
D. Moreau, D. Mazon, M. Ariola, G. De Tommasi, L. Laborde, F. Piccolo, F. Sartori,
T. Tala, L. Zabeo, A. Boboc, E. Bouvier, M. Brix, J. Brzozowski, C. D. Challis,

V. Cocilovo, V. Cordoliani, F. Crisanti, E. De La Luna, R. Felton, N. Hawkes,
R. King, X. Litaudon, T. Loarer, J. Mailloux, M. Mayoral, I. Nunes, E. Surrey,

O. Zimmerman and JET EFDA contributors

EFDA–JET–PR(07)45

A Multiple Time Scale Dynamic-Model
Approach for Magnetic and Kinetic

Profile Control in Advanced Tokamak
Scenarios on JET



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



A Multiple Time Scale Dynamic-
Model Approach for Magnetic and

Kinetic Profile Control in Advanced
Tokamak Scenarios on JET

D. Moreau1, D. Mazon1, M. Ariola2, G. De Tommasi2, L. Laborde3, F. Piccolo3, F. Sartori3,
T. Tala4, L. Zabeo3, A. Boboc3, E. Bouvier5, M. Brix3, J. Brzozowski6, C. D. Challis3,

V. Cocilovo7, V. Cordoliani5, F. Crisanti7, E. De La Luna8, R. Felton3, N. Hawkes3,
R. King3, X. Litaudon1, T. Loarer1, J. Mailloux3, M. Mayoral3, I. Nunes9, E. Surrey3,

O. Zimmerman10 and JET EFDA contributors*

1Euratom-CEA Association, DSM/DRFC, CEA-Cadarache, 13108 St Paul lez Durance, France
2 Euratom-ENEA-CREATE Association, Univ. Napoli Federico II, I-80125 Napoli, Italy

3 Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK
4 Euratom-Tekes Association, VTT, PO Box 1000, FIN-02044 VTT, Finland

5 Ecole Polytechnique, Route de Saclay, 91128, Palaiseau, France
6Euratom-VR Association, Department of Physics, KTH, SE 10691, Stockholm, Sweden

7 Euratom-ENEA Association, C.R. Frascati C.P. 65, 00044 Frascati, Italy
8Euratom-CIEMAT Association, ES Avenida Complutense 22 E-28040, Madrid, Spain
9Euratom-IST Association, Centro de Fus„o Nuclear, IST, 1049-001, Lisboa, Portugal

10Euratom-FZJ Association, IPP, Forschungszentrum, D-52425, J¸lich GmbH, Germany
* See annex of M.L. Watkins et al, “Overview of JET Results ”,

 (Proc. 21 st IAEA Fusion Energy Conference, Chengdu, China (2006)).

Preprint of Paper to be submitted for publication in
Nuclear Fusion

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK



.



1

ABSTRACT

Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters

is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios.

This paper describes the new model-based profile controller which has been implemented during

the 2006-2007 experimental campaigns. The controller aims to use the combination of Heating and

Current Drive (H&CD) systems - and optionally the Poloidal Field (PF) system - in an optimal way

to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-

normalized temperature gradient, ρTe*(x). In the first part of the paper, a technique for the

experimental identification of a minimal dynamic plasma model is described, taking into account

the physical structure and couplings of the transport equations, but making no quantitative

assumptions on the transport coefficients or on their dependences. To cope with the high

dimensionality of the state space and the large ratio between the time scales involved, the model

identification procedure and the controller design both make use of the theory of singularly perturbed

systems by means of a multiple-time-scale approximation. The second part of the paper provides

the theoretical basis for the controller design. The profile controller is articulated around two

composite feedback loops operating on the magnetic and kinetic time scales, respectively, and

supplemented by a feedforward compensation of density variations. For any chosen set of target

profiles, the closest coherent state achievable with the available actuators is uniquely defined. It is

reached, with no steady state offset, through a near-optimal proportional-integral control algorithm.

Conventional optimal control is recovered in the limiting case where the ratio of the plasma

confinement time to the resistive diffusion time tends to zero. Closed-loop simulations of the

controller response have been performed in preparation for experiments, and typical results are

shown. Finally, in the last section of the paper, the first experimental results using this dynamic-

model approach to control the plasma current and the safety factor profile on JET, either with the

three H&CD systems or also with the PF system as an additional actuator, are presented and discussed.

1. INTRODUCTION

Extensive research programs have been devoted, worldwide, to the development of advanced

tokamak operation scenarios in which an optimization of some plasma parameter profiles results in

a large improvement in plasma performance at reduced plasma current [1-5]. The design of an

economically attractive steady state fusion reactor relies on such scenarios because a high-gain

fusion burn could then be achieved while a major fraction of the plasma current is self-generated by

the neoclassical bootstrap effect. Integrated real-time control of such bootstrap-dominated plasma

regimes [6] is a new challenge, but it is essential for steady state operation and it will be one of the

ITER objectives to demonstrate that advanced operation scenarios can yield significant fusion gains

(Qfus ≈ 5) in steady state, under controlled operation [7-8]. In the meantime, experimental

investigations have started on various tokamaks to find practical means of regulating advanced

tokamak discharges [9-15].
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The simultaneous real-time control of radially distributed magnetic and kinetic plasma parameters,

such as the current and electron temperature gradient profiles, was achieved for the first time during

the 2002-2004 experimental campaigns on JET [16-18]. At this stage, and for the sake of simplicity,

the controller was based on the static plasma response only, and on an algorithm that minimises a

weighted sum of least square integral errors between the requested profiles and the measured ones

[19]. The integration of magnetic and kinetic profiles - known to be strongly coupled - into a single

controller is particularly relevant to advanced tokamak scenarios in future fusion devices such as

ITER where the Heating and Current Drive (H&CD) actuators will be quite constrained. With a

limited number of actuators and a large set of parameters and profiles to control, the strong linkage

between the multiple profiles which define the non-linear plasma state can be seen as an advantage.

Of course, the response of all the relevant profiles to variations of the actuators around a given

equilibrium state needs to be identified by some means. But then, the real-time data relative to

these profiles (plasma density, velocity, pressure, safety factor, etc ...) can be integrated into a

single controller which regulates the global plasma state through a minimization algorithm [19]

rather than each profile accurately and separately. Such an integrated approach to plasma control

seems essential and it should be validated already in present experiments if one is to ultimately

achieve high-beta/high-bootstrap-current burning plasmas for steady state reactor operation.

Another requirement of the profile control investigations we have proposed on JET is the use of

the available actuators in their routine operating mode, i.e. avoiding special features that may not

extrapolate to burning plasmas. In ITER, some actuators may be less versatile than in present-day

tokamaks, due to simple physics and/or technology considerations (antenna design, wave

propagation, etc..). In JET, controlling accurately the radial deposition of Lower Hybrid (LH) waves

through the launched n// spectrum [12-13] could be introduced within the proposed control algorithm

[19]. But this does not offer much flexibility in the location of maximum power deposition in high-

beta fusion plasmas and, in addition, this may have to be done at the expense of degrading the

conditions of optimum wave coupling and directivity, and of maximum power transmission through

the LH launcher. It was therefore not implemented at this stage of the controller design.

More generally, on present-day tokamaks as well as for ITER, none of the available H&CD

actuators - either Neutral Beam Injection (NBI), Radio Frequency (RF) waves for Ion Cyclotron

Resonant Heating (ICRH), LH waves, or Electron Cyclotron (EC) waves, - seems flexible and

powerful enough, on its own, to tailor the current density profile as required for optimum

performance. Also, current drive cannot be decoupled from heating (and sometimes fuelling and

torque), especially in the presence of large bootstrap current and alpha-particle heating fractions

since both heating and fuelling drive the bootstrap current and the fusion power. Therefore, dedicating

a specific actuator to a specific task does not seem appropriate.

The approach newly developed on JET aims to use the combination of H&CD/PF (poloidal

field) systems and the experimentally deduced plasma couplings in the most efficient dynamic way

to achieve a set of simultaneous tasks. In this respect, it stands in contrast with experiments in
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which a given actuator (e.g. LH, EC or NBI power) controls a particular scalar parameter

characterising a plasma profile (e.g. minimum safety factor, internal inductance, βN, etc ...) [11-

14]. The 2004 experiments [16-17] using a controller based on the static plasma response were

successful in achieving the various targets that were aimed at, thus demonstrating the validity of

the proposed coupled profiles approach. However, the control was found to be too sensitive to

rapid plasma events such as the spontaneous emergence of internal transport barriers (ITB) or

MHD instabilities. In order to address this issue, a technique for the experimental identification of

a dynamic plasma model has been developed, taking into account the physical structure and couplings

of the transport equations, but making no quantitative assumptions on the transport coefficients or

on their dependences [10].

The next section describes the analysis which leads to the choice of the relevant state variables,

and the physical constraints to be imposed on the corresponding state-space model. The high

dimensionality of the state space and the large ratio between the various time scales involved (resistive

and thermal diffusions with strong interactions between fast and slow dynamic modes) call for an

appropriate model identification procedure. The technique uses the theory of singularly perturbed

systems (i. e. a multiple-time-scale approximation) thanks to a small parameter, ε, representing the

ratio of the fast and slow timescales. It generates a slow and a fast model of reduced orders which

are shown to describe the system satisfactorily.

The third section of the paper provides the theoretical basis for the profile controller design. The

control is near-optimal in the sense that it asymptotically merges into conventional optimal control,

with O(ε2) accuracy, in the limiting case where ε tends to zero. The paper then describes closed-

loop simulations in which the radial profiles of the plasma safety factor and of the gyro-normalized

electron temperature gradient [20] are controlled simultaneously.

The fourth part of the paper finally presents some experimental results concerning the control of

the safety factor profile on JET. They were conducted using the new controller in a limited (and

unoptimized) set of possible configurations, i.e. with different H&CD actuators, radial control

location and minimization criteria, and with/without the PF system as an actuator.

2. IDENTIFICATION OF A STATE-SPACE PLASMA RESPONSE MODEL

2.1. STRUCTURE OF THE DYNAMIC PLASMA MODEL AND NATURAL STATE

VARIABLES

In order to use optimal control theory and regulate the plasma evolution in advanced tokamak

scenarios, a physics-based, semi-empirical technique has been developed to experimentally identify

a dynamic plasma model [21]. The structure of the model stems from a set of simplified transport

equations,
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which relate the time variation of the current density, J, plasma density, N, and temperature, T, to

the electric field, E, particle and heat fluxes, Gn and GT and particle and heat sources, Sn and ST. The

toroidal magnetic field is assumed constant in time. When these equations are averaged over magnetic

flux surfaces they yield a one-dimensional (1-D) model in which all physical variables depend only

on a radial variable, x, and on time. Such models form the basis of many time-dependent computer

codes, e. g. [22-24], in which the various transport coefficients generally consist of neoclassical

terms derived from first principles (collisional transport) and of additional terms that describe

turbulent transport in an empirical way and generally provide a fair simulation of some experimental

observations. For some interpretative applications, this is a good compromise between theory-

based simulations and empirical modelling of phenomena which are not fully understood. For real-

time control purposes, it seems however preferable to make no ad-hoc assumptions on the parametric

dependences of the transport coefficients. Instead, an empirical model can be sought, that needs

only be valid in some broad vicinity of an equilibrium state, and in which coupling between the

various plasma parameters is retained with no loss of generality. A rigorous derivation of the 1-D,

flux-averaged, transport equations in the most general geometry yields cumbersome expressions

including metric tensor coefficients, with too many unknown parameters to identify experimentally.

A different compromise is therefore needed here, and the geometrical rigour in the derivation will

be traded off against the simplicity of the model.

In the proposed approach, the system (Eq. 1) is linearized around an equilibrium reference state

which needs not be known explicitly, and a state space model (a form commonly used in control

engineering) of minimal complexity is sought, whose structure is consistent with the general structure

of linearized 1-D transport equations, apart from cumbersome geometrical corrections which are

omitted (see appendix A1.1).

The following assumptions have also been made in Eq. (1) in order to keep the order of the

system within reasonable limits for its experimental identification to be tractable :

i) we consider a one-fluid plasma model with varying particle density N(x, t), temperature

T(x, t) and current density, J(x, t) (the same methodology could be followed to seek a

model with different temperatures for electrons and ions, Te ≠ Ti, and eventually with

plasma flows and momentum transport),

ii) the particle and heat fluxes, Gn and GT, depend only on the density, N(x, t), temperature,

T(x, t), and on the current density, J(x, t), through differential operators,

iii) the electrical conductivity depends on T(x, t), and possibly on N(x, t) and J(x, t) through

neoclassical or anomalous effects, but variations of the effective charge, Zeff, are neglected

(they could be taken into account as a disturbance),

iv) gas fuelling is small compared with the combined effect of beam fuelling and recycling,

which are coupled to the heating power, so that the particle source, Sn(x, t), depends only

on the H&CD input powers (essentially through the NBI particle deposition), and on N(x,

t), T(x, t) and J(x, t),
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v) the heat deposition profile ST(x, t) depends on the various H&CD input powers, and on

N(x, t), T(x, t) and J(x, t) (the effect of the poloidal magnetic field on wave propagation

and absorption can be important),

vi) the non-inductive current density also depends on the various H&CD input powers, and

on N(x, t), T(x, t) and J(x, t).

In the framework of our simplified model, the state variables appear naturally to be the variations

of the internal poloidal magnetic flux, Ψ = ψ– ψref, and of the temperature,  T = T - Tref, with

respect to their reference values (their values in the reference state). A lumped-parameter version of

the state space model is then derived, which reads :

(2a)

(2b)

with inputs P(t) = [PLH(t), PNBI(t), PICRH(t)] = P(t) - Pref, the heating and current drive input powers

(lower hybrid, neutral beam and radio-frequency), Vext = Vext(t) -Vref, the loop voltage at the plasma

surface, and n(t), the plasma density. In Eq. (2), the distributed variables Ψ(x, t), T(x, t) and n(x, t)

= N(x, t) - Nref have been projected onto a finite set of trial functions (cubic splines, ai(x), see Fig.

1a) using a Galerkin scheme (see appendix A1.2) so that the original differential system of equations

reduces to an ordinary linear differential system where BΨV is known and Aij, Bij (i=1, 2 and j=1, 2)

are matrices of appropriate dimensions which are to be identified either from simulated data or

from experimental data.

We have purposely restricted the number of H&CD actuators to three, for the sake of simplicity.

In fact the JET NBI system is composed of two boxes of eight injectors each with different power

deposition profiles (normal or tangential, central or off-axis), and a distinction between several

groups of injectors could be made to increase the number of independent actuators (e.g. to control

also the plasma rotation profile). The same holds for the four ICRH antennas which could be powered

at different frequencies, and for the LH launcher modules which could launch waves with different

phase velocity and provide more flexibility on the power and current deposition profiles. However,

increasing the number of actuators should be made at the expense of the power headroom available

on each actuator, and frequent saturation of several actuators would result unless the systems were

oversized. It was therefore not considered at this stage. It was then essential to constrain the

configuration of the systems so that they always deliver a given power in the same way. For example,

a priority order was imposed on the NBI injectors so that, for a given power, a unique combination

of the NBI injectors was used.

The small (constant) parameter, ε, represents the typical ratio between the energy confinement

time and the characteristic resistive diffusion time (ε << 1). It is introduced here to scale matrices

∂ ∂Ψ Ψ Ψ/ ( ) ( ) ( ) ( ) . ( )t A t A T t B P t B n t B V tV ext= + + + +11 12 11 12

ε ∂ ∂T t A t A T t B P t B n t/ ( ) ( ) ( ) ( )== ++ ++ ++
21 22 21 22
Ψ
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Aij and Bij so that their coefficients have similar magnitudes, and it allows singular perturbation

methods to be applied in order to simplify both model identification and controller design.

The real-time control of the plasma density profile could be integrated within the proposed

scheme with some additional actuator (e.g. pellet injection) but it has not been considered yet in the

present controller implementation. Variations of the plasma density, n(x, t), are partly due to neutral

beam fuelling, an effect which could be imbeded either into the B21 or the B22 matrix. Yet, density

variations which are not correlated with the H&CD powers subsist. They will be considered as

disturbances and possibly compensated (see section 3.2). Density variations may also have a

systematic disturbing influence on some measurements and on the real-time magnetic reconstruction

of the plasma equilibrium. If they can be identified, the latter effects must be described through the

B22 matrix. Therefore, in Eqs. (2) and in the following, the vector n(t) contains coefficients which

characterize the plasma density profile (e.g. line-integrated measurements along some chords, etc...),

and is treated as an additional input to the system but not as a control actuator. Introducing a

generalized input vector, u(t), which contains P(t), Vext(t) and n(t), the system can be rewritten in a

slightly more compact form :

(3a)

(3b)

2.2. The Two Time Scales and the Singular Perturbation Approximation

Because of the high dimensionality of the physical state space, the numerical identification of a

comprehensive model (Eq. 1-3) can be anticipated to be very difficult. Ideally, one would even try

to retain the differential nature of the original system by using appropriate techniques, rather than

projecting the system onto a set of basis functions. There are indeed situations in which a genuine

distributed-parameter model is definitely required to design a satisfactory controller (e.g. a low-

order discrete model would be unappropriate if high order modes were unstable). However, unless

the need for such a model becomes really apparent, and bearing in mind that the model identification

will have to be made from noisy experimental data until an accurate tokamak plasma simulator is

available, a system discretization seems unavoidable. Nonetheless, a sufficient number of basis

functions is required if the original distributed-parameter system is to be fairly well approximated.

The number of parameters to be identified in Eq.(3a-3b) then rapidly increases with the size of

matrices Aij, Bk, and the possible solutions (when they exist) become multiple, unphysical and

unstable to small changes in the data : the identification problem becomes ill-conditioned.

Part of the difficulty stems from the fact that various time scales are involved in the dynamics of

the system, as seen from the order of magnitude of the parameter, ε, introduced above (ε ≈ 0.05 in JET

and it will be even smaller in a burning plasma). It seems judicious, then, to take advantage of this

small parameter and to investigate identification and control techniques which are based upon the

∂ ∂Ψ Ψ/ ( ) ( ) ( )t A t A T t B u t= + +11 12 1

ε ∂ ∂T t A t A T t B u t/ ( ) ( ) ( )= + +21 22 2Ψ
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theory of singularly perturbed systems and multiple-time-scale expansions [25]. This amounts to

expanding each dependent variable in powers of ε, defining an additional independent variable,

τ = t/ε, to describe the fast dynamics while t describes the slow dynamics, and to splitting variables

into a sum of a fast and a slow component which depend on τ and t, respectively. A well-posed

set of ordinary differential equations is then obtained by grouping terms of equal order in ε and

imposing that, in the asymptotic limit where ε tends to zero, the initial conditions for the slow

dynamics (t = 0) must match the quasi-steady-state solution on the fast dynamics (τ → ∞).

It is clear from the structure of the original system that, apart from the anomalous flux redistribution

caused by some rapid MHD events such as sawtooth crashes, etc… (which will be treated by the

controller as external disturbances), Ψ has only a slow evolution. Its fast component can be set

identically to zero in the two-time-scale model. Besides, this would be true for any other magnetic

variable (current density, safety factor profile, etc...). We shall therefore seek two models of reduced

orders, a slow model (or quasi-steady-state model),

          together with (4)

and a fast model,

(5)

Here Ts and Tf are the slow and fast components, respectively, of the temperature (T=Ts+Tf), and us

and uf are the slow and fast components, respectively, of the input vector (u=us+uf). It is

straightforward to show that the new matrices to be identified are linked to the original model

matrices (Eq. 3a-3b) through the relations :

  As = A11 - A12 . A
-1 . A21            (6a)

   Bs = B1 - A12 . A
-1 . B2            (6b)

(6c)

(6d)

(6e)

(6f)

2.3. Non-dimensional Controlled Variables

Although the poloidal magnetic flux and plasma temperature appear as relevant state variables, it

∂ ∂Ψ Ψ/ t A B u
s s s

== ++ T C D u
s s s s
== ++Ψ

∂ ∂T t A T B uf f f f f/ = +

C A As = − −
22

1
21.

D A Bs = − −
22

1
2.

A Af = −ε 1
22

B Bf = −ε 1
2

22
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can prove practical to control some other plasma parameters which are more directly linked with

MHD stability criteria or plasma confinement physics (e.g. current density, internal inductance and

plasma pressure, beta parameter, critical gradients, ITB triggering, etc ..). If, in addition, the controlled

variables were non-dimensional, then the range of their optimum target values would be known

and would not depend so much on the engineering parameters of a particular discharge (toroidal

magnetic field, plasma density, current, shape, etc...).

A minimal possible set of magnetic and kinetic parameter profiles which fulfill such requirements

is composed of the safety factor, q(x), and the gyro-normalized temperature gradient, ρTe*(x). They

have been chosen in earlier control experiments [16-19] and will therefore be introduced here into

the state-space model. In fact, to take account of the inverse dependence of the safety factor on the

current density or the poloidal flux, the rotational transform, ι(x)) = 1/q(x), is used to describe the

magnetic state of the plasma rather than q(x) itself. As for Ψ(x) and T(x), A Galerkin approximation

is used and in the following, the notations Ψ, T, µ and ρ will refer to the coefficients of Ψ(x), T(x),

ι(x) and ρTe*(x) expansions, respectively. The same cubic splines are used for ι(x)) Ψ(x) and T(x)

(Fig. 1a), but ρTe*(x) involves the gradient of a noisy signal and requires a stronger smoothing. A

piecewise linear fit with the basis functions, bi(x), displayed on Fig. 1b was shown to be a better

choice for ρTe*(x) [17].

Noticing that ι(x)) = dΨ(x)/dΦ(x) and ρTe*(x) ∝ [√Te(x)BT(x)].[∇Te(x)/Te(x)] (Ref. [20]), where

BT(x) and Φ(x) are the toroidal magnetic field on the equatorial plane and the toroidal magnetic

flux, respectively, one can nearly map the variations of ι(x) and ρTe*(x) around a given equilibrium

onto the variations of the state variables Ψ(x) and T(x) around this equilibrium, at least approximately

and in the linear domain. This requires that the time variations of BT(x) and Φ(x) are not essential

and do not depend intrinsically on the power inputs, an assumption that can be checked quantitatively

from the experimental data (see section 2.5.2). As a result, ι(x) and ρTe*(x) can possibly be treated

as alternative state variables, and not as output variables that depend on the states of the system as

well as on the value of the system inputs. Linearizing the expressions above for ι(x) and ρTe*(x)

around the equilibrium state, differentiating the basis functions and neglecting the toroidal field

variations and the residues in the various expansions, direct matrix relations between the Galerkin

coefficients µ and Ψ, on one hand, and between T and ρ on the other hand can be formally derived.

Within the two-time-scale approximation, this yields the following type of relations :

and   (or                               ) (7)

and

(8)

which complete the original system (Eq. 4-5). As an alternative to the reduced order models governing

Ψ and T, one can therefore seek approximate state space models governing µ and ρ in the form:

ρ
ρf T f

C T==
,

.

µ
µ ψ

== C
,

.Ψ ρ
ρ ψ ρ ψs s

C D u== ++
, ,
Ψ ρ µ

ρ µ ρ µs s
C D u== ++

, ,
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together with (9)

and

       (10)

If a set of matrices As, Bs, Cs, Ds, and Af, Bf can be identified so that the model reproduces fairly the data,

it follows that the non-dimensional variables [µ, ρ] can be controlled by appying singular perturbation

methods directly to state-feedback control rather than to a less robust output-feedback control for which

the closed-loop stability of the high-frequency dynamics would not be guaranteed [25].

2.4. PRELIMINARY INVESTIGATIONS ON MODEL IDENTIFICATION USING LOCAL

PROFILE DATA AND THE H&CD ACTUATORS

2.4.1. Computer-Simulated Data

A series of interactive routines have been developed to try and numerically identify the various

elements of two-time-scale state-space plasma models (Eq. 4-5, 7-8 or 9-10), either from computer

simulated data or from real experimental data. First attempts were made using simulated data, i.e.

data obtained through semi-empirical time-dependent simulations of the plasma evolution with

large transport codes. It would indeed be quite satisfactory if one could design a profile controller

using numerical simulations, prior to running any real experiment. However, using the JETTO

code [24] to simulate previous control experiments, with a controller based only on the static plasma

response, it was found that the static response and the resulting controller gain matrices were

significantly different from experimentally deduced ones [26]. A fortiori, we believe that the present

understanding of plasma transport phenomena is not sufficient yet to make reliable predictions of

the dynamic response of the plasma. This is particularly true concerning the evolution of some

plasma parameter profiles in the advanced operation scenarios. Hence, for the time being, simulations

can prove useful for training purposes, but dedicated open-loop experiments are necessary to collect

the required data before running sophisticated model identification codes.

Various sets of codes have been written to cope with different types of data and to investigate

different data processing and identification strategies. They all rely heavily on system identification

algorithms described in [27] and on the corresponding MATLAB® Identification Toolbox functions.

They run on the JET cluster of UNIX workstations.

The linearization which is at the origin of the state-space model assumes that all data (inputs,

outputs and state variables) are defined with respect to a reference equilibrium state which

corresponds to a given set of plasma parameters and input powers. However, JET pulses are generally

too short to reach a well-defined equilibrium state, particularly in the advanced scenarios, and

therefore such a state cannot be determined accurately. Nevertheless, thanks to some simple data

processing, approximate state space models can be found without explicit knowledge of the reference

state (see appendix A2).

ρ µs s s sC D u= +∂µ ∂ µ/ t A B us s s= +

∂ρ ∂ ρf f f f ft A B u/ = +
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To illustrate the general methodology underlying data processing and the proposed identification

procedures, we shall discuss here some results obtained with JETTO-simulated data. In the example

shown, the first 5 seconds of the simulations are based on an experimental pulse (JET pulse #

62527), i.e. the inputs are chosen accordingly and some poorly known parameters are tuned to

reproduce the experiment at best. The simulations are then extended with either slow or fast

modulations of one (or all) of the H&CD input powers. In these simulations, the plasma current

was maintained constant through an independent feedback control using the surface loop voltage

as an actuator. The latter was therefore not considered as a potential actuator for profile control (see

section 3). The identification of the slow (resistive) time scale response requires modulation periods

of about 1 second or more, while the fast (confinement) time scale can better be resolved with

modulation periods of the order of 100 ms or less. We thus performed two sets of simulations and

the sampling time for storing the simulation results was chosen as 0.01 s for the fast modulation

(FM) pulses and  0.09s for the slow modulation (SM) ones. Each set consists of a reference pulse

without any input modulation, 3 pulses where each H&CD actuator (LH, NBI, ICRH) is modulated

(an example is shown on Fig. 2), and a pulse where all the input powers are modulated simultaneously

and randomly.

A stepwise approach was followed in order to identify only some particular elements of the

model at a time. Whenever possible, matrices obtained at one step were either fixed or used to

initialize the following step of the identification procedure. For instance, the identification of the

fast model matrices Af and Bf can be carried out by considering only the simulations where each

one, and then all of the input powers have been modulated randomly, with different high frequency

spectra (f ≈ 10Hz), around an average power corresponding to the reference state. The slow

component (e.g. f < 2.5Hz) of both the inputs and outputs are filtered out so that the fast response

can be isolated from the slow relaxation process due to resistive diffusion. A typical waveform for

the fast modulations of the NBI power is shown on Fig. 2 (red dotted trace).

To start with a low order model, let us consider for instance the electron temperature (Eq. 5) at

only two normalized radii (x = 0.3 and x = 0.4). The corresponding Af can be identified from the

FM pulse where the three H&CD powers were varied. A first estimate of the Bf matrix is also

obtained in the process. It is then refined, column by column, by using pulses where only one input

was varied at a time, keeping Af fixed and neglecting density variations. In a last step the density

variations are included and the rest of the Bf matrix is filled. In this example, the first eigenvalue of

Af was found to be around -14 s-1, corresponding to a characteristic time of 0.07s. The second one

was too close to the sampling frequency to be of particular relevance. A comparison between the

original data obtained from the JETTO simulation and the data reconstructed from the identified

state space model is shown on Fig. 3 (a common time offset has been removed). The fit between a

set of original data, say Y(i) where i is a sample index, and the corresponding reconstructed data,

y(i), is characterized by a parameter,
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(11)

where N is the number of samples and the bracket denotes an average over the samples. Fit parameters

of the order of 70-90% (84% and 76% in this example) were found.

Another stage of the identification process provides an approximation for the As matrix (slow

model) by considering the free dynamics of the system on the resistive time scale. This is obtained

from the reference pulse where all the actuators are constant. The example shown here (Fig.4)

concerns two elements of the Ψ vector corresponding to the same radii as before,  x = 0.3 and x =

0.4. Excellent fit parameters of 98% and 95% are found. The smallest eigenvalue of the As matrix

corresponds to a resistive time constant τR = 6.9 s. In a further step, Bs is then identified using

various SM pulses (see for instance the blue trace on Fig. 2) while keeping As fixed. Finally, in the

ultimate step, the identification of Cs and Ds from SM pulses provides the last elements of a slow

state space model governing the coupled evolution of the slow variables, Ψ, and the quasi-steady-

state component of the kinetic variables, Ts. Note from Eq. (6d-6f) that, for consistency, Ds should

ideally be equal to [-(Af)
-1. Bf] so that only Cs should be determined at this stage. This constraint

can indeed be imposed during the identification. However, the determination of Bf generally contains

large uncertainties and one has to bear in mind that the main request we must set on the models to

be sought is that they fit the data as closely as possible, even at the expense of breaking some

structural link between the reduced order models and the original full order model. Better fits were

obtained without this constraint and typical results are shown on Fig.5 with fit parameters around

60-80%.

2.4.2. JET Experimental Data

In order to compare the degrees of accuracy that can be obtained using simulated and experimental

data, and to make the necessary adaptations, the general strategy described above was also applied

to some preliminary data taken on JET during the 2006 restart campaign. The plasma configuration

was not optimized yet for advanced operation and was therefore different from the one used later

during the dedicated identification and control experiments. But this was useful to check that the

fast power modulations could be technically delivered by the H&CD systems, that the experimental

data could be processed adequately, and to find ways of improving the identification algorithms so

that they provide the required models for a reliable controller design. Again, these pulses were

performed at constant plasma current so that only the three H&CD systems were considered as

profile control actuators.The constant H&CD waveforms for the reference pulse, and the randomly

modulated waveforms for two other pulses are shown on Fig. 6. In some pulses, the minimum time

between power changes were chosen as 20ms for the LH and ICRH powers and 40 ms for NBI, and

the systems responded satisfactorily to these modulated waveforms. As before we started with the
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identification of the matrix As by considering only the reference pulse. On Fig. 7, the free dynamics

of the Ψ Galerkin coefficients obtained from the model for the cubic splines with knots at x = 0.4,

0.5 and 0.6 are compared with the corresponding experimental data. The noise in the experimental

data is due to the noise in the interfero-polarimetry and magnetic measurements used for the flux

surface reconstruction. The fit parameters are in the range 60-70% and the eigenvalues of the

identified As matrix correspond to time constants of 5.2s, 1.7s and 0.4s.

In a second step, Bs was identified using a pulse with slow modulations of the inputs, while

fixing As as found above. A comparison between the model response and the experimental data is

shown on Fig. 8. Fit parameters were found in the range 20-40%, yet the response of the model was

satisfactory.

The fast model identification relies on experiments in which input powers must be modulated at

high frequency (> 10Hz), and that forces Af and Bf to be identified simultaneously. However,

noting again from Eq. (6d-6f) that Ds = -Af
-1.Bf, and imposing this constraint on the identification

of Af and Bf, one is able to limit the number of matrix elements to identify. By way of illustration,

some results are displayed on Fig. 9 for three coefficients of the Te profile corresponding to a cubic

spline expansion with the same knots as previously for Ψ.

Identifying models of order 3 (sometimes up to order 4) has proved successful even when using

noisy experimental data. It is however difficult to find models of higher order because the physical

characteristic times (eigenvalues) which can possibly be identified are squeezed between the longest

one, which is determined by the plasma size and temperature (resistive diffusion), and the time

resolution of the data. So, when the state space data is taken locally, as was done above with

Galerkin coefficients corresponding to the data at given normalized radii, the identified models

cannot describe the profile dynamics over a very wide part of the plasma cross section. The order of

the model to be identified increases when adding data from a larger number of radii. Controlling

the values of Ψ(x), Te (x), q(x) or ρTe*(x) only at a few radii may be sufficient for some applications.

But for global profile control purposes, it seems more judicious to look for models which can fairly

describe the entire profiles while remaining of relatively low order. Such an approach will be

described in the next section.

2.5. EXPERIMENTAL MODEL IDENTIFICATION USING GLOBAL PROFILE DATA

WITH FOUR ACTUATORS

2.5.1. Open-loop Modulation Experiments in the Boundary Flux Control Mode

The first real-time profile control experiments performed during the 2006-2007 scientific campaign

on JET were dedicated to a test of the proposed dynamic-model approach for the control of the

safety factor profile. The chosen plasma scenario for these experiments was a high triangularity

scenario (δ=0.45) with a toroidal field of 3T, a plasma current of 1.5MA, and an average plasma

density of about 3.5.1019 m-3 [28].
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An original feature of these experiments is that they were performed in a new mode of operation of

the JET Extreme Shape Controller (XSC) [29], in which the PF system controls the plasma shape

together with the plasma boundary flux [30], rather than together with the plasma current, as in the

conventional XSC operation. The total plasma current is therefore allowed to float within some safety

limits (± 0.5 MA). This will enable full control of the primary flux consumption for fully non-inductive

steady state operation. For profile control purposes, it allows to include the edge safety factor (q95 or

qedge) into the q-profile control, so that the total plasma current is controlled by the full combination of

the H&CD and ohmic (PF) systems in partially non-inductive operation, or only by the combination

of the H&CD systems in fully non-inductive operation. The surface loop voltage (i.e. the boundary

flux or more precisely some parts of the PF system) can therefore be treated as an additional profile

control actuator. It is indeed the most powerful one to control the current density in the outer layers of

the plasma (x > 0.7-0.8) or the q-profile during plasma current ramp-up.

To collect enough relevant data and identify a global plasma model, a number of specific open-

loop experiments were performed in the early phase of the campaign. The available actuators were

modulated randomly around a given set of input values corresponding to the so-called reference state.

In order to modulate the surface loop voltage (Vext in Eq. 2a) a modulation of the slope of the boundary

flux was requested. The response of the XSC is shown in blue and the corresponding oscillations of

the plasma current are shown on Fig.10b. The dynamic performance of the flux control strongly

depends on the bandwidth of the power amplifier on the JET central solenoid (P1 coil) and the response

time could not be reduced further. The loop voltage always exhibits a low frequency oscillation of a

significant amplitude before settling, with a time lag of about 2 seconds, to its target value defined by

the requested flux slope. This is not important for model identification as we can use the delivered

value of Vext as the input variable rather than the requested one, but it will be shown later to have

severe consequences on the closed-loop behaviour of the controller (see section 4).

Typical modulations of the H&CD actuators are shown in Fig. 11 where only the NBI power is

modulated, and Fig.12 where all the H&CD powers are modulated in the same pulse. Since the q-

profile evolves on the (slow) resistive time scale, these modulations were done at relatively low

frequencies, typically lower than 5Hz.

2.5.2. Transformation of the state variables from Ψ(x) to ι(x) = 1/q(x)

In order to use singular perturbation methods and optimal control techniques [25] to control the

safety factor profile, or its inverse, ι(x), it is necessary to identify a state space model of the form

given by Eq. (9-10). As explained in section 2.3, the intuitive justification for the existence of such

a model (in the linear domain) lies in the fact that the variations of the toroidal magnetic field and

flux should be small with respect to the variations of the poloidal flux, a conjecture that can be

verified on the modulated data. Furthermore, if one can find the quantitative (linearized) mapping

between the internal poloidal flux vector, Ψ, and the vector µ which describes the ι(x) profile, the

constraints which are imposed on the Ψ-model (Eq.4) could be directly transposed onto the µ-
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model (Eq.9). For instance, the column matrix, BΨV, appearing on Eq.(2a) is in principle known

from the derivation leading from Eq. (1) to Eq.(2a-2b) [appendix†A1]. Therefore, if an approximate

Ψ-µ mapping exists, the particular column corresponding to the input Vext in the matrix Bs of Eq.

(9) is also known, at least approximately.

The real-time magnetic reconstruction used in these experiments is based on finding the best

least-square fit of a large number of magnetic and interfero-polarimetry measurements, using

polynomial parameterizations of the poloidal and toroidal flux functions [31]. This provides a rational

fraction approximation for ι(x))=dΨ(x)/dΦ(x). We have therefore analysed the variations of the

toroidal flux polynomial coefficients as a function of time during the modulation experiments and

found that they do not vary substantially. Typical variations of q(x), Ψ(x) and Φ(x) can be seen on

Fig.13a-13c for three different modulation pulses (Pulse No: 67871, 67872 and 68016) at two

different times (t = 6s and t = 11s). It appears that the variations of the safety factor profile are

indeed due, to a very large extent, to the variations of the internal poloidal flux. The toroidal flux

function can therefore be assumed nearly constant when q(x) varies, as long as the plasma

configuration (shape) and the vacuum toroidal magnetic field do not change. Table 1 gives the

average values of Φ’(x)=dΦ/dx over many pulses and over time. These average values were used to

calculate ι(x) in terms of Ψ’(x)=dΨ/dx and thus define an approximate Ψ-µ mapping around our

reference state. The Vext column of the Bs matrix then follows from the knowledge of BΨV.

2.5.3. Singular Vectors of the Static Gain Matrix and Model Order Reduction

With a limited number of actuators, the family of achievable plasma states has only a few degrees

of freedom. However it was shown in previous work [16-19] that a controller based on a least

square minimization can achieve an adequate compromise in order to approach the requested plasma

state at best. In any case, a complete set of magnetic and kinetic profiles which corresponds to a

given stationary plasma state is never exactly known in every detail in advance, for it depends on a

number of parameters which are not controlled or even not measured accurately (e.g. impurity

profiles, etc ...). Therefore the coherence between the various target profiles that are requested by

the operator cannot be assessed in advance and a least square control seems to be a good way to

drive and maintain the plasma on the closest coherent stationary state. This does not preclude, of

course, choosing a set of target profiles which are likely to be achievable, or nearly achievable,

with the available actuators.

In previous experiments, the controller was based on a static model, i.e. on a singular value

decomposition (SVD) of the static gain matrix, K, which was obtained experimentally by comparing

several discharges with various, but constant, power levels. Modal (decoupled) control was achieved

by retaining only a few principal components in the SVD (the only meaningful components), so that

the controller gains obtained from the pseudo-inversion of K could have reasonable values [19].

This idea can be extended to the present dynamic-model approach in the following way. In order

to come up with a state space model which governs the whole profiles (e.g. 10 spline coefficients)
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while retaining only the most meaningful characteristics of the system, one can project the original

data on an appropriate subspace of reduced dimension (say 3-4), identify the dynamics of the

system within this subspace, and neglect the dynamics of the system within the supplementary

(orthogonal) subspace. Several choices can be made to define the reduced state space and its basis

vectors. The static gain matrix is an important element of the system and is indeed essential even

for a controller based on a dynamic model. Another set of meaningful elements are the eigenvectors

which correspond to the smallest eigenvalues (longest characteristic times) of the system. For the

slow model, it seems preferable to put the emphasis on the static gain matrix, as was done in the

previous static-model approach, and choose the first output singular vectors of K as a basis, so that

the span of the reduced space contains the meaningful components of the static gain matrix. For the

fast model, the static gain matrix is nil and an obvious choice would be to choose the first eigenvectors

of the Af matrix. In both cases an initial guess, for K and for Af, is needed in order to select a state

space basis in which to perform the reduced-order model identification. The process could be iterated

if necessary.

In the example presented here, a slow model of order 3 was obtained for the dynamics of ι(x). A

preliminary static gain matrix, K(0), was obtained from discharges having the same initial phase

(plasma breakdown and current ramp-up) but in which an incremental step was applied on each of

the actuators (H&CD powers and loop voltage) at the same time in the early heating phase and after

a short plasma current flat top. The size of the output vectors was nµ = 10 and the size of the input

vectors was nu = 4 so that K(0) was a 10 × 4 matrix.

The principal components of K(0) were then obtained from its singular value decomposition,

(12)

(throughout the paper, a + superscript indicates a transposed vector or matrix), and the state vectors,

x(t), were restricted to be linear combinations of the first three singular vectors (W1
(0), W2

(0), W3
(0)),

chosen as a basis for the 3-dimensional state space. They correspond to the three largest singular

values in Σ(0. The entire µ-space of dimension nµ can be represented onto a new orthogonal basis

made of the complete set of singular vectors, Wk
(0), with k = 1, 2, ..., nµ. In this basis, the output

vectors are represented by new column vectors, x(0), and the transformation between µ and x(0)

reads µ = W(0). x(0) and x(0) = W(0)+. µ. The last components of x(0), corresponding to k > 3, are

assumed to be irrelevant and are neglected. The basis functions of the 3-dimensional subspace on

which the ι(x) profiles are thus projected can be constructed from the chosen cubic spline expansion

(Fig.1a) using the elements of W1
(0), W2

(0), W3
(0) as the spline coefficients. They are displayed on

Fig.14. A model of order nx = 3 is then sought in which the state of the system is simply given by

(13a)
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and its dynamics is governed by an equation in the form

. (13b)

2.5.4. Reduced-Order Model Identification and Validation

Once the modulated ι(x) data (10 values at x = 0.1, 0.2...1, obtained from the real-time magnetic

reconstruction [31]) has been projected onto the subspace of dimension 3 defined above (Eq. 13a),

the slow model identification can proceed as before (section 2.4). The matrices As and Bs are identified

to produce the best least square fit to the [u(t), x(t)] data, and the model output equation which

provides the predicted µ(t) data for a set of inputs u(t), is assumed to be

(14)

with x(t) solution of Eq. (13b). The prediction is finally checked against the original µ(t) data.

Any higher-order modes of ι(x) with components xk
(0)

 ≠ 0 in the supplementary space (k = 4, 5,

..., 10) are assumed to have a fast stable dynamics, and are neglected owing to the fact that they

have a negligible contribution in the SVD of the static gain matrix, K(0).

Comparing the experimental ι(x) data with predictions using the measured inputs and the identified

model shows a good agreement. Typical results are shown here for three pulses which were used in

the identification process : when only one actuator such as the NBI power or Vext is modulated (Fig.

15 and 16, respectively) or when several actuators are modulated simultaneously (Fig. 17). Fit

parameters in the range 40-70% were obtained for most cases. A better validation can be made by

using pulses which were not used to identify the model. This was done for a number of pulses in

another experimental session where softer variations of the inputs were obtained as a result of

preliminary feedback tests, more typical of the real closed-loop experiments to come. An example

is shown on Fig. 18 with fit parameters between 50% and 85%. Altogether, the slow model thus

identified was therefore found to be sufficiently accurate for closed-loop q-profile control experiments

to be attempted.

3. PROFILE CONTROLLER DESIGN AND CLOSED-LOOP SIMULATIONS

Given a two-time-scale model governing the evolution of a particular set of slow and fast variables

[such as Ψ-T in Eq. (4-5) or µ−ρ in Eq. (7-10) or Eq. (13b-14)], we shall now describe the quasi-

optimal profile controller (PC) which was implemented on JET to try and control, or regulate, the

evolution of the selected variables. The PC design relies on the theory of singular perturbations

applied to optimal state control [25], a technique which properly decouples the two time scales

when the parameter ε (Eq. 2-3) is sufficiently small. With the present design, the PC should respond

more rapidly to fast (kinetic) perturbations than it did with the former one [16-19], while converging

towards a requested target plasma state on the resistive time scale.

˙( ) ( ) ( )x t A x t B u ts s= ⋅ + ⋅

µ( ) ( )( ) ( ) ( )t W W W x t= [ ] ⋅1
0

2
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3
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The two-time-scale profile controller is organized around two main loops :

(i) a slow, proportional-plus-integral (PI), regulator control loop which, on the basis of the

reduced-order slow model, drives the system towards the coherent equilibrium state which

approaches at best the prescribed target state (see section 2.5.3), and regulates its evolution.

On the same time scale, the variation of the slow components of the kinetic variables (e.g.

ρs in eq. 9)  is governed by the evolution of the magnetic variables and by the slow evolution

of the actuators subject to the slow control law ;

(ii) a fast proportional control loop which ensures the stability of the kinetic variables on the

plasma confinement time scale, bringing them back, at any time, on an evolving thermal

quasi-equilibrium which is consistent with the evolving magnetic configuration. This loop

regulates the transient behaviour of the kinetic variables when they are subject to rapid

disturbances along the slow trajectory.

The generic behaviour of the system can be schematically described using the diagram displayed

on Fig.19. Two typical trajectories are shown on this figure. In open-loop operation, with constant

input powers, the system slowly relaxes towards equilibrium (blue trajectory). The particular

equilibrium which corresponds to the reference input powers is called the reference state. When a

different target state has been chosen (assumed on the figure to sit on the locus of coherent equilibrium

states) and the two feedback loops are closed, the system responds according to a composite control

law and the corresponding trajectory in state space (red trace) can be decomposed roughly in two

parts. First, the fast components of the kinetic variables (e.g. ρf in eq. 10) are driven rapidly to zero,

and are maintained near zero by the fast proportional feedback loop all along the control phase. On

the occurrence of undesired fast transients, this brings the system back into a quasi-steady state that

is consistent, at any time, with the slowly evolving magnetic state. Then, the system is driven

slowly towards the target equilibrium state (or towards the closest coherent equilibrium state if the

requested target is not a coherent equilibrium).

As already mentioned in section 2.5.1, the present profile controller has been designed to run in

two operational modes: (i) the total plasma current can either be separately controlled together with

the plasma shape through the PF system (normal use of the JET Extreme Shape Controller [29]),

(ii) or more loosely by the PC (q-profile control) while the PF system controls the plasma shape

and the boundary magnetic flux. In the former case (i), the PC provides power requests on the

H&CD systems and the outer part of the q-profile is not included in the controlled variables. In the

latter case (ii), the PC also provides a boundary flux request, so that part of the PF system (namely

the central solenoid  P1 coil) is used as an additional PC actuator. The maximum number of actuators

is then four, and the controlled µ-vector should then contain the outmost value, 1/qedge, of the q-

profile, a parameter which is representative of the total plasma current. In the present magnetic

equilibrium reconstruction [31], the separatrix is approximated by a regular boundary with finite
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safety factor at the edge, qedge. If the magnetic separatrix were to be identified in the reconstruction

process, the value of the safety factor on a magnetic surface encircling, say, 95% of the internal

poloidal flux (q95) could be used.

3.1. NEAR-OPTIMAL COMPOSITE CONTROL

Let us discard, for the moment, the plasma response to those components of the input vector that

are not used as control actuators, such as the plasma density, n(t). Their variations will be considered

later as disturbances (see section 3.2). The input vector u(t), of dimension nu, then refers only here

to the actuators, and we consider only the corresponding blocks of the two-time-scale state space

models. They provide an accurate description of the system dynamics when the disturbance variables

do not depart significantly from their reference values.

From now on, for the sake of clarity, we shall assume that the controlled profiles are ι(x) and

ρ*Te(x) so that the controlled variables are the vector set [µ, ρ] of dimensions (nµ, nρ). We shall use

the notation [x, z] for the magnetic and kinetic state vectors, of dimensions (nx, nz), leaving the

possibility that the order of the identified models is lower than the number of variables in the

vectors µ and ρ. Thus, the reduced two-time scale models will be assumed to stem from a full order

model with the generic form :

(15a)

(15b)

where C can be a rectangular matrix (or the identity matrix if [x, z] = [µ, ρ]). We also define

reduced variables:

X(t) = x(t) – x∞, Z(t) = z(t)– z∞, U(t) = u(t) – u∞ , (16a)

µ̃ µ µ= − ∞ and  ρ̃ ρ ρ= − ∞ (16b)

where the subscript refers to a set of coherent final equilibrium values (note that, in the linearized

model, x(t), z(t), u(t), µ(t) and ρ(t) are themselves variations of some raw variables, X(t), Z(t), U(t),

M(t), R(t), with respect to their reference values, Xref, Zref, Uref, Mref, Rref, and so are x∞, z∞, u∞, µ∞

and ρ∞. Given a requested target (or setpoint) for the output variables, [µtarget, ρtarget], the vectors

[µ∞, ρ∞] represent the closest coherent state achievable by the controller according to the model

(see section 2.5.3), and u∞ represents the corresponding input vector. These vectors can be calculated
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from a particular pseudo-inverse, Kinv, of the model static gain matrix, K = - C.A-1.B, already

mentioned in section 2.5.3, in such a way as to minimize a particular quadratic error involving the

controlled variables (see section 3.1.1) :

   u∞ = Kinv
t et

t et
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Given a singularly perturbed dynamical system under the generic form of Eq. (15a-15b), with a

magnetic state vector, x=xs, and a kinetic state vector, z=zs+zf, and under a set of reasonable

controllability conditions [25], the theory of linear-quadratic optimal control can be adapted to find

a slow control law,

Us(t) = - Gs. X(t) (18a)

and a fast one,

Uf(t) = - Gf . Zf(t) (18b)

so that the composite feedback control, U(t) = Us(t) + Uf(t), is stabilizing and provides the best

O(ε2) solution to the minimization of the cost functional :
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where Q and R are positive-semidefinite and positive-definite matrices, respectively. When these

matrices are properly tuned, the controller offers a good compromise between performance and

cost in terms of actuator power.

As it stands in Eq. 18a, the slow feedback control law provides only proportional control and

therefore does not ensure that one achieves x → x∞ without a significant steady state offset. A

proportional-plus-integral control is required for this to be guaranteed. For this purpose, we introduce

an extra state vector defined as [32]

                                                          ζ = K
t

t
d

t

ζ
µ

ρ
τ⋅

⎡

⎣
⎢

⎤

⎦
⎥∫ ˜ ( )

˜( )
0

(20)

where Kζ is an arbitrary matrix of dimensions (nu × nx), which is O(1) in the ε ordering (for instance,

one can choose Kζ = Kinv). We thus add to the original system, the additional dynamical equation,

˙ ( )

( )
ζ ζ= ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥K C

X t

Z t . (21)
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Applying conventional optimal control to the minimization of a new functional,

             J [U(t)] = dt X t Z t Q
X t

Z t
t t U t R U t

0

2
∞

+ + + +∫ [ ] ⋅ ⋅
⎡

⎣
⎢

⎤

⎦
⎥+ ⋅ + ⋅ ⋅

⎧
⎨
⎩

⎫
⎬
⎭

( ) ( )
( )

( )
( ) ( ) ( ) ( )α ζ ζζ (22)

with αζ real would then provide the desired PI control law,

                              U(t) =− ⋅

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − ⋅
⎡

⎣
⎢

⎤

⎦
⎥− ⋅ ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥∫G

X t

Z t

t

G
X t

Z t
G K C

X t

Z t
dt

t( )

( )

( )

( )

( )

( )

( )
ζ

ζ1 2
0

. (23)

The dynamical system [X, Z, ζ] has also the required structure for applying the singular perturbation

analysis and can therefore be reduced using the two-time-scale approximation. Kζ being O(1) in

the ε ordering, Eq. (21) has a slow dynamics and ζ is obviously a slow variable. But, before giving

a detailed description of the two-time-scale controller design, some specific properties regarding

the achievable plasma states as well as the controllability and observability of the system must be

discussed. This will be done in the following sections (3.1.1 to 3.1.3). Then, in sections 3.1.4 and

3.1.5, we shall look for the composite control law, U(t) =  Us(t) + Uf(t), which provides the best

O(ε2) solution to the minimization of the functional J[U(t)] (Eq.22).

3.1.1. Choice of Kz and Closest Coherent Achievable State

As already noted before, because of the infinite dimensionality of the system and the limited number

of actuators, the controller cannot achieve every possible [ι(x), ρ*Te(x)] final state. Once a model is

known, there exist a family of identified equilibrium states that are generated by all possible input

vectors, u∞. They are artistically represented by a thick trace on Fig. 19. The discrete model

identification procedures described in section 2 implied that they belong to the span of the basis

functions, ai(x) and bi(x) (Fig. 1), an assumption which is largely consistent with experimental

accuracy. The distributed target profiles [ιtarget(x), ρ*Te,target(x)] will also be defined by their Galerkin

coefficients, [µtarget, ρtarget], on this set of basis functions (see appendix A1.2). But the reduced

variables, [ ˜ , ˜µ ρ] were defined in terms of some achieved stationary state, [µ∞, ρ∞], which needs to

be specified once an arbitrary target state has been chosen. In Eq. (18) we have defined a coherent

achievable state by applying the operator (K.Kinv) to the target state, where Kinv is a pseudo-inverse

of the static gain matrix, K. This pseudo-inverse is not unique though, and it must be defined in

terms of a minimization criterion. We therefore define the closest coherent achievable state [µ∞,

ρ∞], within the family of equilibrium states given by the model, as the one that corresponds to the

input vector, u∞, for which the quadratic functional,

      I∞ =
1

2 1

2

4 3

2

1

2

3

4

x x
x x x

x x
x x x

x

x

x

x

−
( )− ( )[ ] +

−
( )− ( )[ ]∞ ∞∫ ∫ι ι

λ
ρ ρtarget

ITB
Te, Te, target

 d d* *
  (24)
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is minimum. The parameter λITB is a weighting parameter which is zero for magnetic control only,

and whose order of magnitude should be around 103-104 when the temperature gradient is to be

controlled as well [ρ*Te(x) is about 1.4 × 10-2 at the formation of an ITB in JET].

The static gain matrix, K, of the identified model relates the input vector, u∞, to the vector

coefficients, [µ∞, ρ∞], of the achieved profiles,  [ι∞(x), ρ*Te,∞(x)]. Inserting the relation between u∞
and [ι∞(x), ρ*Te, ∞(x)] into the functional (24), one finds

                            I∞ [K, u∞] = K u K u
t et

t et

t et

t et
⋅ −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⋅ ⋅ ⋅ ⋅ −

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∞

+
+

∞

µ

ρ

µ

ρ
arg

arg

arg

arg
∆ ∆ (25)

where the product (∆+. ∆) is the Cholesky decomposition of a block-diagonal matrix

                              Π = 
Π

Π
∆ ∆

∆

∆

∆

∆
µ

ρ

µ

ρ

µ

ρλ

0

0

0

0

0

0ITB

⎡

⎣
⎢

⎤

⎦
⎥= ⋅ =

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

⎡

⎣
⎢

⎤

⎦
⎥+

+

(26)

and Πµ and Πρ are matrices whose elements are scalar products of the basis functions :

               Πµ[ ] = ∫i j i ja a d
,

( ) ( )x x x
x

x

1

2

and Πρ[ ] = ∫i j i jb b d
,

( ) ( )x x x
x

x

3

4

. (27)

After performing a singular value expansion of (∆. K),

∆ Σ⋅ = = ⋅ ⋅ +K K W Vˆ ˆ ˆ (28)

it is easy to show [19] that the input vector that minimizes I∞ [K, u∞] is :

u∞ = ˆ ˆ ˆarg

arg

arg

arg
V W V Wtr tr tr

t et

t et
tr tr tr

t et

t et
⋅ ⋅ ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥= ⋅ ⋅ ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥− + − +Σ ∆ Σ Π1 1µ

ρ

µ

ρ (29)

where ˆ , ˆW and VΣ  have been properly truncated (subscript ”tr”) to retain only the singular vectors

which correspond to finite singular values, and where W Wtr tr= ⋅−∆ 1 ˆ . It is to be noted that, by

definition, the norm of the singular vectors ˆ ˆW and V is one, and the decomposition (28) depends

on the units in which the input and output variables are measured. For the norm to be meaningful,

these units ought to be chosen (before performing the SVD) in relation to the typical variations of

the output variables or, for the input powers and loop voltage, in relation to the available headroom

with respect to their reference values.

Now, because of unavoidable redundancies in the respective actions of the available actuators,

K is a rectangular matrix whose condition number (the ratio of the largest to the smallest singular

value) is generally much larger than one [19]. Hence, target states that differ very slightly could

result, through the pseudo-inversion of K, in large variations in u∞. Or, in other words, trying to

approach a requested target state too closely may result in large power requests on different actuators

which nearly annihilate each other, while a different set of smaller input powers would provide a
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slightly different, yet quite satisfactory, stationary solution [µ∞, ρ∞]. Therefore, as in Ref. [19], we

shall retain, in the truncated singular value expansion of K̂ , only the nSV most significant terms

[nSV ≤ min(nu, nx)], neglecting those corresponding to outstandingly small (irrelevant) singular

values. In doing so, we use an approximation of the identified static gain matrix,

 K K W V W VT T T T T T T T= ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅− − + +∆ ∆ Σ Σ1 1ˆ ˆ ˆ ˆ (30)

which lies within the uncertainties of the model identification and which can be considered as an

alternative for the static gain matrix of the system. The input vector

u∞ = ˆ ˆ ˆarg

arg

arg

arg
V W V WT T T

t et

t et
T T T

t et

t et
⋅ ⋅ ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥= ⋅ ⋅ ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥− + − +Σ ∆ Σ Π1 1µ

ρ

µ

ρ (31)

is a solution to the minimization of I∞ [KT, u∞] and nSV can be chosen so that Eq. (31) yields steady

state actuator values which are†“reasonable” ( Σ ΣT tr
− −≤1 1 ).

An appropriate choice for Kinv, is therefore

K V Winv T T T= ⋅ ⋅ ⋅− +ˆ Σ Π1 (32)

and the closest coherent achievable state is defined as

  
x

z
A B u A B Kinv

t et

t et

∞

∞

−
∞

−⎡

⎣
⎢

⎤

⎦
⎥= − ⋅ ⋅ = − ⋅ ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥1 1 µ

ρ
arg

arg
(33a)

and

µ

ρ
∞

∞

⎡

⎣
⎢

⎤

⎦
⎥=  KT . u∞ •H  KT . u∞ = K KT inv

t et

t et
⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥

µ

ρ
arg

arg
(33b)

Under an optimal control law such as Eq. (23), with Kζ = [Kζµ Kζρ], some particular combinations,

K Kζµ ζρµ ρ⋅ + ⋅˜ ˜ , of the reduced variables would vanish without any offset when the system has

reached a stationary state, thanks to the PI control. This implies that, in steady state, the controller

achieves

  K Kζ ζ
µ

ρ

µ

ρ
⋅
⎡

⎣
⎢
⎤

⎦
⎥ → ⋅

⎡

⎣
⎢

⎤

⎦
⎥

∞

∞
(34)

i.e.

K K u K K uT Tζ ζ⋅ ⋅ → ⋅ ⋅ ∞ . (35)

Now, with the choice

K WTζ = ⋅+ Π, (36)
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one has K K VT T Tζ ⋅ = ⋅ +Σ ˆ , and this also implies that KT.u → KT.u∞ , i.e. [µ, ρ] → [µ∞, ρ∞]. Note

however that the rank of KT is nSV so that the final value of u(t) is not necessarily equal to u∞ when

nSV is smaller than nu. It can differ from u∞ by any combination of the input vectors which belong

to the null space of KT. Yet the norm of Kinv (Eq. 32) can be significantly reduced when nSV is

chosen judiciously ( Σ ΣT tr
− −≤1 1 ). The controller gains then take on reasonable values and the

final value of u(t) does not depart so much from u∞. It is also a solution to the minimization of I∞
[KT, u], and yields the same minimum value.

Another consequence of Eq. (36) is that (Kζ.KT.Kinv) = Kζ , so that Eq. (33) also entails

K K
t et

t et
ζ ζ

µ

ρ

µ

ρ
⋅
⎡

⎣
⎢

⎤

⎦
⎥= ⋅

⎡

⎣
⎢

⎤

⎦
⎥

∞

∞

arg

arg
, (37)

and, if one were to use conventional optimal control, the PI control law (Eq. 23) could be written in

terms of the requested target state :

U(t) = − ⋅
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(38)

3.1.2. System Controllability and Stabilizability

The generic model structure derived in appendix A1.2 naturally yields a state space whose dimension

is as large as the number of trial basis functions. However, when using experimental data, the

model identification techniques described in section 2 can hardly provide models whose order

exceeds 3 or 4. To be consistent with our generic model structure, models of higher order could be

artificially constructed by completing the selected subspace basis with a set of orthonormal vectors

in the supplementary subspace (see section 2.5.4), and imposing arbitrary large negative eigenvalues

and zero static gain to the new state components whose dynamics  have not been identified.

On the contrary, let us now assume that some identification method has generated a slow and a

fast model which fit the system dynamics satisfactorily, with a large number of state variables. If

the highest order modes are stable, they often exhibit fast but negligible responses to the inputs and

nearly zero static gains. When some eigenmodes have zero static gains, they cannot be influenced

by the inputs and the system is not completely controllable, in the academic sense. With small static

gains, some high-order modes may only be weakly controllable. They generally play little role in

the slow dynamics of the system, though, and their control is not essential. In these cases, a reduced-

order controllable system may be deduced from the original one by discarding the highest order

modes (see appendix A3), perhaps at the expense of a slight shift in the definition of the slow and

the fast time scales. Besides, with a larger number of modes, it is also likely that the eigenvalue

spectra of the slow and fast models overlap [i.e. that some “slow” eigenvalues are O(ε-1) larger

than the smallest one], or that the characteristic times of some of the fast model eigenmodes fall
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below the controller sampling time so that their dynamics can be discarded. Altogether, if the

available models have high orders, it may sometimes be possible and preferable to construct new

reduced-order systems that are completely controllable and/or more consistent with the two-time-

scale ordering. A general method to construct such reduced-order models is described in appendix

A3.

Now, even for a low-order system for which all the identified modes have finite static gains, the

question of the system controllability arises. The controllability and the stabilizability of the real

singularly perturbed system cannot be assessed directly when the identification of the full order

model is not possible. But, for ε sufficiently small, they can be deduced from the controllability and

stabilizability of the separate reduced-order models obtained within the two-time-scale approximation

[25]. The slow system associated with Eq. (15a-15b) will be written under the general form :

ẋ A x B us s s= + (39a)

µ

ρ
µ

ρ

µ

ρs

s

s

s

s
s s s s

C

C
x

D

D
u C x D u

⎡

⎣
⎢

⎤

⎦
⎥=

⎡

⎣
⎢

⎤

⎦
⎥⋅ +

⎡

⎣
⎢

⎤

⎦
⎥⋅ = ⋅ + ⋅

,

,

,

,
(39b)

so that

   K C A B Ds s s s= − ⋅ ⋅ +−1 , (39c)

and, with z = zs + zf and ρ = ρs + ρf , the fast system will be written as

ż A z B uf f f f f= + (40a)

 ρf f fC z= ⋅ . (40b)

The ith eigenvalue, λs,i, of the slow system is controllable when

Rank ( ),λs i n s sId A B
x

⋅ −[ ]  = nx (41a)

where Idnx  stands for the identity matrix of order nx, and the jth eigenvalue, λf,j, of the fast system

is controllable when

  Rank ( ),λf j n f fId A B
z

⋅ −[ ]  = nz . (41b)

If, after completing this test on the identified models, they are completely controllable [i.e. all their

eigenvalues are controllable], then we can infer that the original system is likely to be controllable.

Now, if they are not completely controllable even after order reduction, but all uncontrollable
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eigenvalues are stabilizable (i.e. either stable or stabilizable through feedback), optimal control can

still be used to find the control, U(t), that depends on the observable states and minimizes an

objective functional of the input and output variables. We shall always assume here that the system

is stabilizable so that an appropriate controller can be designed. Besides, during the various

experiments dedicated to model identification (section 2), no particular instability was observed

around the chosen reference state, and all the identified eigenvalues were stable.

3.1.3.  Output Variables, System Observability and Controlled States

In control engineering, the output variables of a state space model generally depend on the states of

the system as well as on the values of the input variables. Here, thanks to the physical basis underlying

the original, singularly perturbed, system (see sections 2.3 and 2.5.2), we have been able to assume

that the output variables of interest are only linked to the state variables, as in Eq. (15b). With such

output equations in the original full-order system, despite the fact that an input-dependent term

does appear in the slow system (Eq. 39b), the two-time-scale controller can be based on optimal

state control rather than output-feedback control for which the closed-loop stability of the real

system would not always be guaranteed, even when ε is small [25].

Let us now assume that, for some particular applications, one controls only a few selected

components, [µc, ρc], of the full µ and ρ vectors, with no particular interest in the global control of

the profiles. For such a purpose, the K and ∆ matrices, as well as the target vectors can indeed be

truncated adequately in the functional, I∞, of Eq. (25) which is then an approximate representation

of Eq. (24). With output vectors [µc , ρc = ρs,c+ρf,c] of dimensions n n
c cµ ρ,[ ] , governed by output

equations

µ

ρ
c

s c
s c s c s

t

t
C x t D u t

( )

( )
( ) ( )

,
, ,

⎡

⎣
⎢

⎤

⎦
⎥= ⋅ + ⋅ and ρf c f c ft C z t, ,( ) ( )= ⋅ , (42)

the observability of the states x and zf requires that

Rank 
( ),

,

λs i n s

s c

Id A

C
x

⋅ −⎡

⎣
⎢

⎤

⎦
⎥ = nx for i = 1, 2, ..., nx (43a)

and

Rank 
( ),

,

λf j n f

f c

Id A

C
z

⋅ −⎡

⎣
⎢

⎤

⎦
⎥ = nz for j = 1, 2, ..., nz. (43b)

All states may not be observable if the number of measured outputs is too small. As in section

3.1.2, if the available models have high orders and all the eigenmodes are not observable, one can

possibly construct reduced-order models by retaining the slowest eigenvalues only, so that they are

all observable from the selected output variables (or from a minimum set of measured output variables

which includes the selected ones). The general procedure described in appendix A3 can again be

used for this purpose, and the new reduced-order models should then be validated against the data.
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We shall then assume that one can always measure at least a number of output variables equal to the

order of the models, and those for which Eq. (42) can be inverted. This obviously ensures the

observability of the reduced-order systems, and therefore of the real, full-order, system if ε is small

enough [25].

3.1.4. The Slow Proportional-Integral Feedback Loop

Leaving the possibility that x ≠ µ, and using the additional variable, ζ, defined in Eq. (20), let us

now write the slow model in terms of the reduced variables. It involves only the slow variables (X,

ζ, ˜ , ˜µ ρs , Us) since the fast variables (zf, µf, ρf, Uf) vanish in the quasi-static approximation :

Ẋ A X B Us s s= + (44a)

  ˙ ˜
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where Kζ = [Kζµ Kζρ]. The particular case, x = µ, is obtained in a trivial way by choosing Cµ,s =
Idnµ and Dµ,s = 0.

We consider the control law, Uopt(t), which, by applying conventional optimal control to the real

system (assumed stabilizable), would minimize the quadratic functional given in Eq. (22). In order

to keep the number of tuning parameters reasonably small, the following choices were fixed :

i) Q = C C+ +⋅ ⋅ ⋅∆ ∆ (45)

where C has been defined in Eq. (15b) and ∆ has been defined in Eq. (26-27) in terms of the basis

functions, ai(x) and bi(x), shown on Fig. (1), ii) Kζ = WT
+.Π, to take advantage of Eq. (37), and iii)

R is chosen diagonal. With Eq. (45), the first term in the quadratic (22) represents the radially

integrated squared profile error (see section 3.1.1). Thus, λITB, αζ and the diagonal elements of R

are the only (nu+2) tuning parameters.

As shown in [25], the near-optimal, O(ε2), two-time-scale approximation of Uopt(t) is provided

by a composite control law, U(t) = Us (t) + Uf (t). Defining
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the integrand in Eq. (22) reads : Y(t)+. Y(t) + U(t)+. R . U(t). Using Eq. (44c), we obtain in the quasi-

static limit,
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Ys(t) = 
∆ 0
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The slow component of the near-optimal control law is then the one that minimizes
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where the matrices M0, N0 and R0 are defined by
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+. N0 . (49c)

It reads :
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⎡

⎣
⎢

⎤

⎦
⎥∫G G

X t

t
G X t G K

t

t
dtx x

t

ζ ζ ζζ

µ

ρ

( )

( )
( )

˜ ( )

˜( )
0

(50)

or, when the model has been identified in such a way (see sections 2.5.3-2.5.4) that the states are

observable and can be deduced from the outputs, e.g. as x(t) = Γµ. µ(t),

Us (t) = − ⋅ ⋅ − ⋅ ⋅
⎡

⎣
⎢

⎤

⎦
⎥∫G t G K

t

t
dtx

t

Γµ ζ ζµ
µ

ρ
˜ ( )

˜ ( )

˜( )
0

(51)

The near-optimal gain matrix, [Gx Gζ], can be found from the unique solution of the Riccati equation

which is associated with the minimization of Js [Us(t)] (Eq. 48), and it ensures the stability of the

slow variables under closed-loop operation.

With Kζ given by Eq. (36), the gain matrices read

G G n n nsp x u x= ⋅ +[ ]Γ Οµ ρ( , )     and G G Wsi T= ⋅ ⋅+
ζ Π , (52)

where Ο(i, j) is a (i × j) matrix of zeros, and using the results of section 3.1.1, Eq. (51) can finally

be written as

  Us (t) = − ⋅
⎡

⎣
⎢

⎤

⎦
⎥− ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− ⋅

⎡

⎣
⎢

⎤

⎦
⎥− ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪∫G
t

t
K K G

t

t
K K dtsp inv

t et

t et
si inv

t et

t et

t
µ

ρ

µ

ρ

µ

ρ

µ

ρ

( )

( )

( )

( )
arg

arg

arg

arg0

(53)
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Of course, the product (K.Kinv) appears here because the controller is meant to achieve the closest

coherent achievable state, [µ∞, ρ∞], as defined in section 3.1.1. However, this hypothetical plasma

state and the corresponding input vector were deduced from the static gain of a model obtained

experimentally, with large uncertainties. They may not coÔncide exactly with the state and inputs

which are achieved by the real plasma under the control defined in Eq. (53). Hence, unless the

profiles corresponding to [µ∞, ρ∞] are very different from those corresponding to [µtarget, ρtarget]

(e.g. if nSV needs to be chosen much smaller than nu), the product (K.Kinv) may often be omitted.

The essential features which must be retained from the model appear in the computation of the

gains (Eq. 52), and the achieved state will still lie within experimental accuracy of both [µ∞, ρ∞]

and [µtarget, ρtarget], perhaps even closer to the requested target than [µ∞, ρ∞] is.

3.1.5. The Fast Proportional Feedback Loop

By definition, the fast variables have zero static limit so that Xf = xf, Zf = zf, ρ̃ ρf f=  and Uf = uf, and

therefore the fast model associated with Eq. (44a-c) is given by Eq. (40a-b) with

zf = z – zs = Z – Zs and ρ ρ ρ ρ ρf s s= − = −˜ ˜ . (54)

From Eq. (46), the only fast element of Y(t) is

Yf (t) = ∆ρ ⋅ ⋅C z tf f ( ) (55)

The fast component of the near-optimal control law, which is to supplement Eq. (53) in order to

minimize the functional (22) to order O(ε2), is then the one that minimizes

Jf [uf (t)] = dt z t C C z t u t R u tf f f f f f( ) ( ) ( ) ( )+ + + +
∞

⋅ ⋅ ⋅ ⋅[ ] ⋅ + ⋅ ⋅{ }∫ ∆ ∆ρ ρ
0

(56)

It is given by

uf (t) = Uf (t)  = − ⋅ = − ⋅ −[ ]G z t G z t z tz f z s( ) ( ) ( ) . (57)

When the model has been identified in such a way (see sections 2.5.3-2.5.4) that the states are

observable and can be deduced from the outputs, e.g. as z(t) = = Γρ. ρ(t), it becomes

uf (t) = Uf (t)  = − ⋅ ⋅ = − ⋅ ⋅ −[ ]G t G t tz f z sΓ Γρ ρρ ρ ρ( ) ( ) ( ) .(58)

The optimal gain matrix, Gf , is found again from the unique solution of the Riccati equation which

is associated with the minimization of Jf [uf (t)], and ensures the stability of the fast variables under

closed-loop operation. In terms of [µ, ρ], and using Eq.(39b), the fast control law finally reads :
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         uf (t) = − ⋅ = − ⋅ −[ ] = − ⋅ − ⋅ ⋅ − ⋅[ ]G t G t t G t C t D u tf f f s f s s sρ ρ ρ ρ µρ µ ρ( ) ( ) ( ) ( ) ( ) ( ), ,Γ      (59)

with

Gf  = Gz ⋅Γρ (60)

Upon application of the composite control law, u(t) = us(t) + uf(t), and forε sufficiently small, the

closed-loop system is stable and the value reached by the functional J[U(t)] (Eq. 22) isO(ε2) close

to the minimum which would be obtained under optimal control of the original system [25].

Conventional optimal control is therefore recovered when the ratio of the thermal confinement

time to the resistive diffusion time tends to zero so that the small-ε approximate model holds.

3.2. Feedforward Disturbance Rejection

The structure of the dynamic plasma model was obtained, in section 2.1, from the analysis of a set

of coupled transport equations which are assumed to govern the plasma evolution. It was then

observed that the plasma density appears in the right-hand-side of the dynamical model equations

(2a-2b). Therefore it cannot be discarded in the model identification procedure unless its average

value and/or radial profile does not depart significantly from the density profile of the so-called reference

plasma state. This was indeed taken into account in the model identification procedures described in

section 2 where the local density at some radii or the line-averaged density along some chords were

included in the input vector [see for instance the model inputs shown on Fig. (11-12)]. A density

vector, n(t) = ns(t) + nf(t), was thus included in the vector u(t) = us(t) + uf(t) in addition to the H&CD

(and possibly PF) actuators, and the plasma response to changes in the density was also identified.

The two-time-scale near-optimal controller design described above assumes that the input vector,

u(t), only consists of the control actuators. Other model inputs are assumed to take on their reference

values and the corresponding columns of the model matrices have been discarded. For instance the

static gain matrix considered in section 3.1 is deduced from the full model static gain by removing

the columns corresponding to the density inputs (and to any actuator which would not participate in

the control). Now, if the power delivered by an actuator which is not used for control purposes can

in principle be set to its reference value during the whole control phase, it is generally not so for the

plasma density which is subject to neutral beam fuelling and to various uncontrolled plasma

perturbations (e.g. edge localized modes (ELM), MHD events, etc ..). From the control point of

view, any variation of the plasma density will therefore be considered as an external disturbance. It

can have a physical impact on the profile evolution and also a non-physical systematic influence on

the q-profile measurement because the polarimetry diagnostic used for the real-time magnetic

equilibrium reconstruction is based on Faraday rotation and requires a difficult deconvolution

between the influences of the magnetic field and of the plasma density.

In the controller design, a specific account of the density variations can be taken by adding to the

composite control law, u(t) = us(t) + uf(t), a feedforward component, ufwd, which is computed in
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real-time on the basis of the measured variations of the density vector with respect to the reference

density vector and of the identified response to these variations. Any other parameter which could

have a systematic influence on the system dynamics could be treated in the same way if the plasma

response to its variations can be identified in the model. We shall therefore denote the disturbance

vector by the general symbol d(t), with the understanding that d(t) includes at least the components

of n(t). The variables d(t) and n(t) refer again to variations with respect to a reference state, d(t) =

D(t) - Dref and n(t) = N(t) - Nref, and d(t) equals n(t) when the models have the ideal structure

derived in section 2.

In order to isolate the response to the identified disturbances, d(t), from the response to the

actuators, u(t), we write the reduced state space models in the form

∂µ ∂ µ˜ / ˜ ˜t A B u E ds s s s s= + + (61a)

   ˜ ˜ ˜ρ µs s s s s sC D u F d= + + (61b)

and

∂ρ ∂τ ρf f f f f f fA B u E d/ = + + (61c)

so that the static gain matrix of the system assumes the form [K Kd] with

K
A B

D C A B
s s

s s s s

=
− ⋅

− ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥

−

−

1

1 and K
A E

F C A E
d

s s

s s s s

=
− ⋅

− ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥

−

−

1

1 (62)

We have used here the reduced state and input variables as defined before, and since the final value

of the disturbance vector cannot be known, we have assumed d∞= 0. The disturbance vector can be

split into its slow and fast components (d=ds+df) by applying an appropriate filter to the raw

measurements, D(t), and a composite feedforward compensation,

ufwd (t) = us, fwd (t) + uf, fwd (t) (63)

can be applied to correct for the effect of disturbances. Ideally, it should be such that

B

D
u

E

F
ds

s
s fwd

s

s
s

⎡

⎣
⎢

⎤

⎦
⎥⋅ +

⎡

⎣
⎢

⎤

⎦
⎥⋅ =, 0 (64a)

and

B u E df f fwd f f⋅ + ⋅ =, 0 . (64b)

Since there is no exact solution to Eq. (64a-64b), one can use here pseudo-inversions corresponding

to the classical least-square minimization, i.e. without any particular scaling matrix such as ∆ in Eq.
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(28), but truncated to the most significant singular values, as in Eq.†(30). Denoting such truncated

pseudo-inverses by the subscript “inv”, we then add the following contributions to the control laws

of section 3.1 :

u t G d
B

D

E

F
ds fwd s fwd s

s

s inv

s

s
s, ,( ) = − ⋅ = −

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

⎡

⎣
⎢

⎤

⎦
⎥⋅ (65a)

u t G d B E df fwd f fwd s f inv f f, , ,( ) = − ⋅ = − ⋅ ⋅ (65b)

It is essential to note that such a feedforward disturbance rejection scheme does not alter the closed-

loop stability of the feedback controls.

3.3. Actuator Saturation and Integral Windup

The PC controller design presented in sections 3.1-3.2 allows for some tuning parameters such as

the R-matrix and the number of terms in various SVD truncations, which can be selected with care

in order to limit the demand on the actuators. Such limitations have a negative impact on controller

performance but they are essential because the available H&CD actuators are not as efficient as one

would wish and have a large cost, so they offer marginal headroom for plasma control. Most of the

time they can drive current unidirectionally, while the controller request can be both positive or

negative. As a result, despite all the possible care in choosing the tuning parameters, actuator

saturation is almost unavoidable, in particular in the early phase of the controller action.

During the time when one or several actuators are saturated, the feedback loops are inoperative

and the error signals between the current plasma state and the target state may not decrease. In the

integral term of the slow control law (Eq. 53), the winding up of the errors leads to an increasing

demand on the actuators. It may eventually decrease if the “free” evolution of the system allows but

it would take a long time before the control becomes active again. An anti-windup scheme is therefore

necessary to avoid the accumulation of the error term and force a faster reset of the integral.

Due to actuator saturation, the delivered input vector, Udel(t) may be different from the one,

Ureq(t), which would be requested by application of the control law, including all feedforward and

feedback contributions from the various loops. In such a case, to reset the winding up terms in

Eq.†(53), an integral feedback on the “actuator error” is added to the controls so that this error

eventually vanishes. Therefore, any controller request which otherwise would exceed a saturation

limit remains at the saturation limit, and control is active again as soon as this request decreases.

The control law then includes the following anti-windup component :

Ureset(t) = 
  
− −[ ]∫1

0
τreset

req del

t

t t dtU U( ) ( ) (66)
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This additional loop is obviously inactive when none of the actuators are saturated since Ureset is

then constant.

When adding up the reference value of the actuators, Uref (which corresponds to the reference

state around which the system has been linearized), the offset, u∞, used in the definition of reduced

variables, the contributions of the slow and fast feedback loops, the feedforward disturbance rejection,

and the anti-windup component, the final control law then reads :

U(t) = U ref + u∞ + Us (t) + uf (t) + ufwd (t) + Ureset (t) (67)

and the various terms are defined in Eq. (31), (53), (59), (63), (65) and (66).

3.4. Closed-Loop Simulations and Results

As an illustration of the possible controller performance and time response, we display here typical

results of closed-loop simulations. They were performed with the SIMULINK® software, in the

aim of testing the validity of the controller design and of the implemented computer programs.

These simulations are based on the models described in section 2.4.2, which have been identified

from JET experimental data (see Fig.6-9). The plasma response was assumed to be linear and

governed by a full-order state space model which, in the limit ε → 0, reproduces the identified two-

time-scale reduced-order models consistently with Eq. (6a-6f). Note that, given the identified As,

Bs, Cs, Ds and Af, Bf matrices there is of course an infinite arbitrariness in the choice of a full-order

model (Ai,j matrices).

Both the slow and the fast reduced-order models were models of order 3. The magnetic and

kinetic state variables, [x, z], were three Galerkin coefficients of the Ψ(x) and T(x) profiles,

corresponding exactly to the values of Ψ(x) and T(x) at x = 0.4, 0.5 and 0.6, and the controlled

output variables were µ = [ι(0.4), ι(0.5), ι(0.6)] and ρ = [ρTe
*(0.4), ρTe

*(0.5), ρTe
*(0.6)], six Galerkin

coefficients corresponding exactly to the values of ι(x) and ρTe
* (x) at the same radii. These data

were obtained from the real-time magnetic reconstruction [31] and from an Electron Cyclotron

Emission (ECE) radiometer. The three actuators are the powers delivered by the H&CD systems

(PLH, PNBI, PICRH). The line-integrated densities along two vertical lines of sight of the interferometer

(at major radii, R = 2.70 m and R = 3.04 m compared with a typical plasma axis location at R =

3.08m) constitute additional inputs that are considered as disturbances. The model identification

was done in the plasma current control mode so the primary flux is not an available actuator for the

PC controller in this simulation.

The reference state around which the system was linearized (JET Pulse No: 66041) corresponds

to a toroidal field, BT = 3T at the center of the plasma chamber (R = 2.96m), a plasma current, Ip =

1.5 MA, and a volume-averaged electron density, ne = 2.7 × 1019 m-3. It was obtained by the usual

advanced scenario preforming of the plasma on JET [1], with a low density LH preheat phase

during current ramp-up, and then injecting H&CD powers at the reference values, PLH = 1.7 MW,



33

PNBI = 12MW, PICRH = 2MW (Fig. 6), during the plasma current flat-top phase. The target values for

q and ρTe
* were chosen as q(0.4) = 2.47, q(0.5) = 2.76, q(0.6) = 3.14, and ρTe

*(0.4) = 1.3 × 10-2,

ρTe
*(0.5) = 0.9 × 10-2, ρTe

*(0.6) = 0.7 × 10-2.

The static gain matrix, K, of the model yielded singular values, σ =[1.06, 1.7 × 10-2, 3 × 10-3]

and was truncated to retain only 2 principal modes (nSV = 2) in Eq. (30). The tuning parameters of

the controller were chosen as αζ = 1, R= 10-2 × Id3 (see Eq. 22), λITB = 103 (see Eq. 24), and the

following gain matrices were obtained, in MW :

Gsp =

58 92 69 0 0 0

0 07 15 4 6 0 0 0

19 77 26 0 0 0

−

− −

− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. . ,  Gsi =

2 3 2 9 0 35 10 36 69

0 67 0 96 0 19 10 19 16

0 91 0 05 0 78 76 79 67

. . .

. . .

. . .

−

− − − − −

− − −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥,  Gf =

−

−

−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

3 8 9 9 7 8

0 17 1 6 3 1

8 8 2 3 7 6

. . .

. . .

. . .
(68)

Figure 20 shows the rapid initial variation of the kinetic variables due to the evolution of the fast

components, ρf , which are finite at the start and during the first phase of the control period.  After

a characteristic time of about 0.3s., the fast components have relaxed (ρf ≈ 0) and the kinetic variables

follow their slow trajectories. During this second phase, both magnetic and kinetic variables are

linked together by a quasi-equilibrium, and evolve slowly towards the requested targets. The target

state, which is represented by the horizontal lines and is almost a coherent state of the system, is

reached in approximately 4-5s. Saturation occurs at the start of control since two actuators (LH and

ICRH) are requesting negative powers and are therefore clamped on their lower saturation limit

(here zero) for almost 3s (Fig. 21).

Figutre 22 shows the evolution of the cost functional, I∞, defined in Eq. (24) with x1 = x3 = 0.4

and x2 = x4 = 0.6. Fig.20 and 22 show that the excursion of the controlled parameters at the onset of

the density perturbation is indeed reduced when the feedforward disturbance rejection scheme is

added to the feedback control.

The effect of a feedforward compensation of known disturbances such as density perturbations

is also shown. A sudden 25% density decrease has been applied on the simulation at t = 5s. The

perturbation is decomposed into slow and fast components through a low-pass filter with a cutoff at

2.5Hz, the same as was used for the fast model identification. Without any feedforward compensation,

the variations of the H&CD powers are continuous and smooth at the onset of the perturbation,

while the response of the controller to the disturbance is discontinuous in the other case (Fig.21).

The effect on the controlled variables is then faster, as shown on Fig. (20). The near-singular character

of the model appears in the multi-valuedness of the LH and ICRH powers to provide at t ≈ 10s

almost identical values of ι(x) and ρTe*(x)  at the controlled radii. Only 2 singular components were

retained in the pseudo-inversion of Eq. (65a) for which the singular values were [1.4 × 10-1, 1.8 ×

10-2, 9 × 10-4], and only one in the pseudo-inversion of Eq.(65b) for which the singular values

were [4.5 × 10-1, 4.4 × 10-3, 2 × 10-4]. The following gain matrices were then obtained in units of

10-19 × MW.m2 :
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Gs, fwd =

2 9 1 8

0 47 0 61

1 2 3 5

. .

. .

. .

−

−

− −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥, Gf, fwd =

1 9 2 9

0 26 0 4

1 7 2 6

. .

. .

. .

−

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ (69)

4. FIRST CLOSED-LOOP EXPERIMENTS AND RESULTS

The first attempts of using the Profile Controller (PC) for current profile control in real JET discharges

started during the late 2006 and early 2007 experimental campaigns [28], after the open-loop

experiments had been completed satisfactorily, and the subsequent model identification work (section

2.5) was sufficiently advanced for testing the slow loop of the controller (magnetic control). The

PC actuators were different combinations of the LH, ICRH, NBI powers and surface loop voltage.

The latter is controlled by the PF system through the boundary flux, and together with the plasma

shape (XSC in the boundary flux control mode [30]). All these experiments were therefore performed

in an operation mode in which the plasma current is not precisely controlled by the PF system.

Instead, contrary to the usual JET operation, it was left floating within an allowed range (± 0.5MA

around the reference current), only subject to current profile control through the PC. Now, with the

XSC in the boundary flux control mode, two different configurations are still possible. When the

actual loop voltage is not constrained to any particular value, the PF system can be used as a PC

actuator, in addition to some H&CD systems. This is the case, for instance, during the current

ramp-up phase and the transient evolution of the discharge towards a desired advanced plasma

equilibrium. In the other configuration, the PF system is used as a separate actuator for tracking a

given boundary flux waveform. This would be necessary for pure non-inductive operation (constant

flux), once the desired equilibrium has been nearly reached and the inductive fraction of the current

is low enough. The PC then uses only the H&CD actuators.

Within the available time for these initial investigations, some preliminary experiments were

necessary to optimise the simultaneous control of the plasma shape and boundary flux, and to test

the integration of the PC voltage request into a boundary flux request for the XSC. Then, we

concentrated on four main experiments : i) the regulation of the plasma current through the PC

during a steady heating phase (using the loop voltage as only actuator and the edge safety factor,

qedge, as the controlled variable), ii) the early use of the PC for current ramp-up (qedge control after

the formation of the plasma separatrix), in the aim of integrating later the control of the q-profile

into the ramp-up phase to reduce current profile peaking, iii) the simultaneous control of several q-

profile coefficients with the H&CD actuators, first at a given loop voltage, and then, iv) with the

surface loop voltage as an additional actuator.

These experiments were performed in a high triangularity advanced scenario after a low density

LH preheat during current ramp-up. The state space plasma model was described in section 2.5.

The reference state around which the system was linearized (JET Pulse No: 67872) corresponds to

a toroidal field, BT = 3T on the magnetic axis, a plasma current, Ip = 1.5MA, and a volume-averaged

electron density, ne = 3.5 × 1019 m-3. The reference H&CD powers were PLH = 2MW, PNBI =
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13MW, PICRH = 3MW, and the reference loop voltage was 25mV/rad. The reference q-profile obtained

with these discharge parameters is given in Table 2.

4.1. Regulation of the plasma current through qedge control

The loop voltage at the surface of the plasma appears as an input variable in the state space model

governing the dynamics of the magnetic and kinetic states of the plasma. This is inherent to the

structure of the plasma transport equations (section 2.1), and therefore Vext is to be considered on

the same footing as the powers delivered by the H&CD systems. However, in conventional operation

of tokamaks, the plasma current is accurately controlled and the surface loop voltage is not a free

parameter. The JET XSC was recently upgraded in order to provide the possibility of controlling

the plasma boundary flux rather than the plasma current [30] and the time-varying voltage request

from the PC was then transformed into a request on the boundary flux waveform by simple

integration, with an added offset in order to match the measured value of the boundary poloidal

flux at the start of the control phase.

The first closed-loop experiments were dedicated to the integration of the PC and of the plasma

shape and boundary flux control so as to evaluate the potentiality of using the PF system as a PC

actuator, and identify limitations and possible improvements. The simplest test was to attempt a

Single-Input Single-Output (SISO) control of the edge safety factor, qedge, using the surface loop

voltage as the only actuator. This test was necessary to assess the stability of the discharge under

such an indirect control of the plasma current and was preliminary to any further use of the boundary

flux request for Multiple-Input Multiple-Output (MIMO) profile control applications.

The result is shown on Fig.23 where the time evolution of qedge is plotted for two similar discharges.

The target value for qedge was 4.8 for both pulses and it was effectively reached with good

reproducibility. The PC was active from time t = 4.5s. for a duration of 6.5s. while the H&CD

powers were constant and nearly equal to their reference values (PLH = 2MW, PNBI = 11.7MW,

PICRH = 3.1MW). The tuning parameters of the controller were chosen as αζ = 0.5 and R = 0.25 (see

Eq.22). For this limiting case with only one controlled variable, the integral in Eq. (24) is irrelevant

and the Q matrix in Eq. (22) and (45) reduces to a scalar. To avoid singularities, the ∆ matrix (Eq.

25-27) was computed using λITB = 0, x1 = 0.975, and x2 = 1 in Eq. (24), and was truncated to retain

only the scalar element corresponding to qedge. The proportional and integral gains were obtained

as Gsp = 3.49 Volts and Gsi = -1.57 V.s-1, respectively.

The request on the loop voltage, as calculated by the PC, is shown on Fig.24. It stabilizes around

0.2 Volts, i.e. 32mV/rad while the reference value corresponding to qedge,ref = 5.4 (Table 2) was 25

mV/rad with slightly different H&CD powers and plasma density. As discussed already in section

2.5.1 (Fig.10a), the response of the PF system to the boundary flux request is slow and there is

always a few seconds delay before the XSC tracks a given flux waveform. Here the proper request

should be on the loop voltage, i.e. on the rate of change of the flux, even with a large steady state

offset on the requested flux waveform. But, for practical reasons, the loop voltage request is integrated
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and transformed into a flux waveform that the XSC attempts to track without any offset. As a result,

both the requested and the delivered loop voltages exhibit significant oscillations (Fig.24) before

they converge to their static value, after a few seconds. When the XSC flux control is used on its

own to apply a constant loop voltage at the plasma surface, for instance to force the plasma into a

non-inductively driven state (Vext = 0), this is of minor importance. On the contrary, this delay can

be deleterious for using Vext as a PC actuator. It can lead to a closed-loop instability, in particular

when a larger set of actuators is used. For such applications where a proper control of the time

derivative of the boundary flux is needed, the interface between the profile controller and the XSC

would therefore require some improvements.

4.2. PLASMA CURRENT RAMP-UP THROUGH qEDGE CONTROL

Tuning the early phases of the discharge is important to achieve enhanced plasma performance in

the so-called advanced operation mode. This is true for plasma initiation, but also for the plasma

current ramp-up phase because the magnetic shear at the time when strong heating is applied plays

an essential role in the stabilization of plasma turbulence and in the emergence of ITBs. Current

profile control is presently obtained by applying some pre-heating or LH current drive during the

ramp-up phase to prevent current profile peaking. This is generally done in an feedforward, trial

and error, fashion until an adequate timing of the strong NBI heating pulse triggers the desired

improvement of the plasma performance. Some early control of the current profile is therefore

needed during the ramp-up phase in order to increase the reproducibility of advanced operation

scenarios. Such control could in principle be achieved through the present PC with a dedicated

choice of the actuators and control parameters. The PF system is obviously a powerful actuator for

this application. Some preliminary experiments were therefore performed in the simplest SISO

configuration (similar to the one described in section 4.1), except for the early start of the control

phase. The PC was switched on after the formation of the plasma separatrix so that the shape

control by the XSC was already in a quasi-steady phase.

Figures 25a-b show the typical result of such a q-driven current ramp-up (Pulse No: 68905). The

plasma current at the start of control (t = 2.7s) was 1.3 MA and the target value for qedge was 4.8,

corresponding roughly to a current of 1.8MA. The PC was active for a duration of 8.3s., and the LH

power was constant (PLH = 2MW), starting from t = 2.5s. while the NBI and ICRH powers were

applied only at t = 3.5 s. and also constant (PNBI = 11.7MW, PICRH = 3.1MW). After an initial drop

due to the usual transient response of the boundary flux control (section 4.1), the current was

ramped from 1.2MA to 1.8MA in 0.85s. Thus, with the chosen control parameters, the current ramp

rate was around 700kA/s. This high ramp-up rate was achieved with good MHD stability, thus

providing an adequate q-profile target for developing a high-performance advanced scenario with

more intense plasma heating.

The optimal gains were computed from the same model as before. For this pulse, the controller

parameters were αζ = 0.6, R = 0.4, λITB = 0, x1 = 0.975, x2 = 1 and the ∆ matrix was also truncated
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to retain only the scalar element corresponding to qedge. Then, the proportional and integral gains

were Gsp = -2.90 Volts and Gsi = -1.26 V.s-1, respectively. The controller performed satisfactorily

despite the fact that the plasma state at the start of control was far from the reference equilibrium

state around which the model was identified.

These experiments need to be generalized using the MIMO configuration of the PC to possibly

tailor the entire q-profile during the current ramp-up phase. To do so, we plan to use at least one additional

actuator so that the current driven in the outer layers of the plasma and at half-radius can be properly

balanced. LH current drive seems to be the most appropriate additional actuator thanks to a high current

drive efficiency even at moderate plasma temperature and in the low beta phase of the discharge.

4.3. CONTROL OF THE q-PROFILE, USING THE H&CD ACTUATORS AT

CONSTANT LOOP VOLTAGE

The third experimental tests were dedicated to the control of the q-profile during the current flat-

top phase, using the H&CD systems as actuators and requesting a constant loop voltage from the

PF system. This is a controller configuration to be used in the steady state phase of an advanced

scenario, when the flux consumption from the primary circuit is bound to vanish (zero loop voltage).

The controller parameters were based on the 3rd order model derived in section 2.5.4, so as a first

test, only three coefficients of the q-profile were controlled. Since we use cubic splines as basis

functions and the Galerkin residues (see appendix A1.2) are negligible, these coefficients correspond

almost exactly to the values of q(x) at three different radii. In all these experiments, the real-time

q-profile reconstruction depends mostly on the reconstruction of Ψ(x) (see section 2.5.2) and is

basically limited to a 3-parameter family of profiles [31]. Therefore a generalization to the control

of the full set of 10 coefficients would be practically equivalent and should be straightforward. This

can be checked in future experimental campaigns.

The result of the experiment is shown on Fig.26a-b. The controlled variables were q(x) at x =

0.2, 0.5 and 0.8 and their variations are plotted versus time. The corresponding target values were

1.85, 2.7 and 4.2, respectively. The controller was active between t = 4s. and t =11.5s., and the

requested value of the surface loop voltage was 32 mV/rad during the control phase. As before, the

initial behaviour of the controller is dominated by a transient in the boundary flux control which

causes large oscillations of the loop voltage and, as a consequence, of the H&CD powers. Control

becomes really effective and successful when the boundary flux has finally tracked the requested

waveform, and the loop voltage has settled to the desired value.

The R-matrix in the quadratic J[U(t)] of Eq. (22) was chosen in relation to the available headroom

for each actuator, namely

R = 

0 20
2

0 0

0 0 07
2

0

0 0 0 16
2

.

.

.

MW

MW

MW

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(70)



38

with the actuators ordered as [PLH, PNBI, PICRH]. The other controller parameters in Eq.(22) and (24)

were αζ = 25, λITB = 0, x1 = 0.2, x2 = 0.8 and the Πµ matrix (Eq.26) was truncated to retain only the

elements corresponding to the controlled variables. The static gain matrix, K, of the model yielded

singular values, σ =[4.7 × 10-3, 2.9 × 10-3, 7 × 10-5] and was approximated by retaining only two

principal modes (nSV = 2). The following gain matrices were then obtained:

Gsp = 

14 4 26 3 100

50 3 230 577

24 5 33 3 179

. .

.

. .

−

− − −

−

⎡

⎣

⎢
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⎤

⎦

⎥
⎥  MW         and Gsi‘= 

−

− − −

−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

14 7 6 13 10 4

49 1 112 36 7

22 6 15 3 19 2

. . .

. .

. . .
 MW.s-1 (71)

It is instructive to observe that, although there are three actuators to control three variables in this

example, only two input modes (i. e. two combinations of the actuators) are effective. As a matter

of fact, the requested target for the q-profile was not achievable exactly at x = 0.8. The closest

coherent achievable state that the controller found has q(x=0.8) ≈ 4.5 rather than 4.2. Fig. 26b

shows the controller minimization of the cost functional, I∞, defined in Eq. (24).

Finally, Fig. 27a-b show a comparison between the requested boundary flux and actuator powers,

and the delivered ones. The controller outputs, i.e. the actuator requests, were limited within the

following brackets : 0.5 MW ≤ PLH ≤ 3 MW, 1 MW ≤ PNBI ≤ 10 MW, 0 ≤ PICRH ≤ 4.2 MW, and the

anti-windup reset time, τreset (Eq. 66), was set to 0.1s. Note that the LH power did not exceed 2 MW

while the request approaches the 3 MW which were in principle available. This also limits the

performance of the controller around x = 0.8.

4.4. CONTROL OF THE q-PROFILE USING THE BOUNDARY FLUX AS AN

ADDITIONAL ACTUATOR

Finally, in the last experiment, q-profile control was attempted using four actuators, namely the

H&CD powers and the loop voltage, to control five spline coefficients corresponding to q(x) at x =

0.2, 0.4, 0.6, 0.8 and 1. The corresponding target values were 1.8, 2.3, 3.2, 4.5, and 6.6, respectively.

The R-matrix was again chosen in relation to the available headroom on the four actuators, namely

R =
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with the actuators ordered as [PLH, PNBI, PICRH, Vext]. A very large relative weight was purposely

chosen on the diagonal element corresponding to PLH because, for these experiments, the LH

generators were limited and there was no headroom above the reference power. The other controller
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parameters were αζ = 25, λITB = 0, as before, x1 = 0.2, x2 = 1, and the Πµ matrix was also adequately

truncated to retain only the elements corresponding to the controlled variables. The static gain

matrix, K, of the model yielded singular values, σ = [6.0 × 10-2, 4.2 × 10-3, 1.2 × 10-4, 1.6 × 10-7].

It was again approximated by retaining only two principal modes. The following gain matrices

were then obtained, with the first three rows of Gsp (Gsi) in MW (MW/s) and the last row in Volts

(V/s) :

Gsp = 

− − −

− − − −

− − −

− − − −

⎡
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⎢
⎢
⎢

⎤
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     (73)

As expected the gains corresponding to the LH actuator (first rows) are small, so the LH power

request remains close to the reference power which was 2MW.

The result is shown on Fig.28a-b and the comparison between the requested values of the actuators,

and the delivered ones is shown on Fig. 29a-b. The control phase starts at t = 4s. The controller

outputs were limited within the following brackets : 0.5 MW ≤ PLH ≤ 2MW, 1MW ≤ PNBI ≤ 10 MW,

0 ≤ PICRH ≤ 4.2MW, 0.12 V ≤ Vext ≤ 0.5 V, and the anti-windup reset time, τreset , was set to 0.1s.

Note that the LH actuator is indeed practically inactive.

In this experiment, limitations were encountered during the transient oscillations of the boundary

flux. Here, a soft discharge termination was triggered at t = 5.7s. so that a steady state could not be

reached. Nevertheless, the trend on the evolution of the q-profile (Fig.28a) and of I∞ (Fig.28b) was

satisfactory and quite comparable to the initial evolution of the q-profile and of I∞ shown on Fig. 26.

A discharge termination procedure was automatically triggered, as a protection measure, when

the current in the tokamak central solenoid (P1 coil) departed excessively from a requested current

waveform. In the present implementation of the PC, although the controller request refers to the

loop voltage (i.e. to the rate of change of the boundary flux), the PF system is tracking a boundary

flux target waveform (Fig.29a), until there is no offset. This entails large errors on the loop voltage

and is too much of a constraint. In addition, the JET PF system design does not allow the voltage

applied on the P1 solenoid to be reversed. Thus, during the flux oscillation, there are periodic

phases when the P1 current departs from the requested waveform because the applied voltage is

limited to zero. When the flux error is too large or the duration of such phases is too long, a discharge

termination occurs. This is what happened here during the early phase of the control.

Therefore,  although some profile control applications would in principle benefit from the use of

the loop voltage as an additional actuator because it provides an efficient ohmic current drive in

addition to the H&CD systems, the integration of the PC request into the PF system is a difficult

task. The present implementation has shown some limitations and needs to be improved, possibly

by controlling the rate of change of the boundary flux. Of course, ideally, the PF system, plasma

dynamics and the transport physics should be fully integrated into a comprehensive tokamak model
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with H&CD powers and coil voltages forming a complete set of inputs. But, despite extensive work

aiming to obtain reliable first-principle modelling of plasma transport, this perspective seems quite

remote. On the contrary, the control of the boundary magnetic parameters and plasma shape by the

PF system can be accurately modelled from first principles. Therefore, restricting the experimental

model identification to the volume enclosed within the separatrix (with Vext as an independent

input provided by the PF system, Eq. 2a-b) looks like an interesting compromise to design a controller

for plasma parameter profiles. In any case, power amplifiers that allow the voltage applied on the

central solenoid to be reversed would also be highly beneficial.

CONCLUSION

In this work, a two-time-scale dynamic-model approach is proposed in order to possibly regulate

the performance of advanced tokamak plasmas through magnetic and kinetic profile control. It was

specifically applied to the design of a Profile Controller (PC) for JET, but the design is sufficiently

general to be easily adapted to other tokamaks.

A system identification procedure has been developed and applied to JET experimental data.

The relevant magnetic and kinetic variables are radially distributed plasma parameters. However,

retaining the full partial differential equation nature of the system for the model identification was

not considered meaningful because the model parameters must be identified from noisy and

inaccurate experimental data. A system discretization was therefore performed through an expansion

onto a finite set of appropriate basis functions and a Galerkin scheme. From the coupled structure

of plasma transport equations, and without any quantitative assumptions on the transport coefficients,

a state space model can be derived in which some physical variables appear naturally as the state

and input variables. These are the expansion coefficients of the internal magnetic poloidal flux and

of the plasma density and temperature for the state variables, and the H&CD powers and surface

loop voltage for the input variables. In the present work, for the sake of simplicity, the plasma

density profile was not yet included in the kinetic variables to be controlled. In this case, it should

however be characterized by some measured parameters that must appear in the state space model

as independent inputs.

The model identification technique uses singular perturbation methods in order to cope with the

high dimensionality of the system and with the small ratio, ε, between the confinement and resistive

diffusion time scales (two-time-scale approximation). It was shown to yield reduced-order models

which could fairly reproduce the slow and the fast evolution of a few profile coefficients, in some

broad vicinity of a reference equilibrium plasma state. Examples were shown using either computer-

simulated data produced by large non-linear transport codes, or experimental data. The same state

space model structure and technique could be extended to describe the evolution of some non-

dimensional output variables whose direct control would be physically very relevant, such as the

(inverse) safety factor and the gyro-normalized temperature gradient profiles. Interestingly, with

some justified assumptions, these output magnetic and kinetic variables can be linearly related to
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the poloidal flux and temperature profiles, respectively. Then, by projecting the data onto a subspace

of reduced dimension spun by the principal components of the system static gain matrix, the global

evolution of the safety factor profile (10 coefficients) could be satisfactorily reproduced with a state

space model whose maximum order (typically 3) is consistent with experimental data accuracy.

A controller based on the same two-time-scale approximation has been designed and implemented

on JET.

It uses an O(ε2) near-optimal control algorithm which amounts to conventional optimal control

when the ratio of the two time scales asymptotically vanishes. The maximum number of actuators

was presently limited to four, namely three H&CD systems (LH, NBI, ICRH) and the surface loop

voltage. Any partial combination of these four actuators can be used to control a chosen number of

coefficients related either to the magnetic profiles only (e.g. the safety factor profile) through a slow

feedback loop, or to the magnetic and kinetic profiles through a composite control law combining a

slow (proportional+integral) and a fast (proportional) feedback loop. With given actuators, the set of

achievable steady state plasma equilibria is hardly known in every detail in advance. When the number

of controlled variables is larger than the number of actuators, the requested target state may not be a

coherent equilibrium state, but the controller is designed to achieve the closest coherent achievable

state, as defined by the minimization of a quadratic integral error.

In the absence of a proper regulation of the plasma density profile, its variations with respect to a

reference profile can be considered as disturbances and measured in real-time. A composite feedforward

disturbance rejection scheme that does not alter its closed-loop stability has therefore been added to

the controller. The identified responses of the controlled profiles to either slow or fast variations of

some chosen line-integrated interferometer signals can then be partially compensated for with

anticipation on the feedback action. Finally, due to rather limited headroom on the H&CD systems, a

conventional anti-integral-windup scheme has also been implemented to cope with the transient

saturation of some actuators.

In order to validate the profile controller design and the associated software, closed-loop simulations

were performed, based on a linear plasma response model which is consistent with the identified

reduced-order models in the vicinity of a given reference state. They show that, with an appropriate

selection of some tuning parameters, magnetic and kinetic profiles can be regulated within a few

seconds (typically 3-4 seconds).

Now, an extensive set of closed-loop experiments are required on real JET plasmas to assess whether

the linear response models are robust and accurate enough for the radial profiles of the safety factor,

q(x), and gyro-normalized electron temperature gradient, ρTe*(x), to be simultaneously regulated or

controlled in real-time. These experiments are to be conducted stage by stage, starting from simple

PC configurations for magnetic control only, before proceeding to the integrated magnetic and kinetic

control in moderate performance plasmas and ultimately attempting to regulate high-performance

advanced tokamak plasmas.

First closed-loop experiments were performed on JET during the last experimental campaigns.
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They were dedicated to the control of the safety factor profile in order to test some basic features of

the proposed approach. In particular, the integration of the loop voltage request into the JET eXtreme

Shape Controller (XSC) was achieved by running the XSC in the boundary flux control mode. This

mode of operation of the PF system is particularly suitable for advanced scenarios which are meant

to be ultimately operated in steady state, i.e. at constant boundary flux rather than at a precisely

given plasma current. The plasma current, which is then kept floating within some predefined

bounds, is to be regulated as a result of current profile control. Hence, in this operational mode, the

safety factor in the plasma edge region must be embeded in the controlled variables.

Four different controls were attempted. First the regulation of the plasma current through the

control of the edge safety factor, qedge, was tested during a constant heating phase, using the boundary

flux as the only actuator. Then, with the same controller configuration and to prefigure the tailoring

of the q-profile during current ramp-up, qedge control was initiated just after the separatrix formation

in order to possibly achieve current ramp-up through the PC. Both experiments were successful in

controlling the plasma shape and safety factor simultaneously, and achieving the requested ramp-

up in a stable manner in the second case. Nevertheless they pointed to a limitation (large oscillations)

in the use of boundary flux control to provide the requested surface loop voltage. The third experiment

achieved successful q-profile control using the three H&CD systems as actuators to control three

profile coefficients, and requesting a constant loop voltage from the PF system. Finally, the last

experiment attempted to use the boundary flux as an additional actuator to control five coefficients

of the q-profile. In this configuration, the oscillations which characterise the boundary flux control

led to severe limitations. This will require some improvements, possibly by controlling the rate of

change of the boundary flux and tracking more accurately the requested loop voltage.

Altogether, an important step has been made towards the development of an integrated magnetic

and kinetic control methodology. Forthcoming JET experiments should address i) the control of the

safety factor over the entire plasma radius (10 profile coefficients) with three H&CD actuators and

at constant boundary flux, and ii) the simultaneous control of the current and electron temperature

profiles in advanced operation scenarios. This should ideally be done in a staged approach, first at

moderate plasma performance in order to experimentally assess the proposed two-time-scale

approach, and then in high βN plasmas possibly with large bootstrap current fractions. The regulation

of ITBs through the control of the q-profile and of the gyro-normalized temperature gradient is also

an ultimate goal to be pursued. As far as magnetic sensors are concerned, these experiments would

benefit from a real-time Grad-Shafranov magnetic reconstruction. In parallel, some improvements

are also needed for a practical use of the ohmic drive (PF system) as an additional actuator on JET,

in particular for q-profile control during current ramp-up or for composite magnetic/kinetic control

where the number of controlled variables is larger.

Then, using the H&CD systems together with the PF system for controlling (i) the plasma shape,

(ii) the magnetic and kinetic plasma profiles, and (iii) the boundary flux, could provide the essential

part of an integrated scheme for achieving high-performance non-inductively driven advanced



43

tokamak discharges in JET. The technique can be adapted to any device, for simple as well as more

comprehensive controls, and with other actuators and sensors. Experiments on other pulsed (DIII-

D, JT-60U) and steady-state tokamaks (Tore-Supra, EAST, and later KSTAR, JT-60SA) would also

be beneficial to possibly validate or improve the proposed methodology. They could provide a

broad basis for developing integrated profile control and steady state advanced scenarios in ITER.
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APPENDIX A1. A MINIMAL STATE SPACE MODEL FOR MAGNETIC AND KINETIC

PROFILE CONTROL

A1.1 DISTRIBUTED-PARAMETER PLASMA MODEL

The generic structure of the tentative state space model postulated in section 2.1 can be derived by

linearising the transport equations (Eq.1) in the cylindrical approximation where x is the radial

independent variable, normalized such that x = 1 at the plasma edge, and other (toroidal and poloidal)

space variables are assumed to be ignorable. This amounts to reducing the differential operators to

derivatives with respect to x, and yields an approximate 1-D model of the plasma which is more

tractable for real-time applications than the exact set of flux-surface-averaged transport equations

in an arbitrary geometry. When trying to fit the models to experimental data, the dependent variables

will however be generally considered as flux-surface averages of the physical variables of interest.

Consistently with these approximations, only the toroidal component of the current density and

electric field, and only the radial component of the heat and particle fluxes will be retained. Other

physical assumptions are given in points i) to vi) in section 2.1 and will be refered to with the same

numbering below.
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Linearization is performed around an equilibrium reference state labeled by the subscript “ref” and

the following variables are defined :

j(x, t) =  J(x, t) – J ref(x), E(x, t) =  E(x, t) – Eref(x) (A1-1a)

n(x, t) = N(x, t)-Nref(x), Γn(x, t) = Gn(x, t)-Gn,ref(x), Sn(x, t) = Sn(x, t)-Sn,ref(x) (A1-1b)

T(x, t) = T(x, t)-Tref(x), ΓT(x, t) = GT(x, t)-GT,ref(x), ST(x, t) = ST(x, t)-ST,ref(x) (A1-1c)

Decomposing the current density into an ohmically driven current and a non-inductively driven

current,

J(x, t) = σ(x, t) E(x, t) + Jni(x, t) (A1-2)

with

σ(x, t) = σref(x) + σ̂ (x, t)     and     Jni(x, t) = Jni,ref(x) + jni(x, t), (A1-3)

the linearized system of equations reads (a is the minor plasma radius):
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Combining Eq. (A1-4b) and (A1-4c), one obtains an equation for the evolution of the plasma

temperature:
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3
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1 1
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Whether to use Eq. (A1-4c) for the plasma pressure or Eq. (A1-5) for the temperature is a matter of

choice and depends upon the chosen set of controlled variables. Here we have selected the temperature

because of diagnostic space and time resolution, but a model for the evolution of the plasma density

and pressure could be derived in the same way.

Now, at some point, Eq. (A1-4a) will need to be integrated over time to avoid manipulating time

derivatives of σ̂(x, t), jni(x, t) and therefore of the input parameters. Instead, to speed up the derivation,

we can directly start from an integrated form of Eq. (A1-4a). It is obtained by introducing the

magnetic vector potential, A(x, t), into Ampere’s law which then reads :
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∇×∇×A(x, t) = µ0 J(x, t). (A1-6)

Within our quasi-cylindrical approximation, as for E(x, t), we shall retain only the toroidal component

of the vector potential. The toroidal coordinate being an ignorable coordinate, it follows that

E(x, t) = -∂A(x, t)/∂t. (A1-7)

Let us also introduce the•total poloidal magnetic flux, ψ̂(x, t), the local plasma loop voltage, V(x, t),

and the internal poloidal magnetic flux, ψ(x, t) = ψ̂(x, t) – ψ̂B(t), where ψ̂B(t) = ψ̂(1, t) denotes

the total poloidal flux at the plasma boundary. In the same cylindrical approximation, R0 denoting

the average plasma major radius, one writes

ψ̂(x, t) = 2πR0A(x, t)  and
  
V E( , ) ( , )

ˆ ( , )
x x

x
t R t

t
t

= = −2 0π
∂ψ

∂
(A1-8)

and, with Eq. (A1-2), Ampere’s law becomes
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The loop voltage at the plasma boundary, Vext(t), is related to ψ̂B(t) by

  
V ext

Bt
t

t
( )

ˆ ( )
= −

∂ψ
∂

. (A1-10)

At equilibrium, the electric field, E(x, t) = Eref, and the loop voltage, V(x, t) = Vref = Vext, ref are

steady and uniform across the plasma, with

Vref = 2π R0 Eref = −
⎡

⎣
⎢

⎤

⎦
⎥

∂ψ
∂

ˆ ( , )x t
t ref

and
  
V ext ref

B

ref

t
t,

ˆ ( )
= −

⎡

⎣
⎢

⎤

⎦
⎥

∂ψ
∂ (A1-11)

so that the internal flux reaches a steady state, ψ(x, t) = ψref(x).

Now, defining V(x, t) =V(x, t) - Vref , Vext(t) = Vext(t) -Vref, and Ψ(x, t) = ψ(x, t) - ψref(x), one can

write
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∂ψ

∂
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The linearized version of Eq. (A1-9) reads
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i.e.,
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and using Eq.(A1-12) for V(x, t), the equation for the evolution of Ψ(x, t) is found :
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Now, assumptions ii) to vi) of section 2.1, together with proper linearization of the assumed

dependences of σ, jni, Γn, ΓT, Sn, ST with respect to n(x, t), T(x, t) and j(x, t), enable the system (Eq.

A1-4b, A1-5 and A1-15) to be cast in a form which envolves a small number of essential dynamical

variables. Formally, one can define some linear differential operators, Lα,β{x}, and line vectors,

Lα, β (x) = [Lα, β    (x) Lα, β    (x) Lα, β    (x)], depending upon the variable x but independent of time,

such that the system reads :
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where P(t) is a power input column vector consisting of three elements which are power variations

with respect to some reference values :
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(A1-17)

Eq. (A1-16) represent the minimal distributed-parameter model one can possibly derive to describe

in an approximate fashion the time evolution of the magnetic and kinetic state of the plasma. The

internal poloidal flux, Ψ(x, t), appears as a natural magnetic state variable and the plasma temperature,

Τ(x, t), and density, n(x, t), appear as natural kinetic state variables. Generalization to a two-fluid

plasma would be straightforward with an an additional equation for an additional state variable,

Ti(x, t), representing the ion temperature while T = Te(x, t) represents the electron temperature.

Natural input variables are the power vector, P(t) and the external loop voltage, Vext(t).

A1.2 REDUCTION TO A LUMPED-PARAMETER MODEL THROUGH A GALERKIN

SCHEME

A pragmatic way to identify the various operators in Eq. (A1-16) is to resort to a finite set of trial

basis functions on which to project the distributed plasma parameters and to least-square fits of the

^

(LH) (NBI) (ICRH)
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discrete system to experimental data. A Galerkin approach will be followed here, and it is assumed

that by increasing the number of trial basis functions the solution of the identified discrete system

converges towards the solution of the full differential system. Let the basis functions be ai(x) with

i = 1, 2,... N (e.g. cubic splines as shown in Fig. 1a). The Galerkin projection of a generic dynamical

variable, Y(x, t), reads :

Y t G t a R ty i i

i

N

y i( , ) ( ) ( ) ( , ), ,x x x= +

=

∑
1

(A1-17)

where the residues, Ry, i(x, t), are chosen to be orthogonal to every basis function :

a R t di y i( ) ( , ),x x x
0

1
0∫ = , (A1-18)

and the expansion coefficients, Gy, i(t), will be called the Galerkin coefficients of the variable y(x,†t).

The vector whose elements are the Galerkin coefficients will be denoted as Gy(t) or sometimes

simply as Y(t) for convenience. The set of basis functions could indeed be different for each dynamical

variable and must be chosen judiciously to provide a satisfactory fit of the corresponding parameter

profiles. For instance, for the variable ρTe*(x), a different set, bi(x), was used  (see section 2.3 and

Fig.1-b).

Multiplying every equation in (A1-16) by the appropriate basis functions (here aj(x) with j = 1, 2,...

N), integrating over x and neglecting integrals involving the residues of the expansions yields an

ordinary differential system of equations of the form :

 (A1-19a)

Π Ψ Ψn
n

n nT T nn n nP
dG
dt

A G t A G t A G t B P t⋅ = ⋅ + ⋅ + ⋅ + ⋅( ) ( ) ( ) ( ) (A1-19b)

Π Ψ ΨT
T

T TT T Tn n TP
dG

dt
A G t A G t A G t B P t⋅ = ⋅ + ⋅ + ⋅ + ⋅( ) ( ) ( ) ( ) (A1-19c)

where Πα and Aαβ are matrices whose (i, j) elements are made of scalar products involving the

appropriate basis functions :

Πα
i j

i ja a d, ( ) ( )= ∫ x x x
0

1
(A1-20a)

  
  
A a a di j

i jαβ α β
,

,( ) ( )= { } ⋅∫ x x x x
0

1
L , (A1-20b)

Bαβ is a 3-column matrix whose ith line is given by

ΠΨ
Ψ

ΨΨ Ψ Ψ Ψ Ψ Ψ⋅ = ⋅ + ⋅ + ⋅ + ⋅ +
dG

dt
A G t A G t A G t B P t C V tT T n n P V ext( ) ( ) ( ) ( ) . ( )
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  B a L di
iαβ α β= ∫ ( ) ( ),x x x

0

1
. (A1-20c)

and CΨV is a column vector whose ith element is given by

C a dV
i

iΨ = ∫ ( )x x
0

1
. (A1-20d)

In this paper, we do not consider the real-time control of the plasma density (see sections 2.1 and

3.2). We shall then restrict ourselves to Eq. (A1-19a) and (A1-19c) and consider the variations of

the plasma density coefficients, Gn(t), as known (measurable) perturbations, i.e. as additional inputs

to the model. A lumped-parameter state space model is finally obtained by inverting the Πα matrices

and defining new matrices Ahk , Bhk (with h = 1, 2 and k = 1, 2) and BΨV. It has the following

structure :

˙ ( ) ( ) ( ) ( ) ( ) . ( )Ψ Ψ Ψt A t A T t B P t B n t B V tV ext= ⋅ + ⋅ + ⋅ + ⋅ +11 12 11 12 (A1-21a)

 ε ˙ ( ) ( ) ( ) ( ) ( )T t A t A T t B P t B n t= ⋅ + ⋅ + ⋅ + ⋅21 22 21 22Ψ (A1-21b)

where BΨV is known :

    B CV VΨ Ψ ΨΠ= ⋅−1 . (A1-22)

Here dotted variables refer to their time derivatives (d/dt) and, for all the dynamic variables, the

simple generic notation Y(t) has been used to refer to the column vector Gy(t). A small scaling

parameter, ε, has been introduced when defining A2k and B2k (k = 1, 2) to exhibit the large ratio

between the kinetic time scale and the magnetic time scale.

APPENDIX A2. DATA PROCESSING FOR PRACTICAL MODEL IDENTIFICATION

The state space models to be identified from experimental data involve linearized equations,

˙ ( ) ( ) ( )X t A X t B U t= ⋅ + ⋅ (A2-1a)

Y t C X t D U t( ) ( ) ( )= ⋅ + ⋅ , (A2-1b)

dynamical state vectors, X(t), input vectors, U(t), and possibly output vectors, Y(t), that are defined

as variations with respect to reference values, Xref, Uref, Yref:

X(t) = X(t) – X ref  U(t) = U(t) – U ref Y(t) = Y(t) – Y ref (A2-2)
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In pulsed devices such as JET, and in the advanced mode of operation, the duration of plasma

discharges does not exceed the resistive diffusion time scale by a sufficient margin to be able to

reach a steady state equilibrium unambiguously. Therefore the reference state (which corresponds

to the plasma equilibrium when the input variables are set to their reference values) is not known

and the X(t), U(t) and Y(t) data cannot be obtained from the measured X(t), U(t) and Y(t) data.

To deal with this problem we define for each discharge used for model identification, a time

window, [t1, t2], in which the identification will be performed, and a set of new variables that can be

calculated offline from the measured data, and with the same sampling time as the original data :

  ˆ ( ) ( ) ( )X t X t X t= − = −X X (A2-3a)

  ˆ ( ) ( ) ( )U t U t U t= − = −U U (A2-3b)

  ˆ ( ) ( ) ( )Y t Y t Y t= − = −Y Y .

(A2-3c)

Here, brackets denote signal averages between t1 and t2, such as

  
X X=

− ∫1

2 1 1

2

t t
t dt

t

t
( ) . (A2-4)

Interestingly, with minor changes in the input vector, the state space model [A, B, C, D] to be

identified also governs the evolution of the new variables :

ˆ̇ ( ) ˆ ( ) ˆ ( )X t A X t B U t Xt= ⋅ + ⋅ +∆ (A2-5a)

ˆ ( ) ˆ ( ) ˆ ( )Y t C X t D U t= ⋅ + ⋅ (A2-5b)

where

  
∆tX X

X t X t
t t

t t
t t

= =
−
−

=
−
−

˙ ( ) ( ) ( ) ( )2 1

2 1

2 1

2 1

X X
 (A2-6)

is an additional input vector which is known from the data and is to be included when identifying

the system (A2-4a, A2-4b). Model identification can then proceed using the new variables and

therefore the reference state needs not be known.

Nevertheless, once the system [A, B, C, D] producing the best fit to the experimental data has

been identified, it is possible to extrapolate the data at the end of the reference pulse assuming that

the input vector is kept constant, U(t) = Uref , i. e.   ˆ ( )U t Uref= − = −U U . One can thus estimate

the steady state values, X̂∞ and Ŷ∞, that ˆ ( )X t  and ˆ ( )Y t  should have reached, respectively, if the

reference inputs had been applied until the plasma is in equilibrium :
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  X̂ A B X A B U Xref t t∞
− −= − ⋅ ⋅ ( ) +[ ] = ⋅ ⋅ −[ ]1 1U - U ∆ ∆ (A2-7a)

  
ˆ ˆ ˆY C X D C X D Uref∞ ∞ ∞= ⋅ + ⋅ −( ) = ⋅ − ⋅U U . (A2-7b)

Through this extrapolation, one has access to an estimate of the reference state :

  X Xref X= +∞
ˆ (A2-8a)

  Y Yref Y= +∞
ˆ  . (A2-8b)

An approximate knowledge of the reference state can be useful because the controller design is

based on the reduced variables, X(t) and Y(t) which can then be calculated in real-time from the

measurements, X(t) and Y(t). This only introduces constant offsets on the variables to be controlled.

In closed-loop operation, any error on these offsets will be rapidly compensated by the feedback

control action. An accurate estimation of Xref and Yref is therefore not essential.

APPENDIX A3. SYSTEM ORDER REDUCTION THROUGH THE QUASI-STATIC

APPROXIMATION

With enough basis functions to describe the magnetic and kinetic profiles satisfactorily, the orders

of the generic models derived in appendix A1 are large. This may have some drawbacks. If slow

and fast models of such high orders (say nx and nz, respectively) are available, some of the high-

order modes are likely to be uncontrollable (see section 3.1.2). Also, if only a subset, [µc, ρc], of the

output variables, [µ, ρ], are available and controlled in real-time, some high-order state variables

may not be observable (see section 3.1.3) and/or may not be expressed only in terms of the controlled

variables [see matrices Γµ in Eq. (51) and Γρ in Eq. (58)]. The latter situation is more troublesome

because the controller design is based on optimal state control, and assumes the observability of all

states. It may then be advantageous to use appropriate reduced-order models with a number of state

variables, nx,c and nz,c, equal to the number of measured magnetic and kinetic outputs (say nµ,c and

nρ,c, respectively). The procedure described below allows such models to be constructed by treating

the (nx - nx,c) highest order magnetic eigenmodes and the (nz - nz,c) highest order kinetic eigenmodes

in the quasi-static approximation.

A new basis can be chosen for the state space, such that the first basis vectors of the slow system

are combinations of the nx,c = nµ,c ≤ nx slowest magnetic eigenmodes only, and the first basis vectors

of the fast system are combinations of the nz,c = nρ,c≤ nz slowest kinetic eigenmodes only. The new

state vectors of the full system, [x, z], or in reduced form, [X, Z], can then be decomposed as
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Interestingly, with some straightforward algebra, the state space basis can also be chosen such that

[x, z] are related to [µ, ρ] through transformation matrices, Ts and Tf, which are lower triangular:
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while, at the same time, the new A-matrices of the state space models, As* and Af*, are upper

triangular:

A
A A
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s cc s cu

s uu

* , ,

,
=
⎡

⎣
⎢

⎤

⎦
⎥

0  ; A
A A

Af
f cc f cu

f uu

* , ,

,
=
⎡

⎣
⎢

⎤

⎦
⎥

0  . (A3-3)

In Eq. (A3-2), the components of the vector µ (respectively ρ) have been re-ordered so that the first

nµ,c = nx,c (respectively nρ,c = nz,c) components which compose µc (respectively ρc) are all available

in real-time.

In the new basis, the B-matrices of the state space models, Bs* and Bf*, are then simply

decomposed as
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Since As,cc contains the slowest eigenvalues, we can possibly assume that the eigenvalues of As,uu

are O(ε-1) larger than those of As,cc (note that this may require a shift in the definition of the time

scale ordering), so that the quasi-stationary approximation holds for the variables xu and their

dynamics can be neglected in the slow system. Defining

A As c s cc,
*
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     C C Ts s s cρ,
*

,= ⋅   and  D C D Ds s s sρ µ,
*

,
*= ⋅ + (A3-5c)

the slow system then reads :

˙ ,
*

,
*x A x B uc s c c s c s= + (A3-6a)

µ

ρ ρ

µ

ρ

s

s

s c

s
c

s

s
s s c s s

T

C
x

D

D
u C x D u

⎡

⎣
⎢

⎤

⎦
⎥=

⎡

⎣
⎢

⎤

⎦
⎥⋅ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ = ⋅ + ⋅

,

,
*

,
*

,
*

* *
(A3-6b)
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We have also implicitly assumed here that the components of xu are stable. They can be assimilated

to the fast variables,ρ and z, i.e.xuand µu contain both slow and fast components [xu = xs,u + xf,u,

with xs,u = -(As,uu)
-1. Bs,u . us, and µu = µs,u + µf,u]. Consistently with the two-time-scale approximation,

we have defined µs in Eq.(A3-6b) as being made of µc and µs,u. New dynamical equations,

˙ , , , ,x A x B uf u s uu f u s u f= + (A3-7a)

µf u s uu f uT x, , ,= ⋅ , (A3-7b)

obtained by inserting Eq.(A3-2) to (A3-4) into the new state space models should, in principle, be

included in the fast system. But this is not essential if they involve uncontrolled variables only,

because they are not coupled with the equations that govern the dynamics of the other fast variables,

z and ρ.

With the same procedure, if the fast eigenmodes, zf,u(t), are stable, and the eigenvalues of Af,uu

can be assumed O(ε-1) larger than those of Af,cc, the fast system (with ρf = ρ – ρs) can be reduced to

˙ , ,
*

, ,
*z A z B uf c f c f c f c f= + (A3-8a)

    ρf f c f c f fT z D u= ⋅ + ⋅, ,
* (A3-8b)

where

           A Af c f cc,
*

,= ,  B B A A Bf c f c f cu f uu f u,
*

, , , ,( )= − ⋅ ⋅−1 (A3-9a)

     T
T

Tf c
f cc

f uc
,

,

,
=
⎡

⎣
⎢

⎤

⎦
⎥, D

T A Bf
f uu f uu f u

*

, , ,( )
=

− ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥−

0
1 (A3-9b)

The slow system (Eq.A3-6), of order nx,c, is now represented by a state vector, xc, and the fast

system (Eq.A3-8), of order nz,c, by a state vector, zc. These new models can be validated against

experimental data and implemented in the controller design in place of the original high-order

models. Their controllability can be checked by applying criteria (41a-b) to the matrices A*
s, c, A

*
s, c,

and A*
f, c, B

*
f, c, respectively:

Rank ( ),
*

,
*

,
*

,
λs i n s c s cId A B

x c
⋅ −[ ] = nx,c for i = 1, 2, ..., nx,c (A3-10a)

and

Rank ( ),
*

,
*

,
*

,
λf j n f c f cId A B

z c
⋅ −[ ]  = nz,c for j = 1, 2, ..., nz,c. (A3-10b)

where λ*
s, i and λ*

f, j are the eigenvalues of A*
s, c and A*

f, c, respectively, i. e. the slowest eigenvalues

of the original high-order slow and fast systems, respectively.
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Now, restricting the output equations to :

  µc s cc cT x= ⋅,      and     ρf c f cc f cT z, , ,= ⋅ , (A3-11)

the system observability requires that

Rank 
( ),

*
,

*

,

,
λs i n s c

s cc

Id A

T
x c

⋅ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 = nx,c for i = 1, 2, ..., nx,c (A3-12a)

and

Rank 
( ),

*
,

*

,

,
λf j n f c

f cc

Id A

T
z c

⋅ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 = nz,c for j = 1, 2, ..., nz,c. (A3-12b)

This is satisfied when µc and ρc are chosen such that Ts,cc and Tf,cc are full triangular matrices since,

in such a case, their rank is already nx,c and nz,c, respectively. This generally leaves a wide range of

possibilities for choosing the nx,c components µc within the µ vector and the nz,c components ρc

within the ρ vector so that the system is observable through the outputs µc and ρc only. If this is not

the case, a larger set of outputs, [µγ, ργ], must be used until the state variables can be expressed in

terms of the outputs :

  xc = ⋅Γµ γ γµ,      and     zc = ⋅Γρ γ γρ,  , (A3-13)

When all the outputs are controlled, the static gain matrix of the system is not modified by the

quasi-static approximations which lead to Eq.(A3-6) and (A3-8). Therefore, for a given target state,

[µtarget, ρtarget], the closest coherent achievable state [µ∞, ρ∞] is the same with the new models as

with the original high-order models.

Table 2

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q(x) 2.02 2.13 2.27 2.47 2.73 3.05 3.45 3.96 4.60 5.42

Table 1

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Φ’(x) 2.4 4.7 7.2 9.7 12.4 15.3 18.5 22.1 26.1 30.6
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Figure 1(a): Cubic splines, ai(x), used for the expansion
of Ψ(x), i(x) and T(x).

Figure 1(b): Piecewise linear functions, bi(x), used for
the expansion of ρTe*(x).

Figure 2: Examples of a fast (red dotted trace) and of a
slow (black trace) modulation of the NBI power used for
the identification of a two-time-scale state space model.

Figure 3: Comparison between the data from JETTO and
from the identified state space (fast) model for two
elements of the electron temperature vector (x = 0.3 and
x = 0.4).
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Figure 4: Comparison between the free dynamics data
from JETTO and from the identified (slow) state space
model for two elements of the poloidal flux vector at
normalized radii x = 0.3 and x = 0.4.

Figure 5: Comparison between the data from JETTO and
from the identified (slow) state space model for two
elements of the poloidal flux vector (y1, y2) and two
elements of the electron temperature vector (y3, y4) at
normalized radii x = 0.3 and x = 0.4).

Figure 6: Input LH, ICRH and NBI powers for the
reference Pulse No’s: 66041 (blue), and modulated pulses
66047 (red) and 66042 (magenta).

Figure 7: Identification of As from the reference pulse
data. Comparison between the fit and the experimental
data for three elements of the poloidal flux vector (x =
0.4, 0.5 and 0.6).
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Figure 8: Identification of Bs from Pulse No: 66047.
Comparison between the fit and the experimental data
for three elements of the poloidal flux vector (x = 0.4, 0.5
and 0.6).

Figure 9: Identification of Af and Bf  from Pulse No:
66042. Comparison between the fit and the experimental
data for three elements of the electron temperature vector
(x = 0.4, 0.5 and 0.6).

Figure 10(a): Control of the plasma boundary flux, Pulse
No: 67835, using the PF system (XSC) as an actuator.

Figure 10(b):Time evolution of the plasma current during
the control of the boundary flux, Pulse No: 67835
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Figure 11: Input H&CD powers (blue), surface loop
voltage (red) and line-integrated density (green) for Pulse
No: 67874.

Figure 12: Input H&CD powers (blue), surface loop
voltage (red) and line integrated density (green) for Pulse
No: 67876..
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Figure 13(a): Typical variations of the safety factor. The
figure shows q(x) at t = 6s. (full lines) and t = 11s. (dashed
lines), for Pulse No’s: 7871 (blue), 67872 (red) and 68016
(green).

Figure 13(b): Typical variations of the internal poloidal
flux. The figure showsΨ(x) at t = 6s. (full lines) and t =
11s. (dashed lines), for Pulse No’s: 67871 (blue), 67872
(red) and 68016 (green).
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Figure 13(c): Typical variations of the internal toroidal flux. The figure shows Φ(x) at t = 6s. (full lines) and
t = 11s. (dashed lines), for Pulse No’s: 67871 (blue), 67872 (red) and 68016 (green).
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Figure 14: The first three output singular functions of the static gain matrix for i(x) (black, blue and green curves),
and an additional basis function of the orthogonal subspace (red curve).
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Figure 17:Comparison between the measured i(x) profile
and the model-based simulation at 10 fixed normalized
radii (x = 0.1, 0.2, 0.3, ..., 1). Pulse No:67876 :
modulations of LH, NBI and ICRH powers with a constant
request on Vext (see Fig.12). The fit parameter (Eq. 11) is
shown in each frame.

Figure 16:Comparison between the measured i(x) profile
and the model-based simulation at 10 fixed normalized
radii (x = 0.1, 0.2, 0.3, ..., 1). Pulse No: 67874 :
modulations of NBI power with constant LH and ICRH
powers, and constant request on Vext (see Fig.11). The fit
parameter (Eq.11) is shown in each frame.

Figure 15: Comparison between the measured i(x) profile
and the model-based simulation at 10 fixed normalized
radii (x = 0.1, 0.2, 0.3, ..., 1). Pulse No: 67840:
modulations of Vext with constant H&CD powers. The fit
parameter (Eq.11) is shown in each frame.
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Figure 18:Comparison between the measured i(x) profile
and the model-based simulation at 10 fixed normalized
radii (x = 0.1, 0.2, 0.3, ..., 1) for a validation pulse (Pulse
No: 70318 not used in the model identification process).
The fit parameter (Eq. 11) is shown in each frame.
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Figure 20: Evolution of ι(x)(3 upper traces) and ρTe*(x) (3 lower traces) at x=0.4, 0.5 and 0.6 in a closed-loop
simulation with (full traces) and without (dotted traces) disturbance rejection. The requested target values are
represented by the horizontal lines
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Figure 19: State space diagram showing schematically : (i) the slow relaxation of the system with constant input
parameters (blue arrow), (ii) the asymptotic response when ε → 0 to a change in these parameters leading to another
equilibrium state (red arrows), and (iii) the closed-loop response of the system to the control laws when requesting
the same target state (red trajectory). The locus of all possible equilibrium states is represented by the black curve.
Lines and curves are artistic 1-D representations of multidimensional spaces.
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Figure 21: Evolution of the actuator powers in the closed-
loop simulation with (full traces) and without (dotted
traces) disturbance rejection. The time origin refers to
the start of the control phase. A density perturbation is
applied at t = 5s.

Figure 22: Evolution of the cost functional I∞ in the
closed-loop simulation with (full trace) and without
(dotted trace) disturbance rejection. The time origin refers
to the start of the control phase. A density perturbation is
applied at t = 5s.

Figure 23: Regulation of the total plasma current using
the PC during the main heating phase of two different
discharges. The target value of qedge is represented by the
horizontal line.

Figure 24: Comparison between the requested (blue trace)
and the delivered loop voltage (red trace) during the
control of qedge in Pulse No: 68900.
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Figure 26(a): Control of the safety factor profile at three
normalized radii, x = 0.2 (red), x =0.5 (blue), and x = 0.8
(magenta) using the three H&CD actuators (Pulse No:
70395). During the control phase Vext is requested constant
(32mV/rad). Target values are represented by horizontal
lines.

Figure 25(a): Control of the edge safety factor for plasma
current ramp up (pulse #68905). The target value of qedge
is represented by the dotted horizontal line.

Figure 25(b): Plasma current ramp-up through the control
of the edge safety factor with the PC (pulse #68905).
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Figure 26(b): Time evolution of the cost functional I∞ for
Pulse No: 70395. After transient oscillations of the loop
voltage, a quasi-steady minimum which corresponds to
the closest coherent achievable state is reached.
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Figure 27(a): Requested (black trace) and delivered (red
trace) boundary flux for Pulse No: 70395 with a desired
constant loop voltage of 32 mV/rad.

Figure 27(b): Requested (black traces) and delivered (red
dotted traces) LH, NBI and ICRH powers for Pulse No:
70395.

Figure 28(a): Control of the safety factor profile at five
normalized radii, x = 0.2 (red), x = 0.4 (blue), x = 0.6
(magenta), x = 0.8 (cyan), and x = 1 (green), using the
H&CD and loop voltage actuators (Pulse No:70404).
Target values are represented by horizontal lines.

Figure 28(b): Time evolution of the cost functional I∞
during the active phase of the profile controller in Pulse
No:70404.
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Figure 29(a): Requested (black trace) and delivered (red
dashed trace) boundary flux for Pulse No:70404.

Figure 29(b): Requested (black traces) and delivered (red
dotted traces) LH, NBI and ICRH powers for Pulse
No:70404.
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