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ABSTRACT

The high confinement regime (H-mode) in tokamaks is accompanied by the occurrence of bursts of

MHD activity at the plasma edge, so-called Edge Localized Modes (ELMs), lasting less than 1ms.

These modes are often preceded by coherent oscillations in the magnetic field, the ELM precursors,

whose mode numbers along the toroidal and the poloidal direction can be measured from the phase

shift between Mirnov pickup coils. When the ELM precursors have a lifetime shorter than a few

ms, their toroidal mode number and their nonlinear evolution just before the ELM crash cannot be

studied reliably with standard techniques based on Fourier analysis, since averaging in time is

implicit in the computation of the Fourier coefficients. The present work demonstrates significant

advantages in studying spectral features of the short-lived ELM precursors by using Morlet wavelets.

It is shown that the wavelet analysis is suitable for the identification of the toroidal mode numbers

of ELM precursors with the shortest lifetime, as well as for studying their nonlinear evolution with

a time resolution comparable to the acquisition rate of the Mirnov coils.

1. INTRODUCTION

The high confinement regime (H-mode) in tokamaks is often accompanied by bursts of MHD

activity, associated with an increase in the Dα emission at the edge [1]. These instabilities, occurring

at the edge and therefore known as Edge Localized Modes (ELMs) are the cause of particle and

energy losses that may result in a reduction of the energy confinement time as large as 20% [1].

ELMs are commonly classified on the basis of the occurrence of magnetic precursors and on the

dependence of the ELM repetition frequency on the energy flux through the separatrix [1-4].

According to these criteria one can identify two main classes of ELMs, Type-I and Type-III,

depending on whether the repetition frequency increases or decreases with the energy flux.

On the JET tokamak, both Type-I and Type-III ELMs are MHD events lasting between 0.3 and

1 ms; magnetic precursors of Type-I ELMs have been detected lasting from a few ms to hundredths

of ms. These precursors were studied by [8], although precursors with lifetime shorter than a few

milliseconds were excluded from that analysis due to the intrinsic difficulty of assessing them with

standard Fourier techniques. This work focuses on the study of the spectral properties of these

short-lived perturbations by using Morlet wavelets, i.e. sinusoidal modulated functions, instead of

Fourier eigenmodes, for the first time.

The method and the basic concepts of wavelet analysis are discussed in section 2, the results and

potential pitfalls are presented in section 3, while future applications of the wavelet analysis for

studying the nonlinear evolution of ELMs are discussed in section 4.

2. METHOD

Fourier analysis has traditionally been the starting point to analyse stationary fluctuations in a

plasma, under the hypothesis that the signal can be regarded as a linear superposition of  independent,

monochromatic, sinusoidal waves. If the fluctuations are not stationary, the variations of the wave
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field amplitude and phase over short time scales are not captured in the Fourier spectrum due to time

averaging implicit in the Fourier transform. In this case a representation of the plasma wave fields in

terms of wavelets is more appropriate. We first briefly review relevant concepts in wavelet analysis,

and refer the reader to [7] for a complete and extensive discussion of wavelets and time-frequency

analysis. The Morlet wavelet is the natural choice when the focus of the analysis is spectral features,

as it essentially represents Fourier eigenmodes whose energy is localized in time. It is defined as:

(1)

and its real and imaginary part are illustrated in figure 1 in the case of σ = 1 and ω0 = 2π. A family

of wavelets can be constructed from (1) by scaling and shifting ψ(t):

(2)

where the factor s-1/2 has been introduced for normalization and we have set σ = 1 and ω0 = 2π.

There is thus a clear point of contact with Fourier eigenmodes, of frequency ω, that are time localized

over s.

The Continuous Wavelet Transform (CWT) of a discrete time series xn, sampled at the rate δt, is

defined as the convolution product of xn with ψsτ(t):

(3)

Apart from normalization factors, the only difference between (3) and the windowed Fourier

transform is that the windowing is intrinsic in the wavelet transform and it depends on scale.

Equation (3) is computationally highly inefficient, since it involves N2 operations. Using the property

that the Fourier transform of a convolution product is the product of the Fourier transforms, algorithms

based on the Fast Fourier Transform can be used to calculate the CWT, with considerable efficiency

gain. The wavelet transform is computed at scales s = s0 a
j, where s0 is the minimum available scale

and, for each value of j, a = 2
-ν provides a refining of scales in each octave (2j,2j+1] [7].

Spectral quantities, such as the linear dispersion relation, are defined for wavelets in the same

way as for Fourier transforms. From two time series measured at toroidal locations φ1 and φ2

respectively, the toroidal mode number at each time tm = mδt can be extracted from the relative

phase shift as:

(4)

where Wm*(φ1,s)Wm(φ2,s) is the cross-power spectrum between the two signals. For the sake of

simplicity, the explicit dependence on the position φ1,2 will be omitted in the rest of the paper.
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In the same manner as with Fourier transforms, wavelets can be used to calculate higher order

spectra, such as the bispectrum [6]. Wavelets can however quantify the degree of nonlinear coupling

over time scales shorter than those accessible by Fourier analysis. The wavelet bispectrum between

t1 = m1δt and t2 = (m1 + M)δt is defined as:

(5)

where the scales s1, s2 and s3 are such that the associated frequencies satisfy the resonance condition

ω1 + ω2 = ω3. If nonlinear interactions are present in a time series, both their frequencies and their

phases are correlated according to the resonance condition, so that the value of |B(s1,s2)| converges

to a finite value as M becomes large. Equation (5) is valid provided that the degree of nonlinearity

is weak and that fluctuating quantities can therefore be represented as (time localized) sinusoidal

waves [5-6].

The value of M should be taken as large as possible to guarantee convergence of the bispectrum

[6]. Typically the average in (5) should be calculated over time windows much longer than the

wave period, although the number of required samples may be reduced if the signal-to-noise ratio

is high and/or if only a few coupled modes are present in the spectrum. The suitability of wavelets

to calculate higher order spectra in order to isolate short-lived, coherent, nonlinear structures in

intermittent plasma time series was discussed by van Milligen et al [9].

An estimate of the bispectrum, independent of the power spectrum of the interacting components,

is provided by the bicoherence [5]:

(6)

Importantly, although algorithms based on the Fast Fourier Transform are more computationally

efficient methods to calculate the CWT, equation (3) is more suitable for the computation of higher

order spectra. When the time series is decomposed in terms of diadic bases, in fact, the logarithmic

scales log2(s) form a uniform grid with separation ν-1. On the other hand, due to the inverse

proportionality between ω and s, the resulting frequency grid is not uniform. This reflects in the

inability of satisfying the resonance condition among frequencies.

Let ω1, ω2 and ω3 be three spectral components that satisfy ω1 + ω2 = ω3. Using the relation

between frequency and scale and after some manipulation, the resonance condition among

frequencies corresponds to the following relation among scales:

(7)

Because of the last term on the right hand side, the term on the left hand side is not necessarily

associated to any point in the computed grid of scales and thus ω3 does not match 2π/s. When
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calculating higher order spectra it is therefore preferable to fix the frequency grid first, then compute

the corresponding scales and use equation (3) to compute the CWT.

3. RESULTS

Precursors to the ELMs are observed on JET as magnetic perturbations in the signal measured by a set

of calibrated edge Mirnov pickup coils [10]. We will now use the concepts introduced in the previous

section to study the evolution in time of the spectral features of ELM precursors, such as the amplitude,

the frequency and the toroidal mode number. We will use for the analysis the magnetic perturbations

measured by two Mirnov coils, positioned at the same major radius, R = 3.881m, at z1 = 1.013m and z2

= 1.005m above the midplane, and with orientation θ = 108.9 degrees between the coil axis and the

major radius. The two coils are separated by ∆φ = 10.17 degrees along the toroidal direction, allowing

the measurement of toroidal mode numbers up to |n| = 17. This subset of coils is sampled at 1 MHz,

thus providing good resolution in time for the wavelet analysis.

We have chosen a typical H-mode confinement discharge (Pulse No: 53062), in which type-I

ELMs are detected. Figure 2 shows the time trace of magnetic perturbations in the time window

between 22.0s and 22.4s. This discharge was analysed by [8] in the framework of an extensive

study of Type-I ELM precursors. The analysis of [8] was restricted to precursors with the longest

lifetimes, typically a few tens of milliseconds, the choice being dictated by the difficulty of discerning

in the Fourier spectrogram precursors with lifetime shorter than a few ms. The time dependent

Fourier spectra of the amplitude of magnetic perturbations and the associated toroidal mode number

for this discharge are shown in figures 2-3 of [8] and therefore they are not reported here.

In figure 2(a)-(b) three ELMs can be seen to occur in the time window of interest; they are

associated with large spikes in the magnetic perturbations that correlate with the peaks detected in

the time traces of the Dα emission. In figure 3 we can see that significant spectral energy is associated

with the ELMs and with coherent modes in the power spectrum, such as the ELM precursors at

frequency ~20kHz and the sawtooth precursor at frequency ~15kHz. The exact correspondence

between frequencies and scales has been verified by computing the CWT of a cosine function with

given frequency.

For graphical representation purposes, for each scale s the wavelet coefficients in figure 3 have

been rescaled with respect to the difference between the maximum and the minimum value measured

at that scale:

(8)

The final values of |W’m(s)| are bounded between 0 and 256.

Oscillations at constant frequency below 1kHz, that is at log2(s)>12, are detected in the wavelet
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centred on the ELMs. This feature, which is more evident for the second ELM in figure (3), is

observed also in other discharges and it appears to occur for large amplitude type-I ELMs, namely

those associated with higher Dα emission.

Figure 3 also shows a plot of the toroidal mode number calculated from the phase shift between

the two Mirnov coils, using equation (4). From the figure we can see the following. First, for the

precursor to the second ELM, which has longer lifetime, shown in figure 3(c), the toroidal mode

number calculated with the wavelet analysis is n~8 and consistent with the results from Fourier

analysis discussed in [8]. For the precursor to the first ELM, which has much shorter lifetime,

shown in figure 3(b), the toroidal mode number is also n~8, as we would expect, since this is the

value found for the longer lived precursor in figure 3(c). Second, both precursors are stopped by the

ELMs and the toroidal mode number seen at the same frequency of the precursor becomes negative

and large in absolute value. Large phase jumps are measured during the ELMs that may affect the

final results, as it will be discussed below. These time localized variations in the value of n cannot

be measured with standard Fourier analysis and constitute a significant step forward that has emerged

from the wavelet analysis in the study of the spectral properties of ELMs and of their precursors.

Third, the toroidal mode numbers measured during the ELMs and at lower frequencies, are low in

absolute value, namely n = 1-2.

An excerpt of the measured magnetic perturbations in a 3ms time window centred on the time at

which the first ELM occurs is shown in figure 2(c). The magnetic precursor can be seen in the time

trace from the Mirnov coil, it appears approximately 2ms before the ELM and it is not detected

after the ELM. The slow asymmetric oscillation in the magnetic signal during the ELM can be

captured by the Morlet wavelet coefficients in the frequency range of [2,10] kHz, as shown in

figure 2(d). Nevertheless, as also inferred from the time trace of magnetic perturbations and from

the wavelet scalogram, components at low frequency and (at relatively smaller amplitude) at high

frequency, both contribute to the total perturbations measured during the ELM.

The amplitude of the spectral components in the frequency range of [18,20] kHz, shown in figure

2(e), increases linearly during 1.5ms and then it stays constant until the ELM occurs; a further

increase in the amplitude is measured in this frequency range during the ELM. A similar amplitude

saturation, occurring 1ms after the appearance of the precursor, was observed (using Fourier

techniques) on JET for precursors with longer lifetime [8].

To isolate the precursor, and to follow the time evolution of the associated toroidal mode number,

we now average the cross-power spectrum over time windows of width decreasing from 1ms to

10µs. We fit then the wavelet cross-power spectrum in each window with a recursive fitting procedure,

assuming that the peaks have a Gaussian envelope, according to the shape of the Morlet wavelet.

The amplitude, the central frequency and the spectral widthof each peak are given by the parameters

of the Gaussian curve. The fitting procedure allows one to isolate peaks with amplitude significantly

larger than a selected fraction of the background level. The average over windows with progressively

decreasing width is a check for convergence of the calculated linear quantities, namely the amplitude
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and the toroidal mode number.

We will show results for averaging over two time windows, τ1 = 20µs, and τ2 = 200µs, corresponding

respectively to 20 and 200 samples. The shorter interval τ1 is at the limit of time resolution available,

since it is shorter than the wave period of the precursor, that is 50µs. Averaging over τ1 introduces an

apparent time oscillation in the amplitude, as shown in figure 4-(d), which is not present for averaging

over the longer time window τ2. These results can be used as a check on our results observed for

window τ1.

Figure 4 shows the time evolution of the amplitude, frequency and toroidal mode number of the

first ELM precursor, starting from the time when it is detected as a coherent mode, until the ELM

crash. The amplitude of the precursor increases roughly linearly (rather than exponentially) in time,

although with a larger growth rate during the first 1.5ms. If we use an average over time windows

shorter than those associated with the wave period, as in the case of results for τ1, the resultant amplitude

oscillates; this artifact is a result of the spectral analysis. Generally speaking, time windows a few

times longer than the wave period should be taken when calculating average linear spectral quantities,

such as the amplitude and the phase shift.

Oscillations are also seen in the time evolution of the frequency of the precursor, which are correlated

in time with the time variations of the amplitude, suggesting that this is also an effect of the averaging.

These oscillations are nevertheless smaller than the spectral width of the peak; the latter is shown in

figure 4(e) as vertical bars in the results for τ2. The frequency of the precursor decreases from 20kHz

to 18kHz before the ELM, although the total variation is comparable to the width of the peak and thus

it is not significant.

The toroidal mode number is measured from the phase shift in a frequency range centred on the

frequency of the mode and of width equal to the spectral width of the mode. The error in the

measurement of the phase is given by the maximum dispersion associated with the average value in

each time window.

Variations of the toroidal mode number before the ELM are outside the range of the errors introduced

from the measurement of the phase, although we cannot exclude that the small oscillations measured

in the case of averaging over τ1 are due to the choice of the window. Importantly, the increase in the

toroidal number measured at approximately 22.945 s is also seen in the results for the window τ2 and

in the time evolution of the phase shift between the filtered signals, shown in figure 4(b); it can be

therefore interpreted as a real feature in the data.

A large, smooth variation in the toroidal mode number is measured approximately 150µs before

the ELM, with the value of $n$ decreasing from approximately 9 to 4. A similar variation has also

been observed in the case of large amplitude Type-I ELMs and in the case of Type-III ELMs. In the

latter case, in particular, the high repetition frequency in the occurrence of ELMs allows the computation

of the toroidal mode number over large ensembles of ELMs, thus minimizing those effects related to

the averaging over short time windows.

The possible effect on our analysis of phase jumps of 2π in the variation of the mode number can
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also be excluded. As shown in figure 4(b), in fact, phase jumps of 2π are measured approaching the

ELM only for non-coherent spectral components, while smooth variations in the phase are associated

with coherent spectral components, as is the case for the component at 18kHz, which we plot in

figure 4(e).

We have computed the wavelet bispectrum integrating over time windows of decreasing length

from 1 ms to 20µs and, from this, the associated total bispectrum Btot as [9]:

with (9)

where, for the sake of simplicity, we have written the bispectrum as a function of the frequency.

The summed bispectrum Bsum represents the contribution of nonlinear interactions at each frequency

ω that are due to phase coupling of all those spectral components with frequency ω1 and ω2 that

satisfy the resonance condition ω1 + ω2 = ω. The total bispectrum, Btot quantifies the total degree of

nonlinearity in the time window where the bispectrum has been computed. The total bicoherence is

defined in the same way, with |B(ω1, ω2)| replaced by b2(ω1, ω2) in (9). As discussed in [9] the total

bicoherence (and the total bispectrum), calculated over an intermittent time series, give an indication

of times where nonlinear interactions due to large amplitude, coherent events, are largest.

Figure 4(c) shows the total bispectrum over plotted on the Dα emission for the windows τ1 and τ2.

The value of Btot peaks during the phase of fast rise in the Dα emission, suggesting the presence of

nonlinear interactions, highly localized in time, during this phase. In the case of the results for τ1, the

value of Btot is larger and peaked in a shorter interval in time during the fast rise in the Dα.

When integrating over longer time windows, as in the case of τ2, nonlinear interactions that are

localized in time, are spread over the longer time window, resulting in a lower amplitude of Btot. On

the other hand, the smaller the integration time, the larger the error in the estimate of the bispectrum

and of the bicoherence from equations (5)-(6), due to poor statistics [6].

In order to find the minimum number of samples M necessary to guarantee convergence of the

bispectrum and of the bicoherence, we have proceeded as follows. From the complex wavelet

coefficients Wm(s) we construct surrogate series in the frequency domain, by retaining the amplitude

and randomizing the phases [11]. The resulting series have the same power spectrum as the original,

as the amplitude of perturbations are unaltered, but any phase coupling is destroyed. We then calculate

the bispectrum and the bicoherence of the surrogate series and compute the total bispectrum Btot and

the total bicoherence b2
tot from (9). The value of the bispectrum and of the bicoherence associated

with the surrogate series can be regarded as an estimate of the noise introduced in the computation of

B(ω1, ω2). Only values above this noise level should be retained as an indication of the presence of

phase coupling in the time series. Whenever nonlinearities are present in the signal, the ratio between

Btot (and b2
tot) calculated from the original series and that calculated from the surrogate series

significantly differ from unity. This ratio nevertheless depends on the number of samples used for

the computation of B(ω1,ω2) and we expect that it approaches unity with decreasing M because of

the poor statistics in the computation of the bispectrum.

B Btot sum=∑ ( )ω
ω

B Bsum = ∑ ( , )
,

ω ω
ω ω

1 2

1 2
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Conversely, if nonlinearities are absent, we expect this ratio to be close to unity, although deviations

from this value can be expected for low M, again due to poor statistics.

The results from the original series and from the surrogate series are shown in figure 5(a). We

can see that the ratio of the total bicoherence b2
tot of the original series to that of the surrogate series

decreases from approximately 8 to 3 when the window length is reduced from 1 ms to 20µs.

Comparable values are measured also for the ratio of the total bispectrum of the original series to

that of the surrogate series. For times of integration longer than τ2, we find that the signal-to-noise

ratio is barely improved by increasing the number of samples (i.e. the length of the window). We

conclude that M = 200 is a sufficiently large number of samples to guarantee convergence of the

bispectrum and, thus, of the bicoherence.

Figure 5(b) shows the ratio of Btot measured at the time t0 where it is maximum, to that measured

in a 4 ms time window before the ELM, when nonlinear interactions are negligible with respect to

those occurring at $t_0$. The corresponding ratio for b2
tot, computed at the same times, is shown in

figure 5(c).

We can see that, in the case of the bispectrum, the ratio increases with decreasing the number of

samples. This is due to the high localization in time of nonlinear interactions, as discussed above and

also shown by the time evolution of Btot in figure 5(c). Conversely, the ratio of b2
tot measured at t0 to

that measured far from t0 increases with increasing the number of samples. This is due to the fact that

the bicoherence is a biased quantity, with bias 4√3/M and variance 4b2(ω1,ω2)[1-b2 (ω1,ω2)]/M [12].

Both the bias and the variance decrease with increasing the number of samples. We find that, when we

decrease the time window length down to values comparable to the wave period, the level of total

bicoherence increases in all time windows and there is no clear separation between the value of b2
tot

measured at t0 and that measured away from it. For time windows comparable to the wave period, the

value of b2
tot is not a good indication of the localization in time of nonlinear interactions, as indicated

by the low values in figure 5(c), the total bispectrum should be used instead.

Since nonlinear interactions during the ELMs are highly localized in time during the fast rise in the

Dα emission, which occurs on JET typically over time scales comparable to τ2, shorter times of

integration are needed to follow the nonlinear dynamics of ELMs during this phase. Nevertheless, as

shown in figure 5-(c), the number of samples should be taken as large as possible to guarantee

convergence of the bicoherence. In those cases where a large number of ELMs with similar

characteristics are present in the same discharge, such as in the case of Type-III ELMs, or in the case

of regular Type-I ELMs, the signal-to-noise ratio can be increased calculated higher order spectra

over ensembles of ELMs.

Figures 5(d)-(e) show the bispectrum calculated by averaging over τ2, for (d) 600µs and (e) 200µs

before t0. As shown in the figure, before the ELM and during the phase where we have seen that the

amplitude of the precursors increases linearly, the bispectrum is large for interactions involving the

precursor (at ω/2π ~ 20kHz) and spectral components with the lowest frequencies, namely ω/2π <5kHz.

In correspondence of the generation of the second harmonics, for (ω1 / 2π, ω2 / 2π) = (20,20), the
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amplitude of the bispectrum is above the background level, although it is approximately 20% of the

peak value. The phase coupling among low frequency spectral components increases as we approach

t0, as shown in figure 5(e). In general, the range of frequencies involved in the interactions and their

strength depend on the details of the experiment and on the global spectral features. For example,

when other modes are present in the spectrum, such as washboard modes [13], phase coupling between

these modes and the precursor may be measured [8]. We have seen that in high confinement discharges

with Type-I ELMs, in those cases where high levels of MHD turbulence are measured at large

frequencies, yet below the typical Toroidal Alfvén eigenmodes frequencies, these spectral components

are usually nonlinearly coupled during the ELM crash. A discussion of the different cases encountered

is beyond the scope of this paper and will be the subject of future work.

CONCLUSIONS

By analysing a time series that has been previously treated with Fourier spectral analysis, we

demonstrate that wavelet analysis is suitable to identify spectral features of ELM precursors, such

as the toroidal mode number and the nonlinear evolution. The calculated toroidal numbers are

consistent with the results from the Fourier analysis in the case of precursors with lifetime longer

than a few ms. In the case of precursors with lifetime shorter than 1ms, where Fourier analysis

cannot capture the spectral features, wavelet analysis allows the determination of the toroidal mode

number with good statistics in time.

Higher order quantities, such as the bispectrum, are sensitive to the number of samples used for

the computation and low signal-to-noise ratio is measured when the integration time is comparable

to or a few times larger than the wave period.

Provided the plasma conditions do not change and a sufficiently large number of ELMs is present

in the discharge, the signal-to-noise ratio can be increased with increasing the number of samples,

for example calculating the higher order spectra over ensembles of ELMs with the same

characteristics.

With reference to the case discussed in section \ref{sec:results}, for example, an ensemble of 10

ELMs is sufficient to study the nonlinear dynamics over time steps of 20µs. Most discharges on

JET where type-I or type-III ELMs occur, provide sufficiently large number of events to study the

nonlinear dynamics of ELMs with good statistical accuracy. Wavelet analysis represents a step

forward in the study of the spectral features of ELMs and of their precursors, in that the time

evolution of the toroidal mode number and of the nonlinear interactions can be followed over time

scales comparable to the sampling rate of the time series.
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Figure 1: Real (left) and imaginary (right) part of the Morlet wavelet, equation 1), for ω0 = 2π and  s = 1.
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Figure 2: (a) Time trace of the magnetic fluctuations measured in JET Pulse No: 53062, with an outer edge Mirnov
pick-up coil, positioned at R = 3.881 m, z = 1.013m, sampled at 1 MHz, during 0.4s of current flat-top discharge with
constant NBI power of 13MW. (b) Time trace of Dα  emission, measured in the outer divertor and sampled at 10kHz.
(c) Excerpt of magnetic perturbations, with zoom on the first ELM precursor. (d) Wavelet coefficients in the range of
frequencies [2,10]kHz. (e) Same as (d), but in range of frequencies [18,20] kHz

Figure 3: (a) Wavelet scalogram. For each scale, the wavelet coefficients have been rescaled according to equation
7. Lines indicate the ELM precursors at frequency 20kHz and the sawtooth precursor at frequency 15kHz. (b)-(c)
Toroidal mode number (color coded) measured in a window centred on the first and on the second ELM. Dark blue
corresponds to a rescaled power spectral amplitude below 20 in the left figure.
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Figure 5: Left: effect of the number of samples on the calculation of higher order spectra. (a) ratio of the total
bicoherence (open squares) and of the total bispectrum (black squares) to the corresponding quantities calculated
over the surrogate series. (b) ratio of the total bispectrum Btot, computed at the time t0 where it is maximum to the
value computed in a 4 ms time window before t0. (c) same as (b) but for the total bicoherence b2

tot. Right-top: Bispectrum
of the magnetic perturbations, calculated over 200 samples, measured approximately 800µs (d) and 200µs (e) before
the ELM. Right-bottom: Power Spectral Density (PSD) of magnetic perturbations, arbitrary units, averaged over 200
samples, computed 800µs (f) and 200µs (g) before the ELM.

Figure 4: (a) Time trace of the magnetic perturbations during the first ELM, also shown in figure 2(c). (b) Phase shift
between two edge Mirnov pickup coils, positioned at R = 3.881m, z = 1.01m above the midplane, and toroidally
separated by ∆φ = 10.17 degrees. The two curves refer to the phase shift measured at 18 kHz (black line) and at 20kHz
(red line). (c) Time trace of the Dα emission measured in the divertor and total bispectrum Btot, calculated averaging
over 20µs and 200µs. (d) Amplitude of the precursor, calculated averaging over τ2 = 200µs (diamonds) and over
τ1=20µs (dots). (e) Same as (d), but for the frequency. The vertical bars indicate the width of the peak, resulting from
a Gaussian fit of the peak. (f) Same as (d) but for the toroidal mode number.
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