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ABSTRACT.

The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are
studied using the GS2 code. Studies of the scaling of nonlinear turbulence with shaping parameters
are performed using analytic equilibria based on interpolations of representative shapes of the Joint
European Torus (JET). High shaping is found to be a stabilizing influence on both the linear Ion-
Temperature-Gradient (ITG) instability and the nonlinear I'TG turbulence. For the parameter regime
studied here, a scaling of the heat flux with elongation of X ~ k' or K0, depending on the
triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical
elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear

critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

1. INTRODUCTION
Experimental studies indicate that plasma shaping effects are important in improving the performance
of tokamaks. Multi-tokamak studies of macroscopic stability and global confinement have shown
that increased shaping (elongation and triangularity) generally leads to significant increases in the
energy confinement time Ty [1, 2], in the B stability limit [3], and in the Greenwald density limit
[4]. Observations of the favorable effects of shaping in individual tokamaks include, for example,
significant increases in the P stability limit with increased elongation and triangularity in DIII-D [5,
6], simultaneous high con nement and high density relative to the Greenwald density limit with
increased triangularity in high-mode (H-mode) discharges with Edge Localized Modes (ELMs) in
the Joint European Torus (JET) [7], and increased electron confinement time with increased
elongation in Low-mode (L-mode) electron cyclotronheated discharges, with additional
enhancements at low to-negative triangularities, in the Tokamak 4 Configuration Variable (TCV)
experiment [8]. These effects are generally attributable to an allowance for higher plasma current at
xed g, which is generally constrained by the kink instability.

The effects of shaping on plasma microturbulence and transport are, however, not fully understood.
In this paper, these effects are studied using high resolution, fully electromagnetic, 5D gyrokinetic
simulations. In relation to gyrokinetic stability, shaping the plasma can influence the Ion-Temperature-
Gradient (ITG) turbulence by changing the local magnetic shear [9, 10]. Specifically, the toroidal
ITG instability is driven by bad-curvature e ects. However, because particles that produce an eddy
tend to follow the field lines, ITG turbulence can be reduced by reversed magnetic shear, which
twists an eddy in a short distance to point in the good-curvature direction. In contrast, for positive
magnetic shear, convective cells tend to remain oriented in the VR direction and are thus more
strongly driven. (An illustration of this can be found in Fig.2 of Ref. [10].) Locally reversed magnetic
shear is most commonly produced naturally by squeezing the field lines at high pressure, creating
the so-called \second stability” regime, which was first predicted by ideal MagnetoHydroDynamic
(MHD) theory [11] and provides the basis behind the design of advanced tokamak [12] and spherical

torus [13] configurations. However, locally reversed magnetic shear can also be produced by changing



the plasma shape, such as varying the elongation and triangularity, since this changes the poloidal
magnetic field. These e ects are explored here.

While the effects of shaping have been studied theoretically in some detail with respect to
gyrokinetic linear stability [14{16], the e ects of shaping on nonlinear gyrokinetic microturbulence
are not well known. Although some gyrokinetic studies of nonlinear turbulent transport in non-
circular geometry have been done recently [17-19], most systematic studies of shaping e ects have
been performed with gyro uid simulations. Most notably, shaping studies by Waltz and Miller [16]
using a coupling of the analytic Miller local equilibrium model [20] with a gyro uid code found a
general improvement with elongation at fixed zero triangularity for ITG turbulence with adiabatic
electrons. More recent studies of drift Alfvén and ITG turbulence in edge-like plasmas by Kendl
and Scott [21] using the gyro uid code GEM [22, 23] and numerical equilibria found a similar,
though stronger, reduction of turbulent transport with increased elongation, primarily due to magnetic
shear damping and additionally due to enhanced zonal shear flows for ITG turbulence parameters,
but found only a weak enhancement with increased triangularity.

The goal of our studies here is to extend these previous studies to develop an understanding of
and predictive models for the scaling of nonlinear turbulence levels with shaping parameters through
systematic gyrokinetic simulations of plasma microturbulence in varying geometric equilibria using
a realistic parameterization of elongation and triangularity and the local radial gradients of the
shaping parameters. In these studies, we use the gyrokinetic code GS2 [24, 25], a flux tube-based
Eulerian code, which includes nonlinear effects, gyrokinetic electron dynamics, trapped particles,
electromagnetic perturbations (though we focus on the electrostatic limit here), and a pitch angle
scattering collision operator, coupled with the analytic Miller equilibrium model [20] to obtain
realistic shaped plasma flux surfaces based on representative JET-based plasmas.

The remainder of this paper is organized as follows. In Sec. II, some general issues are discussed
regarding how the simulation parameter scans were chosen, and some caveats about comparing
local diffusion coefficients and global con nement time are identified. In Sec.III, the formulation of
the equilibrium is described. In Sec. IV, simulation results showing the effects of shaping on
gyrokinetic linear stability are presented. In Sec. V, these studies are extended to include nonlinear
dynamics, and scalings of the nonlinear ITG turbulence with shaping, including comparisons with
empirical scaling laws, are shown. The e ects of shaping on the Dimits nonlinear shift of the critical
temperature gradient are also presented and further described via analysis of the Rosenbluth-Hinton

component of the zonal ows. Finally, a brief summary of the results is given in Sec. VL.

II. METHODOLOGY AND PARAMETER SCAN CHOICES

Before going on, we first discuss some general issues about how the shaping scans are done in this
paper and their physical motivation. There are various possible choices that could be made of
which parameters to hold fixed while doing these scans, and there is not necessarily a best set of

choices for all purposes. One issue is that there are many shaping parameters (nine local geometric



parameters, plus other profile parameters), and we have chosen a few particular slices through this
multidimensional space to make the problem manageable. The approach we adopted for this work,
which is described in detail in Sec. 111, basically provides interpolations from the circular limit to a
standard JET shape and extrapolations beyond that to stronger shaping.

A main issue is the interpretation of the simulation transport results in relation to empirical
global confinement scalings. Empirical scalings of the global confinement time Ty are usually
expressed in terms of engineering variables, like the total plasma current I, and heating power P,
while turbulence theories for local fluxes are expressed in terms of local parameters, like the magnetic
field B and plasma temperature, and geometric quantities related to the structure of the magnetic
field, such as the inverse winding number q (and thus the connection length ~Rq between the good
and bad-curvature regions of the plasma), the flux-surface averaged magnetic shear s, the elongation
and triangularity of flux surfaces and their gradients (which affect the local magnetic shear that
varies within a flux surface), etc. Most of the favorable shaping dependence observed in experiments
is well captured implicitly through the dependence on the current, i.e. Tgo<l ), basically because a
highly elongated and triangular plasma can carry a lot more current at fixed q since Lo azBT 1(x, 0)
/qo5. Where a is the midplane minor radius, BT is the toroidal magnetic field, and an expression for
dependence of f,(K, d) on edge elongation K and triangularity d is given in Eq. (9). The challenge for
theory then is to understand how this strong improvement with the global plasma current can be
explained in terms of local physics mechanisms, including critical gradients, and thus the local or
geometric parameters such as plasma shaping that more directly affect the turbulence.

While we will find some favorable dependence of the local thermal diffusivity X on shaping
parameters (at fixed temperature gradient) and some additional favorable dependence of the critical
temperature gradient on shaping, these effects by themselves appear to be insuffcient in fully explaining
the strong shaping dependence of global confinement observed in experiments. It may be that the
remaining shaping dependence enters indirectly through the edge region, via the effects of critical
gradients that can lead to stiff profiles where the core results are coupled to edge boundary conditions.

This is related to the complication that there is not a simple relationship between global confinement
scaling and local transport coefficients because of the strong nonlinearities and critical gradient
threshold that exist in transport coefficients. (There may also some turbulence spreading that
smoothes the radial dependence of X and further complicates comparisons. This spreading is usually
small in most cases, though it may become important in some cases, particularly near the edge.) For
example, theoretical transport coefficients often have a basically gyro-Bohm scaling but with a

critical gradient threshold [26], e.g.

R = P 0
0 Lt Lt Lt Lt

where cT/eB is the Bohm factor, p; is the ion gyroradius, R is the major radius, 1/L = —(1/T ) (dT/
dr) is the temperature gradient scale length, 1/L. ., is the critical gradient scale length threshold, H



is a Heaviside step-function which is zero if the temperature gradient does not exceed the critical
threshold, and X, is a coefficient that depends on various dimensionless parameters such as g, /R,
K, 0, etc. Balancing diffusive losses with heating, P= —n)XdT/dr =n)XT/L, , we find that the predicted

temperature gradient has the form

2
R R 1 R 4P
7o T3 / ( ) + 5/2 2)
LT 2LT,crit 2 LT,(,‘rit Sn(r)T (I')

where S is a coeffcient that depends on parameters such as B and R. In many hot plasmas, the ratio

P/(XOSnTS/ 2) is suffciently small that the temperature profiles are pinned to near marginal stability,
R/Ly = R/Ly ;. over much of the plasma radius. Only near the cooler edge would the predicted
temperature gradient scale length be a ected directly by the shaping dependence of the coeffcient
X,- Another way to think of this is to consider the limit where the plasma is at marginal stability
everywhere. In this limit, the temperature profile is found just by integrating dT/dr = =T/Ly ..

giving that T(r) = Tped exp((a—r)=L_.). One would expect the dominant effect of shaping on the

Tcrit
core temperature profile in this limit might enter through the effects that plasma shaping has on the
edge/pedestal temperature T, that sets the boundary condition. (We will also find in our simulation
results that shaping has a favorable effect on Ly ) In this case the shaping effects are rather
indirect. Specifically, the effect of shaping on 0 is most important in the edge region in determining
Tped (or shaping may enter through ELM stability limits that set Tped in H-mode cases). This then
sets the boundary condition for integrating the core temperature gradient at marginal stability and
thus propagates this favorable shaping effect on edge turbulence or ELM limits into the core
temperature profile. Some of these issues will be discussed in more detail in Sec.V A.

Because of the sensitivity of X to small changes in the temperature gradient when near marginal
stability, the best way to compare experiments and gyrokinetic codes may be in a profile-prediction
mode, where the gyrokinetic code is feed-back controlled to predict the temperature gradient that
would give the experimental heating power, instead of the usual approach of a X-prediction mode,
where the gyrokinetic code predicts the turbulent )X given an experimentally measured temperature
gradient. There is recent interest in developing such a profile prediction capability with gyrokinetic
codes, including fully self-consistent coupling with transport codes. However, in this paper, for
simplicity, we will study the effects of shaping on gyrokinetic predictions of X at fixed temperature
gradient and as the temperature gradient is scanned. In cases where the plasma profiles are pinned
to marginal stability and thus R/L. does not directly depend on the coeficient X,,, one can consider any
shaping effects we find for X, to be indicative of possible shaping effects on X in the edge region,

which would then improve the core temperature as well by providing a higher edge boundary condition.

II1. JET-BASED PLASMA EQUILIBRIUM
For these shaping studies, we use the local parameterized equilibrium model developed by Miller

et al. [20] to obtain a realistic treatment of the plasma shape. In the Miller model, nine parameters



are required to fully describe the local equilibrium: K (elongation), 8 (triangularity), § (global magnetic
shear), o (pressure gradient), R/a (aspect ratio), q (safety factor), d R, 6, , and 8. The shape of a

flux surface is specified using a standard formula for D-shaped plasmas:
Ry=Rp+ r cos [0 + (sin” 3) sin 0] (3)
Zs= xr sin(0) 4)

The primary advantage of this model compared with a full numerical equilibrium is that the
parameters can be individually varied, thus allowing for systematic studies of the effects of each
upon stability and transport for shaped flux surfaces.

A complete scan of a nine-dimensional parameter space as described by the Miller local
equilibrium model using generic equilibria would be difficult due to the computational intensity of
nonlinear gyrokinetic simulations. Furthermore, in most real experiments, the various shaping
parameters are not fully independent and tend to be correlated with each other. Thus, we consider a
single cut through the space of shaping parameters, beginning with parameters from an existing
tokamak as a base case. Specifically, our simulation studies begin with shaping parameters based
on experimental data from JET [27]. We have focused on JET ELMy shot 52979, t=22.0s. This shot
was run as a long duration, high density experiment to study density peaking, as described in Refs.
[28,29], and is included in the ITER Profile Database [30]. Radial profiles of the shaping parameters
and the ion and electron temperatures and densities from TRANSP analysis [31-33] of the data are
shown in Fig.1. We have chosen one radial zone as a representative shaped flux surface and then
artificially varied the shaping parameters using the Miller formalism to approach the circular limit
via linear interpolations. This zone, which we will refer to as zone 75, corresponds to r/a = 0.80 and
was chosen in particular because shaping effects are strongest near the plasma edge, yet experimental
measurements too close to the edge are subject to large uncertainties.

The standard local parameters based on the JET zone 75 equilibrium are given as follows: r/a =
0.80,R/a=3.42,0R,=-0.14, q =2.03, s = 1.62. The original shaping parameters for zone 75 are:
=1.46,06 ,x=0.57,6=0.19, 9

s Oy 0= 0.60. We note that here we use a symmetrized geometry for

r/a
simplicity and thus have neglected the slight up-down asymmetry seen in the actual plasma shape,
as this is not accounted for in the standard Miller formalism. The parameterizations of the shaping

factors based on linear interpolations of this data are given by

9,,K(1) = (0.57/0.46) (x — 1) (5)
3(x) = (0.19/0.46) (x — 1) (6)
9,,8(K) = (0.60/0.19) 5(x) 7)

Plots of neighboring flux surfaces for the JET-based parameter scan showing the effects of k and & on



d the equilibrium can be seen in Fig.2. We limit our scan to ¥ < 2.6 since, in real experiments, tokamaks
with very high elongation are subject to the catastrophic MHD vertical instability. In the GS2
simulations, we use a single ion species, thus neglecting impurity species, and include gyrokinetic
electrons with the following base case parameters: T, =T, R/L;=R/L;,=10.81,R/L ,=R/L =
3.50, v /(v,/a)=0.393, v,,/(v,;/a) = 9.88e-3. Here the temperature and density gradient scale lengths
are defined as 1/L = —(1/T)(dT,/dr) and 1/L_ = —(1/n,)(dn,/dr). We note that some smoothing
of the data shown in Fig.1 was done before calculating the local temperature gradients used here, as
the kinky behavior seen in the ion temperature profile is due to the effects of the high density of the
shot on the diagnostic.

The simulation results presented here are performed in the electrostatic limit (A = 0), yet with
nite equilibrium [} radial gradient (related to the second derivative of the Shafranov shift in the

Miller equilibrium model), defined

ar/aB = g 9r/a BS = _gﬁs(R/Lns + R/L7y) (a/R) (8)

where the B, total is given by the sum over the  for each species, i.e. B, = 2. B, for B, =8
TcnOSTOS/Bz. The simulations are performed either assuming a xed value of across shaping parameters
S

at the original zone 75 value, 3 =17.58e-3, denoted as “d,, = const” results, or varying 3 with

zone75
shaping, denoted as “(d,,B)(k)” results. Comparison between these two cases allows for a study of
the effects of the equilibrium generated by the (3 gradient on the dynamics. For the (d,,3)(x) results,
the variation of B with shaping is formulated to keep the Troyon-normalized B fixed, By = B/ (I/
(aBy), while also holding qqs fixed. (When electromagnetic perturbations (8A) are included, it is
particularly important to reduce B as elongation is reduced to the circular limit in order to avoid
running into ballooning limits.) Tokamak reactors are generally designed to work at a fixed value of
By (near the maximum constrained by the stability of pressure-driven modes) and gy (constrained by
the stability of kink modes). A scaling for the shaping factor f,(x, 0) that relates plasma current to

plasma shaping is assumed based on a modi cation of Uckan’s t to numerical MHD equilibria [34],

I a a |1+x%1 +28%
Bs,Troyon =—— < — fi(x, d) = 9
aBr q95 Ry9s 2
At fixed qgs, as the plasma elongates, the poloidal current I, increases. Thus, we vary B as
1+1%(1 +28%)
BS(K) = Bzone75 [ ) (10)

I+ KZzone75(1 + 26220]’!675

IV. LINEAR GYROKINETIC STABILITY

We first explore the effects of shaping on the linear gyrokinetic stability. For all of the linear results,



we report the maximum linear growth in a scan over k,p; in the range 0.1 <k p, < 1.0. Here p;= v,
= Q. is the ion gyroradius, where v, = 4/ T;/m; is the ion thermal speed and €, = Z.eB/(mc) is the
cyclotron frequency.

We begin with studies of the variation of the linear ITG growth rate with K, shown in Fig. 3. In
general, the results show that elongation has a stabilizing in uence on the linear growth rate. The 6
=0 curve is used as a base case comparison with the 8(x) curve, from which we observe that triangularity
is slightly destabilizing at low-to-moderate k and slightly stabilizing at very high k. However, the
overall dependence of the linear stability on triangularity is very weak compared with the stabilizing
effects of elongation. Comparison with the curve at constant 3 radial gradient shows that increasing
—d,, Bis also stabilizing. The stabilizing influence of the [ gradient has been shown previously and
has been demonstrated to be particularly important in high-f3 spherical torus plasmas [35].
Specifically, this can be seen intuitively by considering the form of the drift-velocity operator:

> Ry . UB
UD'V:l?wd,ll'i_l — Oy | (11)
ts ts

where the curvature and VB drift frequencies are given by

@, = (p.v, /B)K, - BX (b-Vb) (12)

®, = (pv, /BHK, - Bx VB) (13)

In the high-aspect-ratio limit in circular geometry,

k., po
wdy”:—( S ”) [cosO + (30 — 0isind) sin O] (14)
0
k.pv, .\ o
W =0 +|—— ts) (15)
’ ’ R, 24?

where o = —qz(RO/a)ar/aB is related to the second derivative of the Shafranov shift and @, <0
corresponds to drifts in the bad-curvature direction. Thus, Eq. (14) shows that the stabilizing e ect
of increased —d,,B (or equivalently increased o) is analogous to that due to reversed local magnetic
shear. We note that, while the magnetic field curvature is the main source of the bad curvature
instability drive, there appears to also be some stabilizing effect of in the rB drift in Eq. (15).
However, this is o set by other e ects when compressibility (VB) is included.

Insight about the stabilizing effects of high shaping observed in Fig.3 can similarly be obtained
by considering the more general equilibrium. Fig.4 shows the variation of the curvature drift

frequency with the ballooning mode extended angle 8 for the JET-based plasmas (d is also varied



with K here). In general, moderate levels of shaping appear to have little e ect on the curvature drift.
However, the case of ¥ = 2.20 shows a significantly more narrow region in the bad-curvature
direction. Thus, with high shaping, only unstable modes which are very highly localized along the
field line will persist in the system. This will have a stabilizing influence, since these narrow
eigenmodes will contain higher k; components, which are subject to Landau damping in the local
limit. Another stabilizing effect is due to the variation of the perpendicular wave number k  (0)
shown in Fig.5. In the concentric-circle high-aspectratio limit, k Lz = ky2 + ky2 = ky2(1 + §2(6—90)2)
increases along the eld line (away from the point 6, where the radial wave number vanishes, 6, =
0 here). This is because an eigenmode in the ballooning representation follows the sheared magnetic
eld. Non-cicular shaping induces additional stretching and shearing of a flux tube that can also
increase k iz’ as shown in Fig.5. The resulting FLR averaging by ions at high k| p, and the associated
further narrowing of the eigenmode along the eld line will also contribute to the stabilizing inuence
seen with stronger shaping. On a related note, we also consider the variation of the Jacobian factor
J associated with the parallel motion operator, b-V = (1//)9/08. Freedom in the de nition of 0 has
been exploited to remove the 6 dependence from J. For these parameters, we nd that a/J = {0.149,
0.152, 0.157} for the cases of {x=1; k= 1.46; K = 2.20}, thus indicating a slightly higher amount
of stabilizing Landau damping with increased shaping.

The effects of shaping on the linear critical temperature gradient were also studied. The results
are shown in Fig. 6. Here d,;, B is varied with shaping (k and d) as well as consistently with R/L.
While shaping was found to be stabilizing in the regime of R/L; =10.81 in Fig.3, here we find
surprisingly that shaping has no signicant effect on the linear critical temperature gradient. Specically,
all three shaped plasmas yield a stabilizing gradient for the ITG mode near that observed for the

circular shape, i.e. (R/Ly)_;, ~ 3.42. For comparison, the dashed lines in Fig.6 for the ¥ = 1.46 and

crit
K = 2.20 cases correspond to constant zero triangularity (rather than varying triangularity with as
for the solid lines). Again we see that the dependence of the ITG growth rate on is insignificant
across the entire temperature gradient scale length regime, except for the upshift in the linear critical

temperature gradient with zero triangularity for the kK = 2.20 case.

V. NONLINEAR ITG TURBULENCE

Extensions to study the scaling of nonlinear turbulence with shaping have also been explored. The
simulation domain for these studies has L, = 74.28p; and L, = 62.83p; with the number of grid
points in the perpendicular directions given by N_= 72 and N, = 36, such that Ax = 1.05p, and Ay
= 1.80p;. In spectral space, this corresponds to resolving non-zero modes in the range 0.085<|k,_p,|
<1.95and 0.10 <[k, p,|< 1.10. The domain along the eld line has length L, = 2nqR = 12.75R, with
Ny = 32 grid points per 27 in 6. The velocity grid has N, = 16 energy grid points and N, = 37 pitch
angle grid points (A = u/E), divided into trapped and untrapped regions. The simulations were
performed as typical with time-centering parameter r = 0.55 and slight upwind diffusion (spatial-

centering parameter s = 0.55) [24]. The heat diffusivities presented here are written in terms of



Xi1er-> @ quantity defined by the ITER Expert Group such that the 1D radial heat transport equation

is given by

3o _ 1 9| 2 or
2 ot _v'arlv<|vr|>x’TER (”ar

]"‘SE (16)

where V is the flux-surface volume, V= dV/dr, and Sy is the energy source term. The transport

equation in this form has the advantage that X, is independent of the flux surface label r.

A. TRANSPORT SCALINGS

The effects of shaping on the nonlinear ITG turbulence for the JET-based plasmas, analogous with
the linear results in Fig.3, are shown in Fig.7. In agreement with the linear results, the nonlinear
results show that high shaping has a stabilizing influence. Also similar to the linear stability is that
the dependence of the nonlinear heat flux on triangularity is weak across the entire range. We note
further that the results at constant [3 radial gradient do not vary as strongly with x, indicating that a
signi cant fraction of the variation of the standard case {d(x), (ar/aB)} (), is coming from the
variation of d,, ) as given by Eq. (10). Comparisons of the GS2 data with the empirical scalings of

K_l, K_I'S, and K_z, designed to t the data at K = 1, are also shown in Fig.7. Qualitatively, we find

that both the ion and electron heat fluxes scale as X ~ K

. It is further interesting that, in the
regime where triangularity is slightly destabilizing, the scaling of the case with zero triangularity
becomes stronger, X, ~ K2

Compared with previous numerical studies, the simulation results in Fig.7 are within the range
of the gyro fluid results of Waltz and Miller [16], which found a scaling of X ~ 2 /(1 + Kz), for &=
0 and adiabatic electrons. However, our nonlinear gyrokinetic simulations of core turbulence do
not completely explain the much stronger effects of shaping found experimentally, particularly the
strong triangularity dependence observed in tokamaks. For example, in Fig.8, we show the scaling
of 1/X with x from various experimentally-based empirical scaling relations in comparison with the

1% and ~* observed in our GS2 simulations. For the empirical energy confinement

scalings of 1/}~
time scalings, we assume that T ~ o’/ and convert the empirical scalings from engineering variables,
Ty o< IpCl P2 ..., to physics variables for comparison with the gyro-Bohm normalized simulation
results. (For example, we eliminate the heating power in terms of the average plasma energy density
using P = W= 1 o« VnT/t;.) Note that shaping effects are much stronger when 7 is expressed in

~2/3 12 . . .
P in engineering

terms of physics variables instead of engineering variables. For example, if T /I P
variables, then eliminating the power leads to T > Ip3 K 2/W %o [1+ K2(1 + 282)]3/ oc k2 (using V o<
Kk and using Eq.(9) to relate I/ to shaping at fixed qy5 and fixed B). The scaling laws which we plot in
Fig.8 include the standard IPB98(y,2) scaling [1], which is based on H-mode global confinement
data and was used for the ITER design, for both f§ = constant (“IPB98y2(B, 0)”) and B/By,,y,, =
constant (“IPB98y2(x, B)”) and the standard Error in Variables scaling [2] (“EIV05 maxerr(P)(x)”),

which is similar to the IPB98(y,2) scaling yet uses a modified H-mode database, resulting in a



weaker 3 dependence. While there are significant differences between the shaping dependencies of
these three empirical scalings, it is clear from Fig. 8 that our GS2 simulations yield a weaker
scaling than the experiments and thus do not fully capture the strong stabilizing effects of highly
shaped plasmas. However, note that this analysis neglects marginal stability effects. If pinned to
marginal stability, then the energy confinement time E depends on (R/L)crit and the edge boundary
conditions, not on X at fixed R/L, as discussed in Sec.II. The fact that the Dimits nonlinear critical
temperature gradient shift depends on shaping, which we observed with the GS2 simulations and
show next, may help to explain some of the remaining shaping dependence of the experiments.
However, it may be that much of the shaping dependence in tokamaks comes in through edge
boundary conditions for core turbulence. In fact, recent work by Kendl and Scott [21] exploring the
effects of shaping on plasma turbulence for edge-like parameters using gyro fluid simulations shows
a scaling of X~x"*, which is much stronger than we found with our core gyrokinetic simulations.
Thus, this will be a key topic of future research. Within this, a number of particular differences between
core and edge turbulence, such as the stronger role played by nonlinear, non-adiabatic electron

dynamics in edge turbulence, could be interesting to explore further.

B. CRITICAL TEMPERATURE GRADIENT AND RESIDUAL

Zonal Flows Here we present results from studies of the e ects of shaping on the nonlinear critical
temperature gradient. The GS2 simulation results are shown in Fig.9. While shaping was found to
be stabilizing on the nonlinear ITG turbulence in the regime of R/L.=10.81 in Fig.7, in agreement
with the linear results, here we nd that shaping is also stabilizing near the regime of zero net heat
ux. In particular, the results show that the nonlinear critical temperature gradient increases with
~3.42 for the k=1 and k= 1.46 cases, while (R/L)_; ~5.13
for the k=2.20 case. This is unlike the linear results in Fig.6 which showed that shaping has little

strong shaping. For example, (R/Ly)_., crit

effect on the linear critical temperature gradient.

The results of Fig.9 are somewhat surprising and worthy of further analysis. Here we will show
that the larger upshift of the nonlinear critical temperature gradient with higher shaping may be due
to enhanced zonal ows. Zonal ows are axisymmetric, primarily m =0 ows driven by I'TG turbulence
which are believed to play an important role in saturating the level of the turbulence [36-38].
Rosenbluth and Hinton found analytically that a component of the zonal ows is undamped by linear

collisionless processes and that the residual amplitude of these ows scales as

Py 1 (17)

Dy 1 +L
where h = Ve /q2 =q2 (where e = 1/R is the inverse aspect ratio) [39]. This result was derived for
concentric-circular plasmas. However, h is related to the physics of banana widths, which depends
on the poloidal magnetic field, and thus it is intuitive that h should scale with the shaping parameters.

Physically, what we are considering here is the bounceaveraged gyrokinetic response of the

10



plasma to shield an externally-imposed electrostatic potential ®. The usual classical gyroradius
shielding comes from the ion polarization density term, proportional to (1-I'j(x piz)) in the
gyrokinetic Poisson equation. Thus, in the limit of sriall Ki piz, the classical pe2rpéndicular plasma
dielectric can be approximated as D, ... ~ 1 + p; /A, ~ p; /Ap; >>1, where A, = TOi/(4TCOiZiez) is
the square of the Debye length. This shielding effect is set-up in a short time, after a few gyroperiods.
In the long time limit, after a few bounce times, neoclassical polarization shielding also arises due
to the distortion of the banana orbits by the radial eléctric field. Thus, the neoclassical perpendicular
plasma dielectric scales as D, 1.csical ™ (p2banarla ;) ftrapped, where p,, .~ pq Ve is the banana-
orbit width and ftrapped ~Ae is the fraction of trapped particles (representing the fact that trapped
particles have larger radial excursions o a flux surface than passing particles). Thus, we find that

eoclassical/ Pelassical ~ qz/\/ e 1/h. Assuming an initial @ due only to the classical polarization density,
in the long time limit considered by Rosenbluth and Hinton (i.e. w<<®,,...), @ will be reduced
due to the neoclassical enhancement of polarization shielding by a factor of D, .,/(D
D tagsicat
result given in Eq. (17). (The factor of 1.6 in Eq. (17) comes from a more accurate kinetic calculation

neoclassical/

), which we find scale as ~1/(1+1/h), in qualitative agreement with the Rosenbluth-Hinton

which also includes the contribution of passing particles.) In physical terms, in the time evolution,
the amplitude of the potential appears as the superposition of transit-time damping oscillations,
known as the geodesic acoustic modes, and an undamped residual component, which we refer to as
the Rosenbluth-Hinton component of the zonal flows. This is shown in Fig. 10.

With this picture of the neoclassical enhancement of polarization shielding, we can now see how
shaping can enhance the Dimits nonlinear shift: increasing the plasma elongation allows the current
to go up (at fixed q¢5 and B), which increases the poloidal flux and makes the banana widths
thinner, which reduces the neoclassical shielding of zonal ows and thus produces a larger Dimits
shift in the critical temperature gradient.

We now numerically explore the effects of shaping on the Rosenbluth-Hinton residual flows,
focusing specifically on the dependence of h on shaping. Using GS2, we find the amplitude of the
Rosenbluth-Hinton residual flows by adding an external @ to the gyrokinetic Poisson equation and
then computing the response of the plasma to it. Fig. 11 shows the results, speci cally the saturated
amplitude of the Rosenbluth-Hinton residual zonal flows vs. k for the JET-based parameters. Overall,
we find that shaping enhances the Rosenbluth-Hinton component of the zonal flows. This provides
an explanation for the larger upshift of the nonlinear critical temperature gradient with higher shaping
observed in Fig.9, since zonal ows help to saturate the turbulence. From Fig.11, we note that the
results with triangularity varied with elongation show stronger residual zonal flow levels than results
with zero triangularity. However, comparison with results using zero triangularity radial gradient
shows that it is the increased d,,,0, rather than itself, that is having the most significant stabilizing
effect. For all cases, increased elongation (with increased elongation radial gradient) is favorable.

A model prediction for the scaling of h with shaping can be found empirically based on these

GS2 results. We assume the following form of the residual amplitude:
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1.6
Q)O 1 + Chshaping
where
hshaping = ? f(K, 3) (19)

The constant C = 0.887 is chosen to match the GS2 circular case with the original Rosenbluth-Hinton
model. (Note that the Rosenbluth-Hinton analyis assumes concentric-circular plasmas, while our

JET-based plasmas have a non-zero Shafranov shift.) A good fit is found with the shaping function

1 1r :
fiso=L1+ (i +12,,8) | (20)
where the functional form of the triangularity term comes from the scaling d,, ~ 26/(r/a) to reflect
the observed strong radial gradient dependence. This is shown as the solid lines in Fig. 11. Note the
good agreement between the GS2 results and the model prediction both with zero triangularity
gradient and with triangularity varied with x. It is interesting to compare this shaping function with
that found empirically based on experiments for the pressure limit, such as the Troyon [ limit given
by Eq. (9). The shaping function of Eq. (20) for the residual zonal ows has a similar dependence as
the empirical Troyon limit, yet with a slightly weaker 6 dependence.

Fig.11 also shows a comparison between the GS2 results and a recent analytic extension of the
Rosenbluth-Hinton calculation by Xiao and Catto [40] to include shaping e ects, which was motivated
by our numerical results and model prediction which were obtained rst [41]. The Xiao-Catto analytic
model is based on a simple global analytic equilibrium solution of the Grad-Shafranov equation
using an inverse-aspect-ratio expansion. Here we plot their results at Shafranov shift A =0, rescaling
their shaping function f (k, &) to match the GS2 JET-based circular result. (It is the radial gradient
of the Shafranov shift, rather than the Shafranov shift itself, which can have a significant effect on
gyrokinetics, causing an enhancement of the magnetic field at the outer boundary due to the squeezing
of adjacent flux surfaces.) While the analytic approximation is in good agreement with the GS2
results at d = 0, the Xiao-Catto d(k) result is much weaker, closer to our zero triangularity gradient
results. This difference is most likely the result of an assumed weaker 8 radial profile in the simplified
global analytic equilibrium used in the analytic theory. Specifically, the Xiao-Catto model
corresponds to a particular parameterization of an equilibrium with an assumed pressure and current
pro le (constant dp/dy and constant IdI/dy). The value 0,6 at a particular minor radius depends in
a non-local way on the pressure and current profiles inside that radius, just as the Shafranov shift
gradient in a shifted-circular equilibrium depends on integrals of the pressure and poloidal magnetic
field, i.e. d, A= —(r/RO)(Bp +1/2). While the simple analytic global equilibrium used in the Xiao-
Catto model cannot reproduce every possible local equilibrium that we can set-up with the Miller

model, the parameters of the Miller equilibrium could be chosen to locally match any assumed
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global analytic equilibrium, so that the Xiao-Catto analytic result can be used as a benchmark to
verify that a code properly reproduces this physics. In fact, Xiao et al. [42] subsequently carried out
this test successfully with GS2. Here, however, we have not determined the global pressure and
poloidal eld pro les required to obtain a particular local triangularity gradient, although we have
shown with our GS2 results that the residual zonalows depend sensitively on the resulting d,,3.
Nevertheless, the Xiao-Catto analytic theory generally con rms our numerical results for the
elongation dependence.

Overall, this analysis has shown that the observed increase in the Dimits nonlinear critical
temperature gradient shift with plasma shaping in Fig.9 may be understood as an enhancement of
the residual zonal flows with plasma shaping, and this may help to explain why strong shaping is

favorable in experiments.

DISCUSSION AND SUMMARY

The GS2 code has been used to study the effects of flux surface shape on the gyrokinetic stability
and transport of tokamak plasmas. Studies of the scaling of the linear growth rate and nonlinear
turbulence with shaping parameters were performed starting with a representative JET-like flux
surface and artificially varying elongation, triangularity, and their radial gradients together using
the analytic Miller local equilibrium model to approach the circular limit via linear interpolation. In
the electrostatic limit, high elongation was found to have a stabilizing in uence on both the linear
ITG instability and the nonlinear ITG turbulence. Triangularity was somewhat destabilizing at
moderate K, but could be stabilizing at high K. A general scaling of the heat flux with elongation of
X~ " was found for the nonlinear turbulence levels, with a slightly stronger scaling of X~ K2
with zero triangularity in the high-x regime where triangularity is destabilizing. This scaling is
consistent with previous gyro fluid simulations. Investigations of the effects of shaping on the
critical temperature gradient showed that, while shaping had little effect on the linear critical
temperature gradient, high shaping resulted in a larger upshift of the nonlinear critical temperature
gradient due to enhanced zonal flows.

Overall, while our nonlinear gyrokinetic simulations of core turbulence capture some of the
shaping effects found experimentally, they do not completely explain the degree of this dependence
on shaping, particularly the strong triangularity dependence observed in tokamaks. While the result
that the Dimits nonlinear shift is enhanced with shaping may help to further explain why shaping is
favorable in experiments, it may be that much of the experimentally-observed strong triangularity
dependence comes from the edge turbulence, which sets the boundary conditions for core turbulence
and transport. This will be explored in future research. The edge region is particularly complicated
due to the existence of both weak and strong collisionality regimes, steep gradients such that particle
drift-orbit widths can be comparable to the equilibrium radial gradient scale lengths, open and closed
field lines, wall interactions, strong atomic physics effects, etc. Thus, most edge plasma simulations
are presently done with uid simulation models, such as the BOUT code [43] and GEM code [22,

13



23], although initiatives to develop new gyrokinetic codes to speci cally simulate edge turbulence
are underway. However, along these lines, extensions of our results to include electromagnetic
dynamics are in progress and may be of interest for further shaping studies of edge-like plasmas,
since electromagnetic dynamics are particularly signi cant in the edge region due to the high pressure
gradient. Previous studies of MHD stability for highly shaped edge-like plasmas show that high
triangularity can give improved access to the second stability regime [20].

Finally, a more complete understanding of shaping effects might also include scanning shaping
parameters over a range of values of g, as some previous gyro fluid work suggests that there is a
stronger K dependence at lower q [16]. Exploration of higher-degree shaping moments such as
squareness ¢, which modifies the Dshaped plasma formulae in Egs. (3) and (4) by Zs — xr (sin(0)
+ ¢ sin(20)), may also be of interest, since ¢ has been found to have a significant stabilizing effect
in some DIII-D experiments [44, 45] and in MHD studies [46].
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Figure 1: (Color online) TRANSP analysis of the experimental data from JET ELMy Pulse No: 52979, t=22.0s: the
radial variation of the elongation K, triangularity 0, electron and hydrogenic ion temperatures, and electron and
deuterium densities. The dotted vertical lines mark zone75.
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Figure 5:(Color online) Normalized perpendicular wave
number squared as a function of 6 computed using the
Miller formalism for JET-based plasma input parameters.
FLR averaging becomes important when K,;0;> 1.
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rate versus temperature gradient scale length. The solid
lines correspond to results from varying triangularity with
K, while the dashed lines correspond to zero triangularity.
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Figure 7: (Color online) lon and electron heat fluxes
versus elongation comparing zero triangularity and
triangularity varied with x , as well as comparing constant
B radial gradient and B radial gradient varied with K.
The dotted lines show the empirical scalings k!,

-2
and K °.
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Figure 8: (Color online) Inverse heat fluxux versus K
(assuming triangularity varies with ) for various
experimentally-based empirical scaling laws, namely the
standard IPB98(y,2) H-mode scaling for B = constant
(“IPB98y2(x,0)” ) and for B/By,y.n = constant (IPB98y2(
;)" ) and the standard Error in Variables scaling (“EIV0S5
maxerr(P)(x)” ). For comparison, the scalings of K~ and
0 (observed in our GS2 simulations) are shown.

Figure 9: (Color online) lon and electron heat fluxes
versus temperature gradient scale length for triangularity
varied with K.
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Figure 10: (Color online) Time evolution of the amplitude
of the zonal flows for the JET-based circular case
computed using GS2 with an initial external potential ®@,,,
~(1/k,) cos(k,r). The dashed line shows the Rosenbluth-
Hinton prediction for the saturated potential for these

parameters.
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Figure 11: (Color online) Amplitude of the Rosenbluth-
Hinton residual zonal flows versus elongation comparing
triangularity and its radial gradient varied with K, zero
triangularity, and triangularity varied with K with zero
triangularity radial gradient. The data points are the GS2
results, the solid lines are our model prediction, and the
dashed lines are the analytic model of Xiao and Catto
(with A =0).
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