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ABSTRACT

The high confinement regime (H-mode) in tokamaksis accompanied by the occurrence of bursts of
MHD activity at the plasma edge, so-called Edge L ocalized Modes (ELMs), lasting lessthan 1ms.
These modes are often preceded by coherent oscillationsin the magnetic field, the ELM precursors,
whose mode numbers along the toroidal and the poloidal direction can be measured from the phase
shift between Mirnov pickup coils. When the ELM precursors have a lifetime shorter than a few
ms, their toroidal mode number and their nonlinear evolution just before the ELM crash cannot be
studied reliably with standard techniques based on Fourier analysis, since averaging in time is
implicit in the computation of the Fourier coefficients. The present work demonstrates significant
advantagesin studying spectral featuresof the short-lived ELM precursors by using Morlet wavel ets.
It is shown that the wavelet analysisis suitable for the identification of the toroidal mode numbers
of ELM precursors with the shortest lifetime, aswell asfor studying their nonlinear evolution with
atime resolution comparable to the acquisition rate of the Mirnov coils.

1. INTRODUCTION
The high confinement regime (H-mode) in tokamaks is often accompanied by bursts of MHD
activity, associated with anincreaseinthe D , emission at the edge[1]. Theseinstabilities, occurring
at the edge and therefore known as Edge Localized Modes (ELMs) are the cause of particle and
energy losses that may result in a reduction of the energy confinement time as large as 20% [1].
ELMs are commonly classified on the basis of the occurrence of magnetic precursors and on the
dependence of the ELM repetition frequency on the energy flux through the separatrix [1-4].
According to these criteria one can identify two main classes of ELMs, Type-l and Type-IlI,
depending on whether the repetition frequency increases or decreases with the energy flux.

On the JET tokamak, both Type-1 and Type-I11 ELMs are MHD events lasting between 0.3 and
1 ms; magnetic precursors of Type-I ELMs have been detected lasting from afew msto hundredths
of ms. These precursors were studied by [8], although precursors with lifetime shorter than a few
milliseconds were excluded from that analysis dueto theintrinsic difficulty of assessing them with
standard Fourier techniques. This work focuses on the study of the spectral properties of these
short-lived perturbations by using Morlet wavelets, i.e. sinusoidal modulated functions, instead of
Fourier eigenmodes, for the first time.

The method and the basic concepts of wavel et analysis are discussed in section 2, the results and
potential pitfalls are presented in section 3, while future applications of the wavelet analysis for
studying the nonlinear evolution of ELMs are discussed in section 4.

2. METHOD

Fourier analysis has traditionally been the starting point to analyse stationary fluctuations in a
plasma, under the hypothesisthat the signal can beregarded asalinear superposition of independent,
monochromatic, sinusoidal waves. If the fluctuations are not stationary, the variations of the wave



field amplitude and phase over short time scales are not captured in the Fourier spectrum dueto time
averaging implicit in the Fourier transform. In this case arepresentation of the plasmawavefieldsin
terms of waveletsis more appropriate. We first briefly review relevant conceptsin wavelet analys's,
and refer the reader to [7] for a complete and extensive discussion of wavelets and time-frequency
analysis. The Morlet wavelet isthe natural choice when the focus of the analysisis spectral features,
asit essentially represents Fourier eigenmodes whose energy islocalized intime. It is defined as:

I/J(t) — n*%e—tz/&)zeiwot (1)

and itsreal and imaginary part areillustrated in figure 1 in the case of o=1 and w, = 2. A family
of wavelets can be constructed from (1) by scaling and shifting y(t):

Y, (t) = %(t_{) — (ﬂsz)'%;e—(t—‘r)z/ZSZeiZn(t—r)/s (2)

where the factor s™% has been introduced for normalization and we have set =1 and w, = 2.
Thereisthusaclear point of contact with Fourier eigenmodes, of frequency w, that aretimelocalized
over s.

The Continuous Wavelet Transform (CWT) of adiscretetime seriesx., sampled at therate 6t is
defined as the convolution product of x, with y(t):

W, - 3 (" ®

Apart from normalization factors, the only difference between (3) and the windowed Fourier
transform is that the windowing isintrinsic in the wavelet transform and it depends on scale.
Equation (3) iscomputationally highly inefficient, sinceit involves N? operations. Using the property
that the Fourier transform of aconvolution product isthe product of the Fourier transforms, algorithms
based on the Fast Fourier Transform can be used to cal culate the CWT, with considerabl e efficiency
gain. Thewavelet transform is computed at scaless=s, a, where s isthe minimum available scale
and, for each value of j, a=2"" provides arefining of scalesin each octave (2,2 [7].

Spectral quantities, such as the linear dispersion relation, are defined for wavelets in the same
way as for Fourier transforms. From two time series measured at toroidal locations ¢, and ¢,
respectively, the toroidal mode number at each time t, = mdt can be extracted from the relative
phase shift as:

(.9 =A—1¢arg[vv;(¢1,s)vvm(¢z,s)] 4

where W,_*(¢,,9)W,(¢,,9) is the cross-power spectrum between the two signals. For the sake of
simplicity, the explicit dependence on the position ¢, , will be omitted in the rest of the paper.



In the same manner as with Fourier transforms, wavelets can be used to calculate higher order
spectra, such asthe bispectrum[6]. Wavel ets can however quantify the degree of nonlinear coupling
over time scal es shorter than those accessible by Fourier analysis. The wavel et bispectrum between
t,=myét and t, = (m, + M)dt is defined as:

m +M

B(S:5) =+ D W (SW, (S M(5) (5)

=my
wherethescaless,, s, and s; are such that the associ ated frequencies satisfy the resonance condition
w, + w, = w,. If nonlinear interactions are present in atime series, both their frequencies and their
phases are correlated according to the resonance condition, so that the value of |B(s,,s,)| converges
to afinite value as M becomeslarge. Equation (5) isvalid provided that the degree of nonlinearity
isweak and that fluctuating quantities can therefore be represented as (time localized) sinusoidal
waves [5-6].

The value of M should be taken as large as possible to guarantee convergence of the bispectrum
[6]. Typically the average in (5) should be calculated over time windows much longer than the
wave period, although the number of required samples may be reduced if the signal-to-noise ratio
ishigh and/or if only afew coupled modes are present in the spectrum. The suitability of wavelets
to calculate higher order spectra in order to isolate short-lived, coherent, nonlinear structures in
intermittent plasmatime series was discussed by van Milligen et al [9].

An estimate of the bispectrum, independent of the power spectrum of the interacting components,
is provided by the bicoherence [5]:

S W SW, (W ()|
> WL W () D W (s)

Importantly, although algorithms based on the Fast Fourier Transform are more computationally
efficient methodsto calculate the CWT, equation (3) ismore suitable for the computation of higher
order spectra. When the time seriesis decomposed in terms of diadic bases, in fact, the logarithmic
scales log,(s) form a uniform grid with separation vt On the other hand, due to the inverse
proportionality between w and s, the resulting frequency grid is not uniform. This reflects in the
inability of satisfying the resonance condition among freguencies.

Let w,, w, and w, be three spectral components that satisfy w; + w, = w,. Using the relation
between frequency and scale and after some manipulation, the resonance condition among
frequencies corresponds to the following relation among scales:

b*(s,s,) = (6)

log,s=1log, s +log,s, -10g,(s +S,) (7)

Because of the last term on the right hand side, the term on the left hand side is not necessarily
associated to any point in the computed grid of scales and thus w, does not match 2x/s. When



calculating higher order spectrait istherefore preferableto fix thefrequency gridfirst, then compute
the corresponding scales and use equation (3) to compute the CWT.

3. RESULTS

Precursorsto the ELMsare observed on JET as magnetic perturbationsin the signal measured by aset
of calibrated edge Mirnov pickup coils[10]. We will now use the conceptsintroduced in the previous
sectionto study theevolutionin time of the spectral featuresof ELM precursors, such asthe amplitude,
the frequency and the toroidal mode number. We will use for the analysis the magnetic perturbations
measured by two Mirnov coils, positioned at the same major radius, R=3.881m, at z, =1.013mand z,
=1.005m above the midplane, and with orientation 6=108.9 degrees between the coil axisand the
major radius. Thetwo coilsare separated by A¢=10.17 degreesalong thetoroidal direction, allowing
the measurement of toroidal mode numbers up to |n|=17. This subset of coilsissampled at 1 MHz,
thus providing good resolution in time for the wavelet analysis.

We have chosen a typical H-mode confinement discharge (Pulse No: 53062), in which type-|
ELMs are detected. Figure 2 shows the time trace of magnetic perturbations in the time window
between 22.0s and 22.4s. This discharge was analysed by [8] in the framework of an extensive
study of Type-I ELM precursors. The analysis of [8] was restricted to precursors with the longest
lifetimes, typically afew tens of milliseconds, the choice being dictated by the difficulty of discerning
in the Fourier spectrogram precursors with lifetime shorter than a few ms. The time dependent
Fourier spectraof the amplitude of magnetic perturbations and the associated toroidal mode number
for this discharge are shown in figures 2-3 of [8] and therefore they are not reported here.

In figure 2(a)-(b) three ELMs can be seen to occur in the time window of interest; they are
associated with large spikes in the magnetic perturbations that correl ate with the peaks detected in
thetimetracesof the D , emission. Infigure 3 we can seethat significant spectral energy isassociated
with the ELMs and with coherent modes in the power spectrum, such as the ELM precursors at
frequency ~20kHz and the sawtooth precursor at frequency ~15kHz. The exact correspondence
between frequencies and scal es has been verified by computing the CWT of a cosine function with
given frequency.

For graphical representation purposes, for each scale s the wavelet coefficientsin figure 3 have
been rescal ed with respect to the difference between the maximum and the minimum val ue measured
at that scale:

PRACEAC I
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Thefinal values of |W _(s)| are bounded between 0 and 256.

Oscillations at constant frequency below 1kHz, that is at 10g,(s)>12, are detected in the wavelet
spectrum, they are most probably related to external power supplies on JET. A broadening in time
is observed in the computed wavelet scalogram for scales larger than log,(s)>14, in time windows



centred on the ELMs. This feature, which is more evident for the second ELM in figure (3), is
observed also in other discharges and it appears to occur for large amplitude type-I ELMs, namely
those associated with higher D, emission.

Figure 3 also shows a plot of the toroidal mode number calculated from the phase shift between
the two Mirnov coils, using equation (4). From the figure we can see the following. First, for the
precursor to the second ELM, which has longer lifetime, shown in figure 3(c), the toroidal mode
number calculated with the wavelet analysisis n~8 and consistent with the results from Fourier
analysis discussed in [8]. For the precursor to the first ELM, which has much shorter lifetime,
shown in figure 3(b), the toroidal mode number is also n~8, as we would expect, since thisis the
valuefound for thelonger lived precursor in figure 3(c). Second, both precursors are stopped by the
ELMsand thetoroidal mode number seen at the same frequency of the precursor becomes negative
and large in absolute value. Large phase jJumps are measured during the ELMs that may affect the
final results, asit will be discussed below. These time localized variationsin the value of n cannot
be measured with standard Fourier analysisand constitute asignificant step forward that hasemerged
from the wavelet analysisin the study of the spectral properties of ELMs and of their precursors.
Third, the toroidal mode numbers measured during the ELMs and at lower frequencies, arelow in
absolute value, namely n=1-2.

An excerpt of the measured magnetic perturbationsin a3mstime window centred on thetime at

whichthefirst ELM occursisshowninfigure 2(c). The magnetic precursor can be seen in thetime
trace from the Mirnov coil, it appears approximately 2ms before the ELM and it is not detected
after the ELM. The slow asymmetric oscillation in the magnetic signal during the ELM can be
captured by the Morlet wavelet coefficients in the frequency range of [2,10] kHz, as shown in
figure 2(d). Nevertheless, as also inferred from the time trace of magnetic perturbations and from
the wavel et scalogram, components at low frequency and (at relatively smaller amplitude) at high
frequency, both contribute to the total perturbations measured during the ELM.
The amplitude of the spectral components in the frequency range of [18,20] kHz, shown in figure
2(e), increases linearly during 1.5ms and then it stays constant until the ELM occurs; a further
increase in the amplitude is measured in this frequency range during the ELM. A similar amplitude
saturation, occurring 1ms after the appearance of the precursor, was observed (using Fourier
techniques) on JET for precursors with longer lifetime [8].

Toisolatethe precursor, and to follow the time evol ution of the associated toroidal mode number,
we now average the cross-power spectrum over time windows of width decreasing from 1ms to
10us. Wefit then the wavel et cross-power spectrum in each window with arecursivefitting procedure,
assuming that the peaks have a Gaussian envelope, according to the shape of the Morlet wavelet.
Theamplitude, the central frequency and the spectral widthof each peak are given by the parameters
of the Gaussian curve. Thefitting procedure allows oneto i sol ate peaks with amplitude significantly
larger than a selected fraction of the background level. The average over windowswith progressively
decreasing width isacheck for convergence of the calculated linear quantities, namely the amplitude



and the toroidal mode number.

Wewill show resultsfor averaging over two timewindows, 7, = 20us, and 7, = 200us, corresponding
respectively to 20 and 200 samples. The shorter interval t; isat thelimit of time resolution available,
sinceit is shorter than the wave period of the precursor, that is 50us. Averaging over t, introduces an
apparent time oscillation in the amplitude, as shownin figure4-(d), which isnot present for averaging
over the longer time window t,. These results can be used as a check on our results observed for
window ;.

Figure 4 shows the time evolution of the amplitude, frequency and toroidal mode number of the
first ELM precursor, starting from the time when it is detected as a coherent mode, until the ELM
crash. The amplitude of the precursor increases roughly linearly (rather than exponentialy) in time,
although with alarger growth rate during the first 1.5ms. If we use an average over time windows
shorter than those associated with thewave period, asinthe case of resultsfor z,, theresultant amplitude
oscillates; this artifact is a result of the spectral analysis. Generally speaking, time windows a few
timeslonger than the wave period should be taken when cal culating average linear spectral quantities,
such as the amplitude and the phase shift.

Oscillationsare a so seeninthetime evol ution of thefrequency of the precursor, which are correlated
intimewith thetime variations of the amplitude, suggesting that thisisalso an effect of the averaging.
These oscillations are neverthel ess smaller than the spectral width of the pesk; the latter is shownin
figure 4(e) as vertical barsin the resultsfor z,. The frequency of the precursor decreases from 20kHz
to 18kHz beforethe ELM, athough thetotal variation iscomparableto the width of the peak and thus
it isnot significant.

Thetoroidal mode number is measured from the phase shift in afrequency range centred on the
frequency of the mode and of width equal to the spectral width of the mode. The error in the
measurement of the phaseis given by the maximum dispersion associated with the average valuein
each time window.

Variations of thetoroidal mode number beforethe ELM are outsidetherange of the errorsintroduced
from the measurement of the phase, athough we cannot exclude that the small oscillations measured
in the case of averaging over t, are due to the choice of the window. Importantly, theincreasein the
toroidal number measured at approximately 22.945 sis also seen in the results for the window , and
in the time evolution of the phase shift between the filtered signals, shown in figure 4(b); it can be
therefore interpreted as areal feature in the data.

A large, smooth variation in the toroidal mode number is measured approximately 150us before
the ELM, with the value of $n$ decreasing from approximately 9 to 4. A similar variation has also
been observed in the case of large amplitude Type-l ELMs and in the case of Type-Ill ELMs. Inthe
|atter case, in particular, the high repetition frequency in the occurrence of EL M sallowsthe computation
of the toroidal mode number over large ensembles of ELMs, thus minimizing those effects related to
the averaging over short time windows.

The possible effect on our analysis of phase jumps of 27 in the variation of the mode number can



also be excluded. As shown in figure 4(b), in fact, phase jumps of 2 are measured approaching the
ELM only for non-coherent spectral components, while smooth variationsin the phase are associated
with coherent spectral components, as is the case for the component at 18kHz, which we plot in
figure 4(e).

We have computed the wavelet bispectrum integrating over time windows of decreasing length
from 1 msto 20us and, from this, the associated total bispectrumB,; as[9]:

By = D Byn(@)  with B, = ¥ [B(w,,) 9)

where, for the sake of smplicity, we have written the bispectrum as a function of the frequency.

The summed bispectrumBy . representsthe contribution of nonlinear interactionsat each frequency
o that are due to phase coupling of al those spectral components with frequency o, and w, that
satisfy the resonance condition w, + w, = w. The total bispectrum, B, quantifies the total degree of
nonlinearity in the time window where the bispectrum has been computed. The total bicoherenceis
defined in the same way, with |B(w,, w,)| replaced by bz(wl, w,) in (9). Asdiscussed in [9] the total
bicoherence (and the total bispectrum), calculated over an intermittent time series, give anindication
of times where nonlinear interactions due to large amplitude, coherent events, are largest.

Figure 4(c) showsthetotal bispectrum over plotted on the D, emission for the windows 7, and 7,
The vaue of B, peaks during the phase of fast rise in the D , emission, suggesting the presence of
nonlinear interactions, highly localized in time, during this phase. In the case of theresultsfor 7,, the
value of B, islarger and peaked in ashorter interval intime during the fast riseinthe D .

When integrating over longer time windows, as in the case of T,, nonlinear interactions that are
localized in time, are spread over the longer time window, resulting in alower amplitude of B,,. On
the other hand, the smaller the integration time, the larger the error in the estimate of the bispectrum
and of the bicoherence from equations (5)-(6), due to poor statistics [6].

In order to find the minimum number of samples M necessary to guarantee convergence of the
bispectrum and of the bicoherence, we have proceeded as follows. From the complex wavelet
coefficients W, (s) we construct surrogate seriesin the frequency domain, by retaining the amplitude
and randomizing the phases [11]. The resulting series have the same power spectrum asthe original,
astheamplitude of perturbationsare unaltered, but any phase coupling is destroyed. Wethen calculate
the bispectrum and the bicoherence of the surrogate series and compute the total bispectrum B, and
the total bicoherence b’ from (9). The value of the bispectrum and of the bicoherence associated
with the surrogate series can be regarded as an estimate of the noise introduced in the computation of
B(w,, w,). Only values above this noise level should be retained as an indication of the presence of
phase coupling in the time series. Whenever nonlinearities are present in the signal, the ratio between
B, (and b’,,) calculated from the original series and that calculated from the surrogate series
significantly differ from unity. This ratio neverthel ess depends on the number of samples used for
the computation of B(w,,w,) and we expect that it approaches unity with decreasing M because of
the poor statistics in the computation of the bispectrum.



Conversdly, if nonlinearities are absent, we expect thisratio to be close to unity, although deviations
from this value can be expected for low M, again due to poor statistics.

The results from the original series and from the surrogate series are shown in figure 5(a). We
can seethat theratio of thetotal bicoherenceb’,, of the original seriesto that of the surrogate series
decreases from approximately 8 to 3 when the window length is reduced from 1 ms to 20us.
Comparable values are measured also for the ratio of the total bispectrum of the original seriesto
that of the surrogate series. For times of integration longer than z,, we find that the signal-to-noise
ratio is barely improved by increasing the number of samples (i.e. the length of the window). We
conclude that M = 200 is a sufficiently large number of samples to guarantee convergence of the
bispectrum and, thus, of the bicoherence.

Figure 5(b) showstheratio of B, , measured at the time t, where it is maximum, to that measured
in a4 mstime window before the ELM, when nonlinear interactions are negligible with respect to
those occurring at $t_0$. The corresponding ratio for b?,, computed at the same times, is shown in
figure 5(c).

We can see that, in the case of the bispectrum, the ratio increases with decreasing the number of
samples. Thisisdueto the high localization in time of nonlinear interactions, as discussed above and
also shown by the time evolution of B, , in figure 5(c). Conversely, the ratio of b’,, measured at t, to
that measured far from t, increases with increasing the number of samples. Thisisdueto the fact that
the bicoherence is a biased quantity, with bias 4v3/M and variance 4b2(a)1,a)2)[1-b2 (wy,0,)]/M [12].
Both the bias and the variance decrease with increasi ng the number of samples. Wefind that, whenwe
decrease the time window length down to values comparable to the wave period, the level of total
bicoherence increasesin all time windows and there is no clear separation between the value of b’
measured at t, and that measured away fromiit. For time windows comparableto the wave period, the
value of b’ isnot agood indication of thelocalization in time of nonlinear interactions, asindicated
by the low valuesin figure 5(c), the total bispectrum should be used instead.

Since nonlinear interactions during the ELMsare highly localized in time during thefast risein the
D, emission, which occurs on JET typicaly over time scales comparable to 7,, shorter times of
integration are needed to follow the nonlinear dynamics of ELMs during this phase. Nevertheless, as
shown in figure 5-(c), the number of samples should be taken as large as possible to guarantee
convergence of the bicoherence. In those cases where a large number of ELMs with similar
characteristics are present in the same discharge, such asin the case of Type-11l ELMs, or in the case
of regular Type-l ELMs, the signal-to-noise ratio can be increased calculated higher order spectra
over ensembles of ELMs.

Figures 5(d)-(e) show the bispectrum cal culated by averaging over ., for (d) 600usand () 200us
beforet,. As shown in the figure, before the ELM and during the phase where we have seen that the
amplitude of the precursors increases linearly, the bispectrum is large for interactions involving the
precursor (at w/2r~20kHz) and spectral componentswith thelowest frequencies, namely w/2r<5kHz.
In correspondence of the generation of the second harmonics, for (w,/2x, w,/2m) =(20,20), the



amplitude of the bispectrum is above the background level, athough it is approximately 20% of the
peak value. The phase coupling among low frequency spectral componentsincreases aswe approach
t,, asshown in figure 5(e). In general, the range of frequenciesinvolved in the interactions and their
strength depend on the details of the experiment and on the global spectral features. For example,
when other modes are present in the spectrum, such aswashboard modes|[13], phase coupling between
these modes and the precursor may be measured [8]. We have seen that in high confinement discharges
with Type-I ELMs, in those cases where high levels of MHD turbulence are measured at large
frequencies, yet below thetypical Toroida Alfvén eigenmodesfrequencies, these spectral components
areusually nonlinearly coupled during the ELM crash. A discussion of the different casesencountered
is beyond the scope of this paper and will be the subject of future work.

CONCLUSIONS

By analysing a time series that has been previously treated with Fourier spectral analysis, we
demonstrate that wavelet analysisis suitable to identify spectral features of ELM precursors, such
as the toroidal mode number and the nonlinear evolution. The calculated toroidal numbers are
consistent with the results from the Fourier analysis in the case of precursors with lifetime longer
than a few ms. In the case of precursors with lifetime shorter than 1ms, where Fourier analysis
cannot capture the spectral features, wavel et analysis allows the determination of the toroidal mode
number with good statisticsin time.

Higher order quantities, such as the bispectrum, are sensitive to the number of samples used for
the computation and low signal-to-noise ratio is measured when the integration timeis comparable
to or afew times larger than the wave period.

Provided the plasma conditions do not change and asufficiently large number of ELMsis present
in the discharge, the signal-to-noise ratio can be increased with increasing the number of samples,
for example calculating the higher order spectra over ensembles of ELMs with the same
characteristics.

With reference to the case discussed in section \ref{ sec:results}, for example, an ensemble of 10
ELMs is sufficient to study the nonlinear dynamics over time steps of 20us. Most discharges on
JET where type-I or type-111 ELMs occur, provide sufficiently large number of events to study the
nonlinear dynamics of ELMs with good statistical accuracy. Wavelet analysis represents a step
forward in the study of the spectral features of ELMs and of their precursors, in that the time
evolution of the toroidal mode number and of the nonlinear interactions can be followed over time
scales comparable to the sampling rate of the time series.
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Figure 1: Real (left) and imaginary (right) part of the Morlet wavelet, equation 1), for w,= 2z and s= 1.
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Figure 2: (a) Time trace of the magnetic fluctuations measured in JET Pulse No: 53062, with an outer edge Mirnov
pick-up coil, positioned at R=3.881 m, z= 1.013m, sampled at 1 MHz, during 0.4s of current flat-top discharge with
constant NBI power of 13MW. (b) Time trace of D,, emission, measured in the outer divertor and sampled at 10kHz.
(c) Excerpt of magnetic perturbations, with zoom on the first ELM precursor. (d) Wavel et coefficients in the range of
frequencies[2,10]kHz. (e) Same as (d), but in range of frequencies [18,20] kHz
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Toroidal mode number (color coded) measured in a window centred on the first and on the second ELM. Dark blue
corresponds to a rescaled power spectral amplitude below 20 in the left figure.
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Figure 4: (a) Timetrace of the magnetic perturbations during thefirst ELM, also shown in figure 2(c). (b) Phase shift
between two edge Mirnov pickup coils, positioned at R= 3.881m, z= 1.01m above the midplane, and toroidally
separated by A¢p= 10.17 degrees. Thetwo curvesrefer to the phase shift measured at 18 kHz (black line) and at 20kHz
(redline). (c) Timetrace of the D , emission measured in the divertor and total bispectrum B, calculated averaging
over 20us and 200us. (d) Amplltude of the precursor, calculated averaging over 7, = 200us (diamonds) and over
7,=20us (dots). () Same as (d), but for the frequency. The vertical barsindicate the width of the peak, resulting from
a Gaussian fit of the peak. (f) Same as (d) but for the toroidal mode number.

10 22.0951s (10")  22.0957s (10%)
o
. o A , @) fas| , @
5*. ] E / 20 /
g S / -/ 6
[] 3 1.5
@ | S 20 . L/ 4
0; doo3 1.0 o)
8000 (b) -/ o5 [ S 5
6000/ Vilkc VUl 0 \
0 50 100 0 50 100
4000/ .
/27 (kH2) w /27 (KHZ)
~ 4 ; 5 |
2000 - (10%) (a0
15
‘ f (9)
10 o ]
| 3 40 10
6 = 2
| e 201 5 %
n 8
ZEI u | | (C)‘ 0 o 0 §
0 400 800 0 50 100 0 50 100
M) /25 (kHz) /25 (kHz)

Figure 5: Left: effect of the number of samples on the calculation of higher order spectra. (@) ratio of the total
bicoherence (open squares) and of the total bispectrum (black squares) to the corresponding quantities cal culated
over the surrogate series. (b) ratio of the total bispectrum B,,;, computed at the time t, Where it is maximum to the
value computed in a4 mstime window beforet,,. () sameas (b) but for thetotal bi coherenceb?, ot~ Right-top: Bispectrum
of the magnetic perturbations, calculated over 200 samples, measured approximately 800us (d) and 200us (€) before
the ELM. Right-bottom: Power Spectral Density (PSD) of magnetic perturbations, arbitrary units, averaged over 200
samples, computed 800us (f) and 200us (g) before the ELM.
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