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ABSTRACT.

Perturbative experiments in magnetically confined fusion plasmas have shown that edge cold pulses

travel to the center of the device on a time scale much faster than expected on the basis of diffusive

transport. An open issue is whether the observed fast pulse propagation is due to non-local transport

mechanisms or if it could be explained on the basis of local transport models. To elucidate this

distinction, perturbative experiments involving ICRH power modulation in addition to cold pulses

have been conducted in JET for the same plasma. Local transport models have found problematic

to reconcile the fast propagation of the cold pulses with the comparatively slower propagation of

the heat waves generated by power modulation. In this paper, a non-local model based on the use of

fractional diffusion operators is used to describe these experiments. A numerical study of the

parameter dependence of the pulse speed and the amplitude and phase of the heat wave is also

presented.

1. INTRODUCTION

Perturbative experiments provide valuable time dependent transport information in a relatively

controlled setting that can be used to validate and test transport models. In these experiments the

transient response of the plasma to externally applied small perturbations, e.g., plasma edge cooling

and heating power modulation, is followed in time, see for example Ref. [1] and references therein.

In the case of cold pulses, experiments in JET and other machines have shown that perturbations

applied at the edge travel to the center on a time scale of a few ms, i.e. much faster than expected on

the basis of diffusive time scales compatible with plasma confinement [2–6]. An open issue in

describing these experiments is whether the observed fast pulse propagation is due to non-local

transport mechanisms or if it could be explained on the basis of local transport models.

By local models we mean models in which the heat flux, qd, is determined by the Fourier-

Fick’s prescription

(1)

where we have restricted attention to transport in a one-dimensional domain, n denotes the density,

and T the temperature. On the other hand, in the non-local models of interest here, the flux is given

by

 (2)

where the function K(x-y) accounts for the non-local contribution of the temperature at point y to

the flux at point x, and the integral extends over the whole domain of the plasma. The decay of the

function K measures the degree of non-locality. As expected, in the case of a Dirac delta function,

K = δ (x-y), the local diffusive model is recovered. The local, χd, and non-local, χnl, diffusivities

qd = -χd nδxT

qnl = -χd nδx     K(x-y)T(y,t)dy,
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can in general depend on x and t, and, in the non-linear case, also on T and the gradient of T. The

difficulty in determining the role of non-locality versus locality in transport using cold pulse

experiments is that both local and non-local models exhibit fast propagation phenomena for properly

chosen model parameters and conditions. For example, fast propagation speeds can be obtained

with critical temperature gradient transport models in which «d incorporates a non-linear critical

threshold condition [7]. Also, non-local models of the form in Eq. (2), with algebraic decaying

functions K exhibit fast pulse phenomena [8]. Thus, in order to discriminate between the two transport

mechanics conclusively further experimental information is needed.

Perturbative experiments involving power modulation can provided the needed additional

information. This is because cold pulses and heat waves generated from power modulation exhibit

markedly different propagation properties. A promising modeling approach is then to focus on

experiments in which both type of perturbations, cold pulses and power modulation, are present for

the same plasma. These kind of experiments have been carried out in JET [4, 6], and are the main

object of study in the present paper. The presence of both types of perturbations provides the necessary

constrains to elucidate the role of non-locality. The general approach followed in the modeling of

these experiments is to use the modulation data to calibrate (fit) the parameters of the model, and

then use the model (with no free parameters left) to predict the propagation speed of the cold pulse.

The attempts to follow this prescription using local transport models have not been successful [5].

In particular, as discussed in Sec. IV, local descriptions including the critical gradient model [4], the

Weiland model [9], and turbulence spreading [13, 14] account reasonably well for the heat wave

propagation but significantly underestimate the pulse speed. The 3-D fluid turbulence code TRB

[10, 11] predicts fast propagation for both cold pulses and heat waves, and simulations using the 3-

D global electromagnetic fluid turbulence code CUTIE [12, 11] are not feasible due to the long

time scales involved in the power modulation experiments. The apparent lack of success of local

models in reconciling the fast propagation of cold pulses with the comparatively slower propagation

of heat waves observed in JET is our main motivation toexplore the use of non-local models. In

particular, here we show that these experimental observations can be described using a recently

proposed non-local transport model based on the use of fractional diffusion operators [8]. A

preliminary version of the results presented here was discussed in Ref. [15].

The models used here are based on the use of a type of integro-differential operators known as

fractional derivatives [16,17] that allow the incorporation of non-local effects in the flux. These

fractional diffusion models have been successfully used to model non-diffusive test particle transport

in pressure gradient driven plasma turbulence in cylindrical [18–20] and toroidal [21] geometry. In

Ref. [22] a fractional Fokker-Planck equation was proposed for the kinetic description of relaxation

and super-diffusive processes in turbulent electrostatic fields. In addition, it has been shown that

fractional models reproduce basic non-diffusive transport phenomenology of magnetically confined

fusion plasmas including anomalous scaling of confinement time in L-mode plasmas, profile peaking

in the presence of off-axis fueling, pinch effects, and fast pulse propagation [8]. Pulse propagation
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phenomena has also been modeled using probabilistic transport models [23, 24]. For a discussion

on the connectionbetween probabilistic and fractional diffusion models see Ref. [8]. A recent review

on the use of fractional diffusion to model non-diffusive transport can be found in Ref. [25].

The rest of the paper is organized as follows. The next section describes the non-local fractional

transport model. Section III contains a numerical study of pulse propagation and power modulation

in this model. For the cold pulses we present a numerical study on the dependence of the pulse

speed on the model parameters including the diffusivity and the degree of non-locality and asymmetry.

For the power modulation perturbations we present a study of the dependence of the heat wave

amplitude and phase on the frequency of the modulation and the model parameters. Section IV

presents the application of the model to JET data. In particular, it is shown that the model can

account for both, the fast propagation of cold pulses and the relatively slow propagation of

temperature perturbations caused by ICRH power modulation in the experiment. Section V contains

the conclusions.

2. TRANSPORT MODEL

In this section we present a brief review of the non-local fractional diffusion model. Further details

can be found in Refs. [8]. The starting point is the heat transport equation,

(3)

where T and n are the plasma temperature and density, q is the flux, S is the source, and x is a

normalized radial coordinate. We limit attention to radial transport, and assume a onedimensional

Cartesian domain, i.e. a slab approximation. In the standard diffusion model, the local Fourier-

Fick’s prescription in Eq. (1) is assumed to close Eq.(3). This local description assumes the existence

of a well-defined transport scale and that widely separated regions of the plasma do not interact

significantly with each other. From the statistical mechanics point of view, the diffusion model

assumes that the underlying “microscopic” dynamics is driven by an uncorrelated, Markovian,

Gaussian stochastic process, i.e. a Brownian random walk.

However, experimental, numerical, and analytical evidence has raised doubts on the validity of

the restrictive assumptions upon which the standard diffusion model is based. Examples of direct

numerical simulations showing non-diffusive transport include Hasegawa- Mima turbulence [26],

3-dimensional, resistive, pressure gradient-driven plasma turbulence in cylindrical [27, 19, 20] and

toroidal geometry [21], and gyrokinetic plasma turbulence [28]. Non-diffusive transport has also

been reported in reduced Hamiltonian models of E×××××B chaotic transport in the presence of zonal

flows and drift waves [29, 30]. Experimental findings exhibiting deviations from the standard

diffusion model include the anomalous scaling of the confinement time in low confinement mode

plasmas [31], the non-Gaussianity of experimentally measured fluctuations [32, 33], and fast

propagation phenomena in perturbative transport experiments [2, 1]. Recently, particle transport in

δt [3/2nT]= -δx q + S,
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a toroidal plasma confinement device was shown to be nondiffusive in the presence of magnetic

chaos [34]. From the analytical perspective, it has been shown that quasilinear renormalization

type calculations of particle transport that avoid the restrictive localization hypothesis, lead to non-

diffusive, non-local transport models of the form in Eq. (2) [35]. Also, in the presence of longrange

Lagrangian velocity correlations, effective macroscopic transport models introduce non-Markovian

effects [36].

The main goal of this paper is to study the role of non-locality in perturbative transport. Non-

local processes are believed to play an important role in non-diffusive plasma transport in general

and in the fast propagation of pulses in particular, see for example Refs. [37, 38] and references

therein. Our strategy here is to use transport operators in which the local flux-gradient relation in

Eq.(1) is replaced by the non-local relation in Eq.(2) according to which the flux at a given point

can in principle depend on the global properties of the temperature profile. The type of non-local

model is determined by the specific form of the function K. Here, following Ref. [8], we consider

algebraic decaying functions of the form K = 1/(x-y)α
-1 and write the non-local flux as

(4)

where 1 < α < 2, l and r are constant, and χnl is the non-local diffusivity. The first term on the right

hand side of Eq. (4) represents the non-local contribution of the flux at x from the plasma located to

the “left” of point x (a < y < x) whereas the second term on the right hand side of Eq. (4) represents

the contribution from the plasma to the “right” of x (b > y > x) where a and b are constant. The

relative weight of these two terms is determined by l and r defined as

(5)

where θ, -1 < θ < 1, is the asymmetry parameter.

In principle, one could use a different function K(x-y) to define the nonlocal flux. However,

there are strong physical, analytical, and computational reasons to choose algebraic decaying

functions. In particular, in the context of statistical mechanics, it can be shown that the fractional

diffusion transport equation resulting from substituting Eq. (4) into Eq. (3) is the fluid or continuum

limit of a microscopic, self-similar, non-Brownian stochastic process without a characteristic transport

scale see for example [39, 19] and references therein. This has motivated the use of the non-local

model in Eq.(4) to describe scale-free, self-similar turbulent transport in plasmas [19, 23, 20, 8].

From the computational point of view, the definition of the flux in terms of fractional derivatives

allows the implementation of efficient, accurate, and stable finite difference numerical schemes

[40, 8], which can eventually be incorporated in predictive transport codes to account for non-

locality.

In Fourier space, F [T] =  T(k) = ∫ eikxT(x)dx, Eq. (4) takes the formˆ

a

x

x

b

qnl = -χd nδx   l  dy + r  dy   ,T (y,t)
(x-y)α-1

T (y,t)
(x-y)α-1

l = - ,(1 - θ)
2cos(απ/2)

r = - ,�1 + θ�
2cos(απ/2)
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(6)

As expected, in the case α = 2, and l = r, qnl reduces to the local flux in Eq.(1). The limit α → 1 is

less trivial but it can be shown [8] that in this case the operator on the right hand side of Eq. (4)

reduces to the non-local flux used in Landau-fluid closures [41, 42]. Thus, depending on the value

of α, the proposed non-local flux interpolates between the local diffusive flux and a free streaming

flux. For general α, the scaling q ˜  k
α-1 T motivates the interpretation of the operator on the right

hand side of Eq. (4) as a fractional derivative of order α. This idea can be expressed formally by

introducing the integro-differential operators

(7)

and

(8)

for 1 < α < 2. The operators a D
α-1  and xD

α-1  are known as the left and right Riemann- Liouville

fractional derivatives of order α - 1, and for a = -∞ and b = ∞, their Fourier transforms satisfy [16, 17]

(9)

As expected, for integer m, a D
m  = (-1)m x D

m = ∂m
 . Using Eqs. (9), the non-local flux in Eq. (6) can

be expressed in the compact form

(10)

The parameters a and b in the integration limits define the lower and upper boundaries of the

domain x ∈ (a, b). For finite size domains, which is the case of interest here, the application of the

fractional diffusion model requires the regularization of the fractional derivatives. In this paper we

use the regularization a Dx
α-1

  T → a Dx
α-1

 T = aDx
α-1

 [T-T(a)-T′ (a) (x-a)] and x Db
α-1

  T → x Db
α-1

  T

= aDx
α-1 [T-T (b)-T′(b) (b-x)]. In the calculations presented here x = a = 0 corresponds to the

magnetic axis, and x = b = 1 corresponds to the plasma boundary. For the boundary conditions we

assume zero total heat flux at the magnetic axis, and fixed temperature at the edge,

 (11)

Details on the numerical method and on the regularization of the non-local fractional operators

can be found in Ref. [8].

ˆ

ˆ ˆ

x b

x b x

(qnl = -χnl n) = −   l (-ik)α−1 − r (ik)α−1  T(k,t).   

1

Γ(2-α) a

x

b

T (y, t)

(x-y)α-1
δ
δx

 a 
D 

�-1 T =  dy 
 .

−1

Γ(2-α) x

b

b

T (y, t)

(y-x)α-1
δ
δx

 x 
D 

�-1 T =  dy 
 .

F [ -∞D 
α-1 f ] = (-ik)α-1f,x F [ x 

D 
α-1 f ] = (ik)α-1f,∞

qnl = -χnl n [ la D 
α-1 - rx D 

α-1 ] T.x b

q (x = 0, t) = [qd + qnl] (x = 0, t) = 0,  T (x = 1, t) = 0.
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In magnetically confined plasmas, there is a qualitative difference between core transport and edge

transport. Core transport is believed to be dominated by standard, local diffusive processes, while

edge transport is believed to be mostly driven by intermittent, non-diffusive processes. Motivated

by this, in this paper we assume a non-local diffusivity, χnl, with a step profile of the form

(12)

According to this expression, in the core region, x˜ 0, χd >> χnl, i.e. transport is dominated by

standard diffusion. The transition to non-diffusive transport occurs at x˜ xc where there is a boundary

layer of width ˜  L in which χnl changes from zero to the edge value χnl0. The relative value of the

fractional and the standard diffusivities at the edge is quantified with the parameter χs = χnl0/χd0.

3. PERTURBATIVE TRANSPORT IN THE FRACTIONAL DIFFUSION MODEL

In this section we present a numerical study of pulse propagation and power modulation in the

presence of non-local transport. The results are based on the numerical integration of Eq. (3) with

an n = 1 constant density, and a flux, q = qd + qnl, including the local diffusive component in Eq. (1),

and the non-local component component in Eq. (10) with regularized fractional derivative operators

as discussed in the previous section. The main parameters of the model are the non-locality index α,

the asymmetry parameter θ, and the ratio of the magnitude of the fractional and the regular diffusivity
χ

s = χnl/χd. The goal is to explore the dependence on these parameters of the speed of cold pulses and

of the propagation properties of “heat waves” generated by a modulating power source.

3.1. COLD PULSES

The first step in the cold pulse simulations is the computation of the steady equilibrium temperature

profile, T0(x). For this we use a localized, on-axis source of the form

(13)

with σs = 0.075. We consider two values of the non-locality parameter, α = 1.75 and α = 1.25. In

addition, for comparison purposes, we consider the pure standard diffusive case for which χnl = 0.

For each value of ±, we consider symmetric, θ  = 0, maximal asymmetric, θ  = -1, and asymmetric,

θ  = -0.5, non-local operators. To explore the dependence on the ratio of the standard and fractional

diffusivities we consider χs = 1 and χs = 5 with xc = 0.1 and L = 0.025 in Eq. (12). As shown in Table

1, the amplitude of the heat source, S0, was adjusted so that T0(0) = 1 in all cases.

Once the equilibrium profile is established, a localized cold pulse perturbation of the form

(14)

x-xc

L
χnl (x) = tahn              + tanh            .

χnl0

2
xc

L

S = S0 exp   -
x 

2

2σs
2

 δT (x, 0) = - A exp    -           ,
(x - µp)2

2σp
2
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with A = -0.3, µp = 0.75 and σp = 0.03 is introduced as shown in Fig.1. The evolution of the

temperature perturbation, δT (x, t) = T(x, t)-T0(x), is obtained from the numerical integration of the

fractional model with initial condition T(x, 0) = T0(x) +-T (x, 0). The main quantities of interest are

the time delay, δt, and the average pulse propagation speed V = 1/δt. The time delay is defined as

the time required for the core temperature to exhibit a temperature drop of size δTc, i.e. δT (0, δt) =

δTc. The vale of the threshold δTc is a matter of convention. Here we use δTc = -0.0375 which

corresponds to the typical value used in the analysis of the experimental data in JET that will be

discussed in the next section. The normalized pulse velocity is defined as  V = V/Vdiff where Vdiff is

the pulse velocity in the diffusive case.

Figure 2 shows the spatio-temporal evolution of the perturbed temperature, δT (x, t), and the

perturbed total flux, δq(x, t) = q(x, t)-q0(x) (where q0(x) is the equilibrium steady state flux) for α

= 1.75 and 1.25, in the symmetric, θ = 0 case with χs = 1. For reference, the diffusive case is also

included. These three numerical simulations correspond to cases 1, 2 and 3 in Table 1. In the diffusive

case the pulse spreads on a diffusive time scale and the effect of the perturbation at the core is

negligible. However, as the second and third columns of Fig.2 show, when the value of α is reduced,

non-local transport yields a fast drop of the temperature at the core. Of particular interest is the case

α = 1.25 for which the non-local response gives rise to a temperature drop at the core larger than the

drop experienced at intermediate places as evidenced by the detached “blob” observed near the

core for t ˜ 0.05. For small α the perturbed flux exhibits extended elongate areas of large positive

values in the region connecting the core. These large positive flux regions are responsible for the

outward temperature transport towards the edge (x > 0) leading to the cooling of the core. Figure 3

shows the corresponding traces of the normalized temperature perturbation δT = δT/|min[δT (x,

tp)]|, where tp = 0.01 is the time when the pulse is introduced. At the location of the pulse, x = 0.75,

the temperature relaxation is dominated by diffusive local transport and very similar behavior is

observed independent of the value of α. However, at the core, x = 0, a significant delay of the signal

is observed in the diffusive case. As shown in Table 1, for χs = 1 a decrease in the value of α gives

rise to an increase in the pulse speed. However, it is interesting to observe that for χs = 5 the pulse

speed for α = 1.75 is larger than the speed for α = 1.25, although the difference is not big.

As discussed in the previous section, the non-local contribution to the flux at a point x0 due to

the region connecting the core (0 < x < x0) can in principle be different to the contribution due to the

plasma in the region connecting the edge (x0 < x < 1). This asymmetry depends on the parameter ∏

that determines the weighting factors l and r in Eq. (5). For θ = 0, l = r and the non-local operator is

symmetric. As discussed in Ref. [8], θ = 0 introduces a drift in the peak of a decaying pulse. When

θ > 0, r > l and the drift velocity is outward (positive). On the other hand, when θ < 0, l > r and the

drift velocity is inward (negative). However, in the fractional model an inward, i.e. negative (outward,

i.e. positive) drift is always accompanied by a strongly non-local, algebraic decaying positive

(negative) response [8]. Figures 4 and 5 show the dependence of the pulse dynamics on the asymmetry

of the nonlocal operator. The complementary roles played by the drift and the long-range interaction

ˆ

ˆ



8

are illustrated in the temperature traces shown in Fig.5. As in Fig.3, at the location of the pulse the

process is dominated by local diffusion and the three cases θ = 0, θ = -0.5 and θ = -1 are

indistinguishable from the diffusive case. However, because of the negative fractional drift, at short

distances from the introduction of the pulse the fastest perturbation corresponds to θ = -1 and the

slowest to θ = 0. Near the core the situation is exactly the opposite. Because of the non-locality, the

signal corresponding to θ = 0 is the fastest. As shown in Table 1, this behavior is generic, for

different values of α and «s, the time delay at the core increases as θ approaches -1. Figures 6 and

7 show the dependence of the pulse dynamics on the ratio of the fractional and the standard

diffusivities, χs = χnl0/χd0, for fixed α = 1.25 and θ = 0. These plots, together with the results reported

reported in Table 1, indicate that χs has a strong effect on non-local transport. In particular, for χs =

5 the perturbed flux exhibits an extended positive“tongue” that yields to the large outward transport

responsible for the strong temperature drop at the core. Comparing the temperature traces in Fig.7

with the previous results, it is observed that the drop for χs = 5 is about twice the size of the typical

drop observed when χs = 1, while the speed is about four times larger.

3.2 POWER MODULATION

As shown in Fig.8, in the power modulation studies we consider a source consisting of an on-axis

component and an off-axis component. The on-axis term is the same as the one used in the pulse

propagation studies in Eq. (13). The off-axis component includes a time-periodic amplitude

modulation of the form

(15)

The amplitude of Soa at x = 1/2 oscillates between the maximum value S0/2 and the minimum value

S0/4, with a frequency v. To study the response of the system to the power modulation we consider

the perturbed temperature, δT = T(x, t)-T(x), where 〈 T〉 = 1/t  ∫0
t  Tdt is the time averaged equilibrium

profile, and write

(16)

The propagation properties of the temperature perturbation are determined by the amplitude profiles,

An(x), and the phase profiles, Φn(x), for the different harmonics n = 1, 2 . . .. Here we focus on the

n = 1 dominant harmonic. For the problems discussed in the section, higher order harmonics display

qualitatively similar behavior.

As in the case of the pulse propagation studies, our main objective is to study the dependence of

the propagation properties of δT on the parameters of the fractional diffusion model. Figure 9

shows the dependence on the non-locality parameter α. The solid lines correspond to α = 1.25 and

the dashed lines correspond to the standard diffusion case. Contrary to the dynamics of the pulse,

S0

8
Soa = [3-cos (2πvt)] exp   -          .

(x - 1/2)2

2σoa
2

δT(x,t) =      An (x) cos [2πnvt + Φn(x)].Σ
∞

n=1
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non-locality, as measured by the value of α, does not seem to play a prominent role in the propagation

properties of the heat wave. This is particularly evident in the case of high frequency perturbations

(right column of Fig.9). At low frequencies, the difference between fractional and regular diffusion

is more noticeable. As expected, the propagation speed of the perturbation, as measured by the

inverse of the slope of the Φ1 profile, is larger in the fractional case. On the other hand, the damping

of the perturbation at the core, as measured by the ratio A(0)/Amax, is larger in the diffusive case.

The flattening of A near the core at low frequency results from χd >> χnl0 near x˜ 0 and the zero

flux boundary condition. Cylindrical geometric effects, not included here, also contribute to this

effect [43]. Figure 10 shows the dependence on the asymmetry parameter θ. In the high frequency

case, v = 57.14, there is little difference among the three cases considered. At low frequencies, v =

7.14, the case v = 1 exhibits the least damping and slightly faster propagation speed towards the

edge. Figure 11 shows the dependence of the amplitude and the phase of the temperature perturbation

on the ratio of the fractional and the standard diffusivity, χs = χnl0/χd. As in the previous cases, the

differences are more evident in the low frequency regime. In general, increasing the magnitude of

the non-local diffusivity, χnl0, reduces the damping and increases the propagation speed.

4. APPLICATION TO JET DATA

In this section we explore the application of the fractional diffusion model to perturbative experiments

performed at JET. Several previous experiments in JET have shown that cold pulse perturbations

applied at the edge, either via laser ablation of metallic impurities or shallow deuterium pellet

injections, travel to the center on a time scale of a few ms, i.e. much faster than expected on the

basis of diffusive time scales compatible with plasma confinement [3]. However, in those experiments

it was never clarified whether such high propagation speed needed a truly non-local transport

component, or if it could be explained on the basis of non-linear transport which would yield an

incremental heat diffusivity, much higher than the power balance one, to account for the fast

propagation of perturbations. The incremental heat diffusivity would be consistent with a turbulence

driven transport mechanism in which the onset of stiff transport is regulated by a temperature

critical gradient. In this description, for high levels of stiffness, very fast propagation of perturbations

can be obtained, similar to the one measured for cold pulses. However, a potential problem with

this approach is that such high propagation speed would characterize‘all types of perturbations,

whilst in JET and other machines heat waves from power modulation are seen to behave consistently

with a critical gradient model with a moderate level of stiffness [7].

A convincing test to discriminate between the non-local and the non-linear, critical gradient

length driven, transport can be made only if the two different types of perturbations, power modulation

and cold pulses, are applied to the same plasma. In this case one could derive from the power

modulation heat wave analysis an estimate of the level of stiffness, and predict the speed of cold

pulse propagation consistent with such level, to be compared with the experimental one, in order to

decide about the need for a non-local component. These experiments have been carried out on JET
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and reported in Refs. [4, 6]. Clear results have been obtained by using a very quiet plasma scenario

with BT = 3.25T, Ip = 1.6MA,q95 = 6.5, low density (ne0 = 2.7×1019m-3), L-mode (no ELMs), and

central q above 1 in order to avoid sawteeth, so that the propagation can be followed up the plasma

center. In addition to 9 MW of NBI heating, 3.7 MW of ICRH power in mode conversion scheme has

been applied to heat electrons off-axis (r = 0.32) in order to expand the radius where the critical

gradient is located, in order to have a significant region of plasma below threshold, implying low

perturbative diffusivity and slow propagation of perturbations according to the local paradigm. In

fact, in a stiff plasma all perturbations would travel very fast above threshold, according to the local

value of the incremental diffusivity, and would be slowed down significantly in regions below threshold,

where the turbulent diffusivity component is stabilized. In this context, there would be no asymmetry

between the propagation properties of cold pulses and heat waves generated by power modulation.

Figure 12a shows the time behavior of the modulated ICRH power and of electron temperature

at one spatial position, measured by a multi-channel fast ECE radiometer. The Te time traces are then

analyzed using standard Fast Fourier Transforms (FFT) according to Eq. (16), to provide spatial

profiles of amplitude, A, and phase, Φ. Figure 13 shows the amplitude and phase profiles for the 1st

and 3rd harmonics of the modulation frequency. The 2nd harmonic is absent because the duty-cycle

of the modulation was 50%. At the end of the power modulation phase, a cold pulse is applied to cool

the plasma edge. Fig.14a shows the time evolution of Te at different radii following the edge cooling.

It is observed that the signal at the core exhibits a temperature drop of 30eV in about 4 ms.

Both perturbative experiments, the cold pulse and the heat wave, have been simulated using the

transport code ASTRA and the semi-empirical Critical Gradient transport Model (CGM) in Ref. [7].

Results are described in detail in [4]. The modulation shows an asymmetry in the slopes of A and Φ on

the two sides of the power deposition, originated by the transition from below threshold in the core to

above threshold outside the ICH deposition radius. A best fit with the CGM mode yields estimates for

threshold and stiffness level. A simulation of the cold pulse using the same CGM model with the

threshold and stiffness deduced from the modulation would predict a delay of the cold pulse in the

core of about 22ms. Clearly, in the experiment the cold pulse is much faster, reaching the plasma core

in less than 4ms. This result shows that a non local transport features needs to be invoked to explain

the results of JET cold pulses. The asymmetry of behavior between power modulation and cold pulses

cannot be accounted for by a local model, even when stiff transport

above threshold is taken into account.

Apart from the semi-empirical CGM model, other attempts to describe these experiments using

first principle based transport models or turbulence codes have found problematic to reconcile the fast

propagation of the cold pulses with the comparatively slower propagation of the heat modulation

waves, as discussed in Ref. [5]. In particular, the Weiland model [9] while accounting reasonably well

for the heat wave propagation, predicts a delay of the order of 50 ms for the cold pulses. The 3-D fluid

turbulence code TRB [10] instead predicts a very fast cold pulse but at the same time very fast

propagation of heat waves. In the 3-D global electromagnetic fluid turbulence code CUTIE [12], cold
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pulses have been found to damp soon in the outer region without reaching the center, whilst power

modulation simulations are not feasible due to long time scales involved in JET. Turbulence spreading

models tend do a better job accounting for faster responses of the order of 18 ms, as reported in [14]

whilst still maintaining good reproduction of the modulation data. However such delay is still far too

long compared to experiment. This lack of success has motivated the attempt to use the above described

fractional diffusion model to address the interpretation of these JET experimental results.

As it is customarily done in modeling these type of experiments, we first calibrated the fractional

diffusion model by fitting the power modulation data. The source, S(x, t) = P0(x)+Pm(x, t), is taken

directly from the experiment. The first term P0(x) = POH +PeNBI+ 0.5[PRFmc + PRFfw] contains the

steady state contributions from Ohmic heating, neutral beam injection, and mode conversion and fast-

wave RF heating. The time modulation is of the form Pm(x, t) = 0.5A(t)[PRFmc + PRFfw] where, as

shown in Fig.12(b), A(t) is a square-wave periodic function with frequency v = 14.5Hz. We assumed

a constant, uniform electron density, n = 2.6×1019part/m3, α = 1.25, and a standard diffusivity profile

of the form χd = (0.75 + 6x)m2/sec. For the fractional diffusivity we considered a profile of the form in

Eq. (12) with «nl0 = 2mα/sec.

Figure 12 compares the time evolution of the temperature perturbation in the experiment and in the

fractional model at a fixed point in space. Figure 13 shows the amplitudes An and phases Φn of the

first two dominant harmonics (n = 1 and n = 3) of the electron temperature perturbation as defined in

Eq. (16). A very good agreement is observed between the fractional model and the experimental data.

As mentioned before, similar levels of agreement have also been achieved using local models. However,

the key issue is to be able to reproduce with the same parameter values and conditions the fast

propagation of the pulse, something that previous models have not been able to accomplish. Figure 14

shows that the fractional model can successfully accommodate the propagation of pulses with speeds

comparable to those observed in the experiment while still retaining the slower propagation of the

modulation heat pulses. In particular, as Fig. 14(b) shows, the fractional model exhibits a ̃  30eV drop

in the core temperature is about 4ms. However, it should be noted that for large times, Te in the model

exhibits a monotonic decay whereas in the experiment the evolution of Te tends to approach a constant

value. Also, the equilibrium Te(x) profile in the model tends to be flatter than in the experiment.

SUMMARY AND CONCLUSIONS

In this paper we have studied the role of non-locality on perturbative transport using a recently proposed

fractional diffusion transport model. Fractional transport models are natural generalization of diffusive

models that provide a unifying framework to describe non-diffusive transport including anomalous

scaling and non-local/non-Markovian (memory) effects. These models have been successfully applied

in the past to describe basic nondiffusive transport phenomenology in fusion plasmas, and quantitative

aspects of test particle transport in plasma turbulence. Here we have shown that fractional diffusion is

able to reproduce cold pulse and power modulation perturbative experiments conducted in JET that

have not been satisfactorily described using local transport models.
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The JET experiments discussed here show an asymmetry between the propagation of perturbations

due to heat modulation and cold pulses. For x > xs, where xs denotes the location of the ICRH power

deposition, waves and pulses propagate fast. However, for x < xs the heat wave slows down and is

damped, but the cold pulses still travel fast. Local transport models have found problematic to

simultaneously describe both types of perturbations. In particular, when these models are calibrated to

reproduce the slow modulation data, they significantly underestimate the propagation speed of the

pulses. Here we have shown that a transport model that incorporates a fractional diffusion non-local

transport channel as well as a local diffusive channel is able to reproduce satisfactorily both the

modulation data and the fast propagation of the pulses.

To complement the results of the comparison with the JET data, we have also presented a numerical

study of the parameter dependence of the transport properties of the fractional model. In particular,

we studied the dependence of the cold pulse speed on the degree of non-locality, α, the asymmetry of

the transport process, θ, and the ratio of the fractional and the standard diffusivity χs. It was observed

that either decreasing α or increasing χs leads to an increase of the propagation speed of pulses. The

dependence on the asymmetry of the non-local flux is more subtle. In particular, θ  = 0 gives rise to a

drift (whose direction depends on the sign of θ ) accompanied by a long-range response in the opposite

direction. The parameter dependence of the transport properties in the case of power modulation is

weaker. In particular, for high frequency perturbations, the amplitude and the phase of the first harmonic

of the temperature perturbation are not very sensitive to changes in α, θ, or χs . For low frequencies,

consistent with the cold pulse results, the speed of the heat wave increases with decreasing α and

increasing χd . In experiments and numerical simulations, the phase profile Φ exhibits an asymmetry

with respect to x = xs which gives rise to different inward and outward heat wave propagation speeds.

In the critical gradient model this type of asymmetry results from the threshold condition. In the

model discussed here (which does not includes a critical gradient threshold) the asymmetry results

from the interplay of non-local effects, boundary conditions, and the built-in asymmetry incorporated

by the prescribed diffusivity profiles, χnl and χd .

Non-locality and critical gradient non-linearities play a complimentary role, and a complete model

of perturbative transport most likely should include both. The incorporation of a critical threshold

gradient condition in the diffusivity χnl of the fractional model is formally straightforward, although it

is numerically nontrivial. The main motivation to limit attention in this paper to linear non-local

models without critical gradients is conceptual and mathematical simplicity. The relatively simple

linear model discussed here, has allowed us to make evident the crucial, and previously overlooked

role played by non-locality, independent of further potential complications due to nonlinearity. However,

to make further progress it would be of interest to solve the fractional diffusion model incorporating

a critical gradient condition.
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10 62.76 1.75 -1 5 0.0161 62.1 5.7
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11 50.67 diffusive diffusive 5 0.0144 69.4 6.4
3 22.48 1.25 0 1 0.0095 105.3 9.6
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Table 1: Summarizing the dependence of the cold pulse speed V, normalized speed V, and time delay of the pulse δt,
on the fractional model parameters α, θ and χs, and the magnitude of the external source S0.
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Figure 1: In the cold pulse perturbation numerical studies, a monotonically decreasing temperature profile resulting
from an on-axis source is perturbed at the edge as shown in the diagram. The magnitude of the source is adjusted as
shown in Table 1 so that for all the values considered of the model parameters α, θ and χs, the central temperature
remained fixed at T(0) = 1.

Figure 2: Dependence of the evolution of the cold pulse on the non-locality parameter α for θ = 0 and χs = 1. The
three columns correspond to cases 1, 2, and 3 in Table 1. The top three contour plots show the spatio-temporal
evolution of the perturbed temperature δT = T(x, t)-T0(x) with dark blue corresponding to the minimum of δT , and
dark red corresponding to δT = 0. The bottom three panels show the corresponding perturbed flux δq = q(x, t)-q0(x)
with dark blue denoting large negative values and dark red denoting large positive values. The first column corresponds
to the standard diffusive model. Figure 3 shows the corresponding temperature traces.
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Figure 4: Dependence of the evolution of the cold pulse on the asymmetry parameter θ for α = 1.25 and χs = 1. The
three columns correspond to cases 3, 4, and 5 in Table 1. The top three contour plots show the spatio-temporal
evolution of the perturbed temperature δT = T(x, t)-T0(x) with dark blue corresponding to the minimum of ´T and
dark red corresponding to δT = 0. The bottom three panels show the perturbed flux δq = q(x, t)-q0(x) with dark blue
denoting large negative values and dark red denoting large positive values. The case θ = 0 corresponds to the symmetric
case, θ = -1 to the extremal asymmetric case, and θ = -0.5 to an intermediate asymmetric case. Figure 5 shows the
corresponding temperature traces including the standard diffusive case for reference.

Figure 3: Traces of normalized temperature perturbation δT = δT/|min[δT (x, 0.01)]| at various spatial locations
corresponding to the simulations shown in Fig.2 with θ = 0 and χs = 1 and α = 1.75 (blue curve) and α = 1.25 (red
curve). The black curve corresponds to the standard diffusive result.These three cases correspond to cases 1, 2, and
3 in Table 1 respectively.
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Figure 5: Traces of normalized temperature perturbation δT at various spatial locations corresponding to the cases
shown in Fig. 4 with α = 1.25, χs = 1 and θ = 0 (red curve), θ = -0.5 (green curve), and θ = -1 (blue curve). These
three cases correspond to cases 3, 4, and 5 in Table 1 respectively. For reference, the standard diffusive case is shown
in black.

Figure 6: Dependence of the evolution of the cold pulse on the parameter χs for θ = 0 and α = 1.25. The two columns
correspond to cases 3, and 6 in Table 1.The top two contour plots show the spatio-temporal evolution of the perturbed
temperature δT = T(x, t)-T0(x) with dark blue corresponding to the minimum of δT and dark red corresponding to
δT = 0. The bottom two panels show the perturbed flux δq = q(x, t)-q0(x) with dark blue denoting large negative
values and dark red denoting large positive values. Figure 7 shows the corresponding temperature traces.
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Figure 7: Traces of normalized temperature perturbation
δT at various spatial locations corresponding to the cases
shown in Fig.6 with α = 1.25, θ = 0 and χs = 1 (red curve)
and χs = 5 (blue curve). These two cases correspond to
cases 3, and 6 in Table 1 respectively.

Figure 8: In the power modulation numerical studies, a
monotonically decreasing temperature profile resulting
from an on-axis source was perturbed by a modulated
off-axis source. The magnitude of the sources was adjusted
so that, in the absence of modulation, the central
temperature remained fixed at T(0) = 1 for all the values
considered of the model parameters α, θ  and χs .

Figure 9: Dependence of the temperature perturbation, δT, in Eq. (16), on the non-locality parameter, α, and the
frequency, ν, of the power modulation in Eq.(15). The figure shows the first harmonic of the normalized amplitude,
A1(x)/Amax, and phase, Φ1(x), where Amax = A1(x = 1/2). The column on the left corresponds to the low frequency, v =
7.14, perturbation, and the column on the right corresponds to the high frequency, v = 57.14, perturbation. The solid
line gives the result for α = 1.25, and the dashed line corresponds to the standard, local diffusive response.
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Figure 10: Dependence of the temperature perturbation, δT, in Eq.(16), on the asymmetry parameter, θ, and the
frequency, ν, of the power modulation in Eq.(15). The figure shows the first harmonic of the normalized amplitude, A1(x)/
Amax, and phase, Φ1(x), where Amax = A1(x = 1/2). The column on the left corresponds to the low frequency, ν = 7.14,
perturbation, and the column on the right corresponds to the high frequency, v = 57.14, perturbation. The solid line
gives the result for θ = -1, the dashed line corresponds to θ = 0, and the dotted line corresponds to θ = 1.
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Figure 12. Traces of electron temperature perturbation and power modulation in JET (a) and in the fractional model
(b). The square-wave periodic signal corresponds to the onoff power amplitude modulation, and the other signal
corresponds to the electron temperature perturbation.

Figure 11: Dependence of the temperature perturbation, δT, in Eq.(16), on χs, and the frequency, v, of the power
modulation in Eq. (15). The figure shows the first harmonic of the normalized amplitude, A1(x)/Amax, and phase,
Φ1(x), where Amax = A1(x = 1/2). The column on the left corresponds to the low frequency, v = 7.14, perturbation, and
the column on the right corresponds to the high frequency, v = 57.14, perturbation. The solid line gives the result for
χ

s = 5, the dashed line corresponds to χs = 1.
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Figure 13. Experimental (dots) and fractional model (lines) profiles of the amplitude A and phase delay Φ corresponding
to the 1st (black) and the 3rd (red) Fourier harmonics of the electron temperature

Figure 14. Comparison between the temperature traces in the experiment (left panel) and the model (right panel).
Consistent with the experiment, the model exhibits a drop of 30eV (corresponding to the dashed red line) in about
4ms.
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