic
frequency, it is thus sensitive to the density gradient.

Figure 12. Contributions to the change in the potential
energy of the kink mode from the MHD terms (with and
without a wall) and the kinetic terms for JET Pulse No:
68875.

Figure 13. The β-limit of the RWM is increased by
approximately 15% for JET Pulse No: 68875 when the
kinetic damping terms are included.
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