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ABSTRACT.

In modern tokamaks visible and infrared video cameras are becoming more and more important to
monitor plasmaevolution during fusion experiments. Analyzing theseimagesin real -time can provide
relevant information for controlling the plasma and improving the safety of the machines. The real-
time image processing capability of the Cellular Nonlinear Network based chip has been applied to
severd tasksboth at Frascati Tokamak Upgrade (FTU) and Joint European Torus (JET). The successful
applications range from the identification of plasma instabilities, such as Multifaceted Asymmetric
Radiation From the Edge (MARFES), to the determination of the strike points position in the divertor
and the detection of hot spots.

1. INTRODUCTION

Inthelast yearsvideo cameras have been extensively used in magnetic confinement fusion experiments
for both the understanding of the physics and the safety of the operation. Both visible and InfraRed
(IR) images can be used not only to monitor the evolution of a plasma discharge but aso to evaluate
specific parameters, from the evol ution of impurity radiation to the distribution of power |oads on the
plasma facing components. Data analysis is normally performed offline, due to the high amount of
information to be processed, making the data acquired by the camera quantitatively useful only for
post pulse studies. The main difficulty in using visible or infrared imagesfor plasmafeedback control
is the fact that real-time image processing is challenging and heavy in terms of processing time,
especialy when complex tasks are required. Since digital image processing operates sequentialy, it
requires high clock frequenciesto achieve acceptable performancefor real time applications, with the
consequent problems of consumption, signal integrity and so on. In order to overcometheseissuesthe
route of parallel processing has been investigate in JET and FTU using the approach of analog and
mixed-mode circuits, like Cellular Nonlinear Networks (CNNSs) [1] since they are particularly suited
for fast computation. The CNNs are an array of simple, identical, locally interconnected nonlinear
dynamic circuits called cells. Each cell interacts, via weighted connections, with the cells in the
neighborhood of alimited radius. Theana og implementation permitsparalel processing a the hardware
level of the individua pixels. Moreover, the CNNUniversal Machine paradigm [2] provides the
capability to program and sequence in time the computational operations. In addition, it permits the
storage of the intermediate results and can be implemented as amixed-signal VLSI chip [3].

Severa application of CNN-based hardware and software techniques were developed in the last
years at FTU and JET, exploiting both the output of visible and infrared cameras. An overview of
these algorithmsis here reported together with a brief description of CNNs. The first application was
to MARFE detection at FTU exploiting visibleimagesin order to prevent disruptionsdueto excessive
radiation emission. IR images were used at JET to determine the position of the strike-points, to
complement the measurements of the magnetic coils, and to the early detection of hot spot, those
pointsin the wall where the temperature approaches dangerous values. All these tasks were tested on
the ACE16K CNN-based chip [4], a VLSl implementation of the CNN-UM paradigm. The chip is



ableto processinaparallel way up to 16384 pixels, corresponding to a128x128 image and to perform
alinear convolution of 3x3 neighborhood on them in less than 3us.

2. CELLULAR NONLINEAR NETWORKS
The concept of CNNswasintroduced in 1988 by L.O. Chua[1]. The architecture of the CNN ismade
up of abasic circuit called cell, containing linear and nonlinear circuit elements (see Fig.1).

Each cell ina CNN is connected to its local neighboring cells, so a direct interaction occurs only
among adjacent cells. An example of atwo-dimensional CNN isshownin Fig.2. The neighborhood of
the cell on thei-th row and j-th column, denoted by C(i, ), has the following definition:
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wherer isapositive integer number, which fixes the dimension of the neighborhood.

A CNN is entirely characterized by a set of nonlinear differential equations associated with the
cells in the circuit. Several mathematical model for the state equation of the single cell has been
proposed since their introduction. The model asimplemented in the CNN Universal chip family [3],
also caled Full Signal Range (FSR), is given by the following set of relations:
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where u, X, and y denote the input, state, and output of the cell, respectively; R, and C, are the values
of thelinear resistor and linear capacitor, that determinethetime constant of the circuit; A(i, j; k, 1) and
B(i, J; k, 1) arethefeedback and control templatesrespectively; | isthebiasterm, that isconstant for all
the CNN cdlls; g(x) is the nonlinear function in the state equation (2), depicted in Fig.3.

Thislast element isthe main difference between the classical Chua-Yang CNN model [1] and the
FSR modedl. In fact, in the former one, the nonlinearity enters into the output equation and is the
integral of g(x). In[3] it has been demonstrated that the two mathematical models are equivalent.
processing. In this case the input image is mapped on the CNN in such away that each image pixel is
associated with theinput or initia state of aparticular cell. The CNN evolution impliesatransformation
of the input image into the corresponding output image obtained directly by the equation (2). In this
contest, the templ ate operators work like the instructions in a programming code. A huge amount of
templates and template algorithms for avariety of tasksis already available in the literature [6].



The hardware prototype system used in this application is based on two fundamental parts. the CNN
Universal Chip prototype, which is a 128x128 CNN chip [4], and the CNN Chip Prototyping and
Development System (CCPS) platform [5]. The chip is mixed signal and is devel oped following the
concept of Single Instruction Multiple Data (SIMD) architectures. It isnamed ACE16K, where ACE
isthe acronym of Analogic Cellular Engineto underline the mixed signal nature of the chip (analogue
and logic) and the fact that it is composed of 16K cells.

ACE16K can be described basically as an array of 128x128 identical, locally interacting, analog
processing unitsdesigned for high speed image processi ng tasks requiring moderate accuracy (around
8hits). The system containsaset of on-chip periphera circuitriesthat, on one hand, allow acompletely
digital interface with the host, and on the other hand provide high algorithmic capability by means of
conventional programming memories where the algorithms are stored.

Although ACE16K is essentially an analog processor (computation is carried out in the analog
domain), it can be operatedinafully digital environment. For this purpose, the prototypeincorporates
abank of Digital-to-Anaog (for input) and Analog-to-Digital (for output) converters at theimages|/
O port. ACE16K isconceived for usein two aternative ways. First, in applications where the images
to be processed are directly acquired by the optical input module of the chip, and secondly, as a
conventional image co-processor working in parallel with adigital hosting system that provides and
receivestheimagesin electrical form. The second mode of operation is the one adopted to obtain the
results presented in this paper.

3. CNNSFOR MARFE DETECTION AT FTU

The first application of CNNs to plasma fusion field was the MARFE detection at FTU [7]. The
MARFE [8] is aradiation instability which appears in tokamaks as a toroidally symmetric ring of
increased radiation. It usually occurs on the inner side of the torus. The plasmaislocally cooled by
radiation leading to aself sustained processin which the decrease in temperature enhancestheradiation
losses resulting in further cooling. The principal reason is due to line radiation from impurities that
increases with decreasing temperature.

This instability appears at high density and near the Greenwald limit [9]. After the onset of a
MARFE further gas puffing does not |ead to an increase of the electron density; moreover strong gas
puffing into the discharge with a MARFE leads to a detached plasma or to a hard disruptions. In the
first caseit can be asserted that MARFEs represents alimit to the maximum attainable density but the
second one, i.e. the disruption, is a dramatic event in which the plasma confinement is suddenly
destroyed. In few milliseconds the current goesto zero and thisleadsto alarge mechanical stressand
to intense heat |oads.

Asaconsequence it appears that real time control of MARFEs would be a useful mean to extend
the plasma operation parameters and to avoid dangerous disruption. Camera observations of awide
poloidal portion of the plasma edge represent a good candidate for early detection of the MARFE
onset and the development of afeedback control in order to mitigate its effects.



Theideais, once detected a MARFE in the tokamak, to stop immediately the gas puffing and then to
move the plasma column in order to modify, in that region, thermal conduction both parallel and
perpendicular to the magnetic field. In this way control of the growth rate of MARFEs should be
achieved at least early enough to avoid disruptions.

A preliminary work has been dedicated to trand ate the physical information about the MARFE in
visual features reveaable in the images captured by the video monitoring system. The set of visua
parameters which has been considered to be representative of the MARFE formation and its speed
displacement are brightness, shape and velocity of its growing (see Fig.4).

A further analysis phase revealed that the shape of the MARFE isthat of avery stretched ellipse,
oriented in adiagonal direction. These last two visua features obviously depend on the position and
tilt of the camera, but they can be considered invariant in thisapplication, sincethe cameraisinstalled
with afixed position and orientation.

An agorithm has been devised in order to monitor this visual parameters (see Fig.5). After the
extraction of the frame from the video, an inversion operation is performed to obtain the negative
frame. Thisis necessary since the CNNUM worksin agrayscale that is inverted with respect to the
usual image processing software. Subsequently, thresholding isperformed to detect the pixel exceeding
a given brightness. At this point, a DIAG1LIU [6] template is applied for detecting diagonal lines
laying in the SW-NE direction.

This operation performs a control on the shape of the black object which, in thiscase, isan ellipse
oriented along a diagonal (SW-NE) direction. Once identified the object shape and orientation, the
following step consists of performing acheck on its growing speed. This can be achieved observing
the difference between two consecutive framesthat givesan information about the dynamic evolution
of the phenomenon. The number of pixelsin the differenceis evaluated, and in the case it exceeds
a given threshold size, a warning message is shown. A detailed description of the algorithm is
reported in [9].

The whole agorithm has been implemented on the CNN based chip ACE16K, available in the
laboratories of the DIEES-University of Catania. Many videoswere analyzed to carry out an algorithm
with a high robustness respect to variations on the cameratilt.

Theresultsobtained are shown in Fig.6 where the elaboration of two consecutiveframesispresented.
Only the portion of thewholeframe (Fig.4) which includesthetoroidal limiter was processed in order
to minimize the execution time. It is possible to observe that a MARFE is detected and a warning
message “Alert” appears, as can be appreciated in the upper right corner of this figure. During the
processing, from this moment on, the warning message will be held on the screen, if the MARFE
MOVES Or iNncreases.

Thevideo monitoring systeminstalled at FTU and used inthiswork operatesat atemporal resolution
of 25 frames/swhich isdoubled splitting theinterlaced TV fields[12]. Indeed, thetwo half frame are
interpolated providing, inthisway, aframe every 20ms. Thetime, instead, to processtwo consecutive
framesisabout 13 ms, which isbelow the interframe rate. Thisreal time detection system can helpin



carrying out asafe conclusion of the experiment when the probability of the occurrence of adisruption
is high, thus preventing the tokamak from mechanical and thermal stresses.

4. CNNSFOR STRIKE POINTSDETECTION

In Tokamak plasmas, the divertor is the region of the vacuum vessel explicitly designed to handle
power losses. In JET history severa topological solutions have been tested as far as the divertor is
concerned.

The one used for the discharges, whose results are reported in this paper, isshown schematically in
Fig.7. Thetypical Xpoint plasmaconfiguration isalso shown: it is characterized by the existence of a
separatrix and a scrape-off layer. The former is the last closed flux surface that separates the closed
magnetic field lines from the open ones which strike the vacuum vessel, while the latter isthe region
of the plasma where the magnetic field lines intersect wall elements, in this case the divertor. The
plasmapower losses are deposited a ong thisregion. Theintersection of the separatrix with the divertor
target plates represents a strike point.

In JET the position of the strike pointsis mainly derived from magnetic measurements performed
with loops and pickup coils located around the vacuum vessel. These measurements, taken at some
distance from the plasma, can be extrapol ated acrossthe current-free region to identify the last closed
flux surface. The code used at JET to determinethe plasmashape and therefore al so the position of the
strike pointsis XLOC [13]. Themain output of XLOC consists of the definition of thelast closed flux
surface, also called separatrix.

In JET divertor various thermocouples are also located in the divertor tiles, covering the whole
region were the magnetic field lines can intersect material surfaces. The region of maximum thermal
load, which can be considered as the position of the strike points, can be identified thanks to
thermocouple signals.

Another very useful diagnostic to deriveinformation about the power depositioninthe JET divertor
isrepresented by infrared imaging. At thetime of the experiments, two | R camerasframing thedivertor
region were available at JET. They measured the infrared radiation in the interval 3-5 °m with a
resolution of 128x128 pixels[14].

One camera seesthe outer leg of the divertor, the other the inner leg and, asfar asreal timecontrol
is concerned, the two views can be considered representative of the entire divertor, given the toroidal
symmetry of the machine. Also in this case, a preliminary analysis was necessary to determine how
the presence of the strike points reflectsitsalf in the visual features of the cameraimages. The strike
points, indeed, can a so be considered the region of maximum thermal 1oad on the divertor tilesthat is
trandated in an infrared image as the region of maximum brightness. A first manual analysis of
images from JET IR cameras proved that the shape of the strike points consists of two thin bands of
high emission in the whole divertor region, oriented in the toroidal direction.

A specific procedure was devel oped to derive the position of the strike points from the data of the
infrared cameras exploiting the capabilities of CNN technology (see Fig.8).



The algorithm has been applied to a frame which is the composition of the two images covering
respectively the inner and the outer side of the divertor region. These images should have redly
different brightness, which varies according to the different temperature the strike points reach in the
two regions of the divertor. So it is necessary to perform an independent processing procedure for
each one of them.

After an initialization step during which all the constants like threshold values, counter limits and
so on areinitialized, an inversion operation is performed. Subsequently, aTHRESHOLD templateis
applied to theimage, to identify the pixelswhose valueis higher than apredefined level. Theresult of
thisfirst processing phaseisabinary image, where the black pixels represent those exceeding agiven
brightness threshold. In order to perform the independent processing of the two strike points, at this
stage an AND operation with a mask is executed to select the pixels representing the inner or outer
strike points. Then the number of remaining pixelsintheimageisevauated to verify that it isadequate
to perform the identification of the strike-point position. If it is less than a given number K, the
threshold value in the THRESHOLD template is decreased by a constant value j, and the cycle is
repeated. Otherwise the loop stops when the K valueis reached.

The output of the algorithm at this stage consists of a band of black pixels, corresponding to the
region of maximum brightnessinthedivertor legs. A SKELETONIZATIONtemplateis, then, applied
to find the skeleton of the band. Once the skeleton of the inner strike point is obtained, the algorithm
IS executed once again, thistime to extract the outer strike-point position.

The agorithm is capable of supplying the position of both the inner and the outer strike points
within 20 ms. In particular, thetimeto identify the strike pointsin theimage is comprised between 13
and 19 ms, depending on the brightness condition of the starting frame. Thistimeresolutionisacceptable
for the vast majority of JET applications. It isindeed necessary to consider that in
genera the thermal phenomena, which can affect the tile temperature and change infrared emission,
do not change much on shorter time scales.

In order to assess the accuracy of the proposed approach, a systematic comparison with the results
of XLOC and the thermocoupl es measurement was undertaken (see Fig.9 and 10). To thisend the co-
ordinates of the strike points obtained with the CNN were compared with the ones given by XLOC,
from the intersection of the separatrix with the divertor, and with the position of maximum load as
given by the thermocouples. A good congruity between CNN and XLOC calculated strike pointsis
noticed. Thefact that CNN detects the maximum power |oad which is not always coincident with the
intersection of the separatrix with the divertor isconfirmed by the comparison with the thermocouple.

A further statistical comparison between the CNN estimate and the one derived from the magnetic
reconstruction of the boundary was performed. In Fig. 11, the x axis shows the position calculated
with the CNN approach, while the y axis reports the interception with the divertor of the flux line
5mm outside the separatrix calculated viathe EFIT software [15].

The congruity between the two resultsis good: it can be noticed that the absol ute error isincluded
intherange[-1 cm: +1 cm] apart from some sporadic points.



5. CNNSFOR HOT SPOT DETECTION

Another application of IR imaging and CNN-based image processing is the early detection of hot-
spots[16]. Oneof thefuture | TER relevant enhancement at JET will betheinstallation of aBeryllium
wall. Since Be is much more vulnerable than stainless steel (the present JET's wall material),
preserving the integrity of the plasma facing components will be one of the main issues in future
JET experiments.

Detectinginreal timethe presence of hot spots, i.e. regionsof thefirst wall wherethetemperature
approaches dangerous levels, is considered crucial in the safety strategy as they are considered
naturally the points more proneto significant damage. CNN technology has been therefore applied
to the real timeidentification of hot spots.

Analyzing the data from JET cameras [17], it is possible to identify three main sources of
anomalously high emission in the infrared region of the spectrum in JET (see Fig.12). Some parts
of thevacuum vessel, likethelimiters of thetarget plates, can reach very high temperatures, because
they are the region were most of the plasmawall interactions take place in normal conditions.

These locations will have to be monitored continuously once JET new wall isinstalled to both
understand the behavior of the materials and to guarantee safe operation of the device.

On the other hand, these regions are designed to withstand high energy fluxes and therefore
specific thresholds will have to be used for them. Moreover their position and shape are fixed and
therefore their monitoring relatively straightforward. A different emission is produced when other
parts of the first wall, not meant to absorb alot of energy, are subject to strong heating in case of
unforeseen events, like disruptions, ELMsor errorsin the set up of the magnetic configuration. The
shape of these hot spots can be very different and their location inside the viewing cone of the
camera quite unpredictable. Moreover their position can change during the discharge.

Particularly during fast eventslike ELMsand disruptions, athird type of IR emission can be due
to particles gjected from the first wall and entering into the plasma. If they are big enough not to be
immediately vaporized, struck by the plasmathey can reach high temperatures and be clearly detected
inthe R images. They have normally relatively small dimensionsand fast changing positioninside
thefield of view.

Taking into account the different nature of these IR emissions two different types of algorithms
for theidentification of the hot spotswere devel oped. Thefirst one, for the so called static detection,
performs the analysis of asingle frame at the time. It is more suited to the monitoring of the fixed
parts of the machines, like the plasmafacing components (limitersand divertor). A second approach,
called dynamic detection, isbased on the difference between subsequent frames. Thelatter algorithms
are more complicated but they allow to follow the growth of the hot spots and their movements
inside the field of view. Two examples of the proposed approaches are reported in Fig.13 while a
detailed description isavailable in [16].

Both algorithms were tested using frames acquired by JET wide angle IR camera (KL7). As
parts of theimage are not relevant to the end of detecting hot spots (because they include regions of



the vessel not in contact with the plasma), the frame was cropped before processing it in order to
speed up the processing.

The image is so reduced to a 384x384, eliminating aso the portion of the frame, which sees the
divertor asthereisaready another infrared camera (KL 3) that monitorsthis part of the machinewith
greater accuracy. An example of the result produced by the static algorithmisreported in Fig.14. The
contour of the detected regions is superimposed to the starting frame. It is possible to observe that
they represent the point of maximum brightness assimilable, at this step, to the hottest point in the
vessel. The execution times for both the algorithms are reported in Table 1. The execution timeisin
the order of 100msto processthe whole 384x384 frame. Thetimerequired to processonly a128x128
subframeisabout of 20ms. This higher time resolution could be very helpful for machine protection.
For instance, particularly delicate parts of the machine, like the RF antennas, which occupy aregion
of the image not wider than two 128x128 images, could be monitored with a high time resolution.

CONCLUSIONS
Thevisibleand infrared emission containsalot of useful information exploitablefor plasmamonitoring
to enhance the performance or the safety of tokamak machines. The data provided by visible and
infrared cameras installed at FTU and JET were processed in order to monitor dangerous plasma
phenomena, like MARFE or hot spots, or to extract relevant parameter like the maximum thermal
load position in the divertor. To take advantage of the potentialities of CNNs, several algorithmswere
devised to perform the previously mentioned tasks. Thanks to the capabilities of ACE16K, aVLSI
implementation of CNNSs, the processing time for the various tasksis below the inter-frame rate.
Thealgorithmsdescribed in thispaper represent thefirst application of CNNsto fusion experiments.
Further investigation is going to be performed in order to assess the potential of CNN technology in
thereal time environments of reactor tokamaks.
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OPERATION TIME (ms)

Inner strike detection 7 - 10ms
Outer strike detection 6-9ms
TOTAL 13 - 19ms
TABLE I.

Execution time for strike point detection algorithm

ALGORITHM TIME (ms)
Static Detection (full frame) ~56 ms
Dynamic Detection (full frame) ~58ms
Static Detection (128x128) ~8ms
Dynamic Detection (128x128) ~8ms
TABLE II.

Execution times for the static and dynamic algorithm applied to a full frame or a 128x128 subframe.
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Figure 1: The Chua-Yang cell circuit model
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CNN model, asimplemented in the CNN chip One of the
main applications of CNNsisimage

00875S8| 008759|

JG08.06-4c
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Figure 9: Inthetop figure, the time evolution of the CNN
and XLOC calculated strike pointsis shown, together with
the coordinate Z of the available thermocouples in the
inner part of the divertor. In the bottom figure, the time
evolution of the thermocouples temperature is shown
(Pulse No: 62216) [11].

Figure 10: Inthetop figure, the time evolution of the CNN
and XLOC calculated strike pointsis shown, together with
the coordinate Z of the available thermocouples in the
outer part of the divertor. In the bottom figure, the time
evolution of the thermocouples temperature is shown
(Pulse No: 62216) [11] .
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Figure 11: Comparison of the R and Z estimate of the strike points as derived fromthe CNN and EFITO5. Thelinein
the middle represent a perfect agreement among the measurements while the other two lines defines the interval
[-1cm: +1cm].

JG08.06-12¢

Figure 12: Example of the three main types of hot spots as seen with JET wide angle IR camera. (Pulse No: 66503).
The smallest circular bright spots are particles entering the plasma. The big crescent shape bright regions are on the
limiters, locations designed to withstand high powers. Some smaller bright spots on the top are due to plasma wall
interactions changing fast with time.
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Figure 13: Flowchart of the algorithm for the identification of the hot spots: &) static version, b) dynamic version.

JG08.06-14c

Figure 14: Example of static detection of hot spots. The contour of the detected regionsis reported superimposed to
the starting frame.
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