Y. Andrew, N.C. Hawkes, T. Biewer, K. Crombe, D. Keeling, E. de la Luna, C. Giroud, A. Korotkov, A. Meigs, A. Murari, I. Nunes, R. Sartori, T. Tala and JET EFDA contributors

Evolution of the Radial Electric Field in a JET H-mode Plasma

> "This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

[^0] Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

Evolution of the Radial Electric Field in a JET H-mode Plasma

Y. Andrew ${ }^{1}$, N.C. Hawkes ${ }^{1}$, T. Biewer ${ }^{2}$, K. Crombe ${ }^{3}$, D. Keeling ${ }^{1}$, E. de la Luna ${ }^{4}$, C. Giroud ${ }^{1}$, A. Korotkov ${ }^{1}$, A. Meigs ${ }^{1}$, A. Murari ${ }^{5}$, I. Nunes ${ }^{6}$, R. Sartori ${ }^{7}$, T. Tala ${ }^{8}$ and JET EFDA contributors*

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK
${ }^{1}$ EURATOM-UKAEA Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK
${ }^{2}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{3}$ Association EURATOM-Belgian State, Department of Applied Physics Ghent University, B-9000 Ghent, Belgium
${ }^{4}$ Asociasion EURATOM-CIEMAT para Fusion, CIEMAT, Madrid, Spain
${ }^{5}$ Consorzio RFX, ENEA-Euratom Association, Padua, Italy
${ }^{6}$ AssociaçãoEURATOM/IST,CentrodeFusãoNuclear,Lisbon, Portugal
${ }^{7}$ EFDA-CSU, Boltzmannstrasse 2, 85748 Garching, Germany
${ }^{8}$ Association EURATOM-Tekes, VTT, P.O. Box 1000, FIN-02044 VTT, Finland

* See annex of M.L. Watkins et al, "Overview of JET Results",
(Proc. $21{ }^{\text {st }}$ IAEA Fusion Energy Conference, Chengdu, China (2006)).

Abstract

. Results are presented from recent measurements of the toroidal and poloidal rotation velocity in the pedestal region of an evolving JET H-mode plasma in which several transitions occur. These cover a range of plasma confinement regimes including L-mode, the L-H transition, ELM-free H-mode, ELMy H-mode and the H-L transition. Detailed edge plasma measurements show no spin-up of the poloidal rotation velocity prior to the L-H transition. However, directly following the transition to H-mode, the poloidal rotation velocity just inside the last closed flux surface increases to a maximum of $8(\pm 2) \mathrm{km} \mathrm{s}^{-1}$. As the H -mode continues to evolve, the largest values of edge toroidal and poloidal rotation velocity gradients are clearly associated with the ELM-free H-mode. Following the ELMfree phase, large, 1.4MJ ELMs are observed to erode the pedestal ion and electron temperature profiles along with the edge toroidal rotation gradient but have little impact on the overall poloidal rotation velocity shear. Maximum values of $\pm 9 \mathrm{~km} \mathrm{~s}^{-1}$ are observed in the poloidal rotation velocity profile and have a significant effect on the temporal development of the edge plasma radial electric field.

1. INTRODUCTION

The H -mode is the current operation scenario envisaged for the next step magnetic fusion device, ITER [1]. Despite large progress in the development of the H-mode regime on tokamaks worldwide, anunderstanding of the triggering and sustainment mechanisms for the L-H transition, ELMy phases and the H-L transitions remains elusive. A great deal of the theoretical and experimental research has concentrated on the role of the radial electric field, E_{r}, at the L-H transition, for example see [15] and references therein. Large gradients in E_{r} in the edge plasma are thought to lead to shear in the $\mathbf{E} \times \mathbf{B}$ flow where transport due to plasma turbulence is substantially reduced at the formation of the transport barrier. Experimental studies have shown that gradients in E_{r} persist throughout H modes and are a general experimental feature of plasmas with an edge transport barrier. Results are presented in this paper from recent work to focus on this particular process, by considering the evolution of the plasma toroidal and poloidal rotation velocities and edge E_{r} over the changing phases of an H mode plasma on JET.

Earlier experimental work in this area include very highly resolved measurements of Er at the plasma edge for a wide range of H-mode discharges on DIII-D [2]. A welllike structure was observed in E_{r} at the L-H transition in all plasmas. All the measured Er wells were negative with nearly the same spatial width, but differences in depth and under all conditions the shear in the Er profile persisted throughout the H -mode. The greatest contribution to E_{r} came from changes in impurity poloidal rotation velocity, v_{θ}, while the influence of the diamagnetic term only became appreciable tens of milliseconds into the H -mode as the ion pressure increased. The sign of carbon ion v was also observed to be consistently in the electron diamagnetic direction. More recent DIII-D measurements of v_{θ} profiles have been reported in [4] for Quiescent H-modes. Charge Exchange Recombination Spectroscopy (CXRS) on carbon and neon impurity species, was used to measure the E_{r} profile across the core and edge plasma. Following the application of velocity corrections
due to the energy dependent cross-sections, the experimental poloidal rotation profiles for both impurity species were found to be significantly greater than the neoclassical predictions. Recent enhancements to the JET edge plasma CXRS diagnostic have returned it to a balanced up-down symmetrical view of the neutral beam injection [6-8]. These changes together with new detectors allow accurate measurements of the v_{ϕ}, toroidal rotation velocity, v_{r}, ion temperature, T_{i}, and impurity density, n, profiles to be measured with fine spatial resolution across the pedestal region. This letter begins with a description of the experiment followed by the results from the CXRS measurements over an evolving H-mode plasma. The impact of the experimental data on the edge E_{r} profiles are also considered. The conclusions from this study are presented in the final section.

2. EXPERIMENT.

The evolution of the edge plasma rotation and Er is examined for Pulse No: 69937, a single null configuration with the ion ∇B drift towards the X -point, $\mathrm{I}_{\mathrm{p}} / \mathrm{B}_{\mathrm{t}}=2.5 \mathrm{MA} / 2.7 \mathrm{~T}$ and $\mathrm{q}_{95}=3.3$. This plasma had relatively high triangularity with $\delta=0.36$ and a divertor configuration such that the inner strikepoint remained on the inner vertical target, while the outer strikepoint location was on the outer horizontal target to accommodate the high lower triangularity. The various H-mode transitions were accessed by slowly ramping the neutral beam power up and then back down at a rate of $1 \mathrm{MW} \mathrm{s}{ }^{-1}$, as shown in figure 1. A constant level of 1 MW of Ion Cyclotron Resonance Heating (ICRH) power was applied throughout the beam heating phase. The L-mode plasma ne was controlled using active gas feedback on the deuterium fuelling, also shown in figure 1 , which led to variation of the level of gas puffing throughout the shot.

According to the force balance equation, Er can be written as:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{r}}=\nabla \mathrm{P} / \mathrm{neZ}+\mathrm{v}_{\phi} \mathrm{B}_{\theta}-\mathrm{v}_{\theta} \mathrm{B}_{\phi}, \tag{1}
\end{equation*}
$$

where P is the ion pressure, Z is the ion charge number, e is the electron charge, n is the ion density, v_{ϕ} and v_{θ} are the toroidal and poloidal velocities respectively and B_{ϕ} and B_{θ} are the toroidal and poloidal magnetic fields respectively. Equation () is valid for fuel and impurity ion species individually and in this paper all measurements were made with C^{6+} ions. It should be noted that the values and directions of v_{ϕ} and v_{θ} for different plasma ions can vary significantly from one another [2-5]. However, E_{r} and the $\mathrm{E} \times \mathrm{B}$ velocity shear, apply to all plasma species.

The edge plasma viewing CXRS system on JET has views along fourteen radial channels locations ranging from mid-plane radius of, $R_{\text {mid }}=3.65-3.85 \mathrm{~m}(\rho \cong 0.65-1.2)$ with spatial resolution ranging from 1.2 to 2.3 cm and temporal resolution of 50 ms . The balanced viewing geometry allows the measurements of v_{ϕ} and v_{θ} to be made self-consistently from line of sight velocities that have both toroidal and poloidal components. Further details on the diagnostic and its measurements can be found in [6].

The electron temperature, Te , has been measured witha multichannel Electron Cyclotron Emission (ECE) radiometer with a time resolution of 1 ms . The electron temperature at the top of the pedestal
has been identified by the discontinuity in the gradient across the pedestal as defined in [9] and as used in previous JET studies [10-12]. The T_{e} at the pedestal top at the L-H transition is obtained by applying the pedestal position identified at the first clear H -mode T_{e} pedestal, to the T_{e} profile at the time of the transition. The line integrated edge n_{e} is measured with an interferometer along a single chord at $\mathrm{R}_{\text {mid }}=3.74 \mathrm{~m}$ for this shot. The line average edge $\overline{\mathrm{n}}_{\mathrm{e}}$ has been calculated by dividing the measured line integrated ne by the chord length in the plasma.

3. RESULTS.

The L-H transition in this shot occurs at $\mathrm{t}=17.7 \mathrm{~s}$ and is characterised by the start of very small, irregular ELMs and increased values of plasma $\overline{\mathrm{n}}_{\mathrm{e}}$, stored magnetic energy, $\mathrm{W}_{\text {dia }}$ and confinement factor, H_{98}, indicated by the first vertical line in figures 1 and 2 . The threshold power for access to the H -mode in this plasma was $\mathrm{P}_{\mathrm{th}}=6.8 \mathrm{MW}$ at an edge density of $\overline{\mathrm{n}}_{\mathrm{e}}=1.8 \times 1019 \mathrm{~m}^{-3}$. The confinement factor directly following the L-H transition, was $\mathrm{H}_{98}=0.9$ and it increased to 1.0 by the end of the first short, ELMy phase. The values of $\mathrm{T}_{\mathrm{i}}, \mathrm{v}_{\phi}$ and v_{θ} at radial locations indicated in figure 3 by vertical, colour lines are plotted in their corresponding colours as a function of time in figure 2 and in more detail in figure 4 along with the divertor D signal. The radial profiles of the edge plasma T_{i}, $T_{e}, v_{\phi}, v_{\theta}$ and E_{r} shown in figure 3 for time-slices in the L-mode phase, across the L-H transition and following the initial ELMy phase, all indicated by the corresponding vertical, colour lines in figure 4. During the L-mode phase (black and blue profiles) very little change is observed in the T_{i} and T_{e} profiles, with the pedestal top values of $\left.\mathrm{T}_{\mathrm{i}}=790(\pm\} 22\right) \mathrm{eV}$ and $\left.\mathrm{T}_{\mathrm{e}}=320(\pm\} 32\right) \mathrm{eV}$ for the last L-mode time-slice. A significant increase in the temperature pedestals can be seen in figures $3(\mathrm{a}, \mathrm{b})$ and $4(\mathrm{~b})$ following the transition to H -mode. The edge plasma v_{θ} profile remains close to zero throughout the L-mode phase as shown by the profiles in figure 3 (d) and the corresponding time traces in figures 2(d) and 4(d). However, v_{θ} is observed to spinup along the outermost two channels (green profile) after the L-H transition, to a maximum value of $8(\pm\} 2) \mathrm{km} \mathrm{s}^{-1}$ just within the Last Closed Flux Surface(LCFS). The edge v_{ϕ} profile also remains very flat at around $0 \mathrm{~km} \mathrm{~s}^{-1}$ during the L-mode phase as shown in figures 2(c), 3(c) and 4(c). At the start of the H-mode, however, the innermost channels measure a strong increase in v in the co-current direction (blue time traces), while just within the LCFS the plasma briefly spins up to $12(\pm\} 5) \mathrm{km} \mathrm{s}^{-1}$ in the counter-current direction (black time-trace). Following the transition to the ELM-free phase all channels observe toroidal spin-up in the co-current direction and the development of a gradient in v_{θ}. The corresponding E_{r} profiles, figure 3(e), remain flat and close to $0 \mathrm{kV} \mathrm{m}^{-1}$ across the edge plasma in the L-mode phase. A gradient in E_{r} subsequently develops in the H -mode with a minimum value of $-20 \mathrm{kV} \mathrm{m}^{-1}$ at the LCFS, green profile in figure $3(\mathrm{~d})$ at $\mathrm{t}=17.925 \mathrm{~s}$, with the v_{ϕ} component providing 65% of the value of the minimum in E_{r}.

On entering the ELM-free phase the plasma edge $\overline{\mathrm{n}}_{\mathrm{e}}$ continues to increase at a rate similar to that during the initial ELMy phase and the value of H_{98} increases from 1.0 to a maximum of 1.1 at 18.4 s , as seen in figure 1 . Both the T_{e} and T_{i} pedestals continue to develop during the ELM-free H-
mode, with the top of pedestals reaching maximum values of $\left.\mathrm{T}_{\mathrm{i}}=1500(\pm\} 15\right) \mathrm{eV}$ and $\mathrm{T}_{\mathrm{e}}=870$ $(\pm\} 87) \mathrm{eV}$ (blue profiles), shown in figures 5 and 6 . The v_{θ} profile demonstrates a great deal of evolution during the ELM-free phase, with the development of a sheared region of rotation across the T_{i} pedestal, as shown in figure 5(c). Just within the LCFS, v_{θ} decreases to around $2 \mathrm{~km} \mathrm{~s}^{-1}$ as the T_{i} gradient region moves further in towards the core plasma, as shown by the green and red profiles in figures 5(d) and by the black time-trace in 6(d). Over the same time period the channels closest to the pedestal top measure a gradual increase in v to a maximum of $7.0(\pm\} 1) \mathrm{km} \mathrm{s}^{-1}$ in the electron diamagnetic direction, see figure 5(d) and red trace in figure 6(d). At the same time, the innermost channel shown, see green and blue time traces in figure $6(\mathrm{~d})$, increases to a maximum of $-6(\pm\} 2)$ $\mathrm{km} \mathrm{s}^{-1}$ in the ion diamagnetic direction. As shown by the red profile in figure $5(\mathrm{~d})$ the overall effect is the development of a well-like structure in the v_{θ} profile across the edge plasma. The v_{ϕ} profile continues to develop during the ELM-free phase with spin-up in the co-current direction. While the region close to LCFS demonstrates relatively little increase in v_{ϕ}, the inner channels measure an increase from $-9.6(\pm\} 7) \mathrm{km} \mathrm{s}^{-1}$ to $\left.-88(\pm\} 4\right) \mathrm{km} \mathrm{s}^{-1}$ at 9 cm from the LCFS, as seen in the red and blue profiles of figure 5. The outermost channels on the other hand measure a small increase of $29(\pm\} 3) \mathrm{km} \mathrm{s}^{-1}$ over this time, resulting in steepening of the edge v_{ϕ} gradient. The profiles of E_{r} over this phase become more positive as v_{θ} profile increases across the edge plasma. The result is a steeper E_{r} gradient in the edge region, with the pressure and v_{θ} terms provide similar contributions in the pedestal region.

The first of three very large ELMs occurs at $\mathrm{t}=18.9 \mathrm{~s}$. The $\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{e}}, \mathrm{v}_{\phi}, \mathrm{v}_{\theta}$ and E_{r} profiles across the second ELM are plotted in figure 7 and the corresponding time-traces over all three ELMs are shown in figure 8 , for the corresponding radial locations. The three large ELMs were characterised by decreases in stored diamagnetic energy $1.1 \mathrm{MJ}, 1.4 \mathrm{MJ}$ and 1.2 MJ respectively. Comparing the T_{i} profiles prior to the second large ELM (black and red profiles) with that directly after (blue profile), a decrease in T_{i} is first observed within 4 cm of the LCFS, while the inner region maintains preELM values. In the subsequent time-slice 50 ms later, the inner channels also measure a decrease in T_{i} (green profile) and the overall decrease in T_{i} is from $\left.1373(\pm\} 28\right) \mathrm{eV}$ at 20.075 s to $\left.908(\pm\} 13.2\right) \mathrm{eV}$ at 20.175 s at the pedestal top. As shown in figure 7 (b) the pedestal T_{e} also falls from $\left.860(\pm\} 86\right) \mathrm{eV}$ to a minimum of $200(\pm\} 20) \mathrm{eV}$ following the ELM. These large ELMs also have a significant effect on the v_{ϕ} rotation profile, shown in figure 7(c), with the region 4 cm inside the LCFS the first to demonstrate a decrease in v_{ϕ} by a maximum of $56 \mathrm{~km} \mathrm{~s}^{-1}$, (blue profile). In the following time-slice (green profile) the remainder of the edge v_{ϕ} profile is also reduced with the mitigation of the edge v_{ϕ} gradient. Despite these large changes in the temperature and v_{ϕ} pedestal profiles, v_{θ} is largely unaffected by the ELMs. The most sensitive channels lie within the T_{i} gradient region and can be seen in figure 2(d) and 8(d) to drop by $5(\pm\} 0.5) \mathrm{kms}^{-1}$ in v_{θ} over each large ELM. The corresponding profiles of E_{r} shown in figure 7(e), show a degradation of the pedestal E_{r} gradient following the ELM, compare the red with green profiles. The main source of the reduction in E_{r} is from the 40% decrease of the v_{ϕ} term in the pedestal region following the ELM.

The input power ramp down starts at 20.4s and the third large ELM is directly followed by a phase of high frequency small ELMs, as shown in figures 1, 2 and 10. The H-mode remains in this high frequency ELMy phase until the transition to L-mode at 25.5 s. The power threshold for the H-L transition in this shot was $\mathrm{P}_{\mathrm{HL}}=5.4 \mathrm{MW}$ at an edge $\mathrm{n}_{\mathrm{e}}=1.7 \times 1019 \mathrm{~m}^{-3}$. The confinement factor at the start of the high frequency ELMs falls to a minimum of of $\mathrm{H} 98=0.9$ at 21.4 s and subsequently recovers to a maximum value of $\mathrm{H}_{98}=1.1$ at 22.71 s , as shown in figure 1. The confinement factor remains at this value until 23.62 s after which it gradually falls reaching a value of $\mathrm{H}_{98}=1$ at the H L transition. Comparing figures 7 (red profile) with 9 (black and green profiles) the effect of the decrease in power and the onset of high frequency ELMs is first seen in the outermost, edge plasma, closest to the LCFS as a clear reduction in T_{i}. As the input power decreases further, the ELM frequency increases further, the rest of the T_{i} pedestal is also modified, with the pedestal T_{i} falling from $1310(\pm\} 20) \mathrm{eV}$ to $700(\pm\} 17) \mathrm{eV}$ (blue profile), the T_{i} barrier width also shrinks from 3 cm to 2 cm . A similar change in T_{e} pedestal is observed with a drop in the pedestal T_{i} from 906($\left.\left.\pm\right\} 91\right) \mathrm{eV}$ to $423(\pm\} 42) \mathrm{eV}$. The v_{θ} profiles demonstrate a general erosion of the well-like structure in the profile as the power ramps down, with a reduction of δv_{θ} to a minimum value of $\left.8(\pm\} 3\right) \mathrm{km} \mathrm{s}^{-1}$ at 25.48 s preceding the $\mathrm{H}-\mathrm{L}$ transition. The loss of shear in $\mathrm{v}_{\theta} 300 \mathrm{~ms}$ before the $\mathrm{H}-\mathrm{L}$ transition can also be clearly seen in the time-traces shown in figure 10 . Finally, the edge v_{θ} evolves to a very flat profile at around $0 \mathrm{~km} \mathrm{~s}^{-1}$ by the end of the ELMy H-mode also shown in figures 9 and 10. The degradation of all three terms over the power ramp down contribute approximately equally to the reduction and flattening off of the E_{r} profile towards the end of the ELMy phase as shown by the profiles in figure 9(e).

CONCLUSIONS.

Highly spatially resolved measurements of the edge $T_{i}, T_{e}, v_{\theta}, v_{\phi}$ and E_{r} have been made on a nonstationary JET H-mode plasma. No evidence of spin-up of v prior to the L-H transition has been observed, although a clear increase in v_{θ} is recorded following the transition to H -mode. This localised spin-up precedes the onset of an ELM-free phase in which further development of the T_{i}, T_{e}, v_{ϕ} and v_{θ} profile structure is clearly seen. The very large ELMs that follow the ELM-free phase have a significant impact on the T_{i} and v_{ϕ} profiles, eroding the pedestal gradients. Despite these large changes to the edge plasma, v_{θ} remains relatively unaffected by the ELMs, with the overall profile structure and region of sheared flow surviving the ELM crashes. Finally, the back transition to L-mode has been examined by ramping down the total input power and momentum leading to a phase of high frequency, small ELMs. The pedestal T_{i}, T_{e}, v_{ϕ} and v_{θ} all demonstrate a gradual relaxation of their gradients over this time. The $\mathrm{H}-\mathrm{L}$ transition is preceded by the disappearance of any significant v_{θ} shear. This may be due to the narrowing of pedestal width, leaving a region v_{θ} shear too small to resolve with the current diagnostic spatial resolution. However, the data for this shot indicates that while significant spin-up and development of shear in v_{θ} arises as a consequence of the high confinement phase, it is not required to enter or maintain the H -mode.

ACKNOWLEDGEMENTS

This work was carried out within the framework of the EFDA and was partly funded by the UK EPSRC and by the European Communities under the contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

REFERENCES

[1]. Ikeda K., et al., Nuclear Fusion, 47 (No.6) June 2007.
[2]. Gohil P., Burrell K.H. and Carlstrom T.N., Nuclear Fusion, 38 (1) (1998) p.93-102.
[3]. Testa D., Garzotti L. and Giroud C., Nuclear Fusion, 46 (5) (May 2006) p.562-579.
[4]. Solomon W.M., Burrell K.H., Andre R., Baylor L.R., Budney R., Gohil P., Groebner R.J., Hol- comb C.T., Houllberg W.A. and Wade M.R., Physics of Plasmas, 13 (056116) 2006.
[5]. Kim J. et al., Phys. Rev. Lett., 72 (1994) 2199.
[6]. Andrew Y., Hawkes N.C. and Crombe K., Review Scientific Instruments, 77 (2006) 10E913.
[7]. Hawkes N.C. and Peacock, N., Review of Scientific Instruments, 63 (10) (1992) p.5164p. 5166.
[8]. Hawkes, N.C., Review of Scientific Instruments, 68 (5) (1997) p.2051-p. 2059.
[9]. Breger P., Flewin C., Zastrow K.-D., Davies S.J., Hawkes N.C., Konig R.W.T., Pietrzyk Z.A., Porte L., Summers D.D.R. and Von Hellerman M.G., Plasma Physics and Controlled Fusion, 40 (1998) p.347-59.
[10]. Righi E. et al., Nuclear Fusion, 39 ((1999)) p.309-319.
[11]. Andrew Y., Hawkes N.C., O’Mullane M.G., Sartori R., Beurskens M.N.A., Coffey I., Joffrin E., Loarte A., McDonald D.C., Prentice R., Saibene G., Suttrop W. and Zastrow K.-D., Plasma Physics and Controlled Fusion, 46 (2004) p.337-47.
[12]. Andrew Y., Sartori R., Righi E., de la Luna E., Hacquin S., Howell D., Hawkes N.C., Horton L.D., Huber A., Korotkov A. and O’Mullane M.G., Plasma Physics and Controlled Fusion, 48 (2006) p.479-488.

Figure 1: General plasma parameters for Pulse No: 69937. (a) Divertor D α signal, (b) total input power, ICRH power and stored magnetic energy, (c) edge electron density, \bar{n}_{e} and (d) H-mode confinement factor, H_{98}.

Figure 3: Radial profiles for the edge plasma (a) T_{i}, (b) T_{e}, (c) v_{ϕ} and (d) v_{θ} and (e) E_{r} values across the L-H transition for Pulse No: 69937. The vertical colour lines indicate the radial locations of the time traces in corresponding colours in figures 2 and 4.

Figure 2: Overview of the T_{i}, v_{ϕ} and v_{θ} across the L-mode and H-mode phases of Pulse No: 69937 at $I_{p} / B_{t}=2.5 M A /$ 2.7T. The colour of each time trace corresponds to the radial location indicated in figure 3 by corresponding vertical lines of the same colour.

Figure 4: Time traces showing (a) the divertor D_{α} signal, (b) the edge T_{i}, (c) edge v_{ϕ} and (d) edge v_{θ} values for radial locations indicated in figure 3, across the L-H transition for Pulse No: 69937.

Figure 5: Radial profiles for the time-slices indicated by vertical lines in figure 6 in corresponding colours, in the ELM-free phase of the H-mode for Pulse No: 69937.

Figure 6: Time traces across the ELM-free phase of the H-mode for Pulse No: 69937 for (a) the divertor D_{α}, (b) edge T_{i}, (c) edge v_{ϕ} and (d) edge v_{θ} for corresponding radii indicated by vertical lines in figure 5 .

Figure 7: Radial profiles of (a) T_{i}, (b) T_{e}, (c) v_{ϕ}, (d) v_{θ} and $(e) E_{r}$ before and following a large ELM indicated in figure 8, for Pulse No: 69937.

Figure 8: Time traces across the large ELMs phase of the H-mode for Pulse No: 69937.

Figure 9: Radial profiles at the start of the high frequency ELM phase and across the H-L transition for Pulse No: 69937, for times indicated by vertical colour lines in figure 10.

Figure 10: Time traces across the high frequency ELM phase and the H-L transition of Pulse No: 69937 for (a) the divertor $D_{\alpha},(b) T_{i},(c) v_{\phi}$ and $(d) v_{\theta}$, for radial channels indicated in figure 9 by vertical lines in corresponding colours.

[^0]: "Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,

