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ABSTRACT

A new mechanism whereby Neoclassical Tearing Modes (NTMs) can be triggered through toroidal

mode coupling to a frequency sweeping fishbone instability driven by energetic particles is proposed.

The novel physical picture is the presence, prior to the seeding process, of a “pre-NTM” magnetic

island of relatively small width, rotating at a frequency within the diamagnetic drift band, so that

the polarization current is stabilizing. The main effect of the fishbone is to exert an electromagnetic

torque that changes this frequency so that the polarization current becomes destabilizing, driving

the island above the critical seed island width, in which case NTM growth ensues.

INTRODUCTION

Neoclassical Tearing Modes (NTMs) are MagnetoHydroDynamic (MHD) instabilities that modify

the magnetic topology in toroidal fusion devices such as tokamaks, leading to the formation of

helically winding structures called “magnetic islands” that may reach large sizes and significantly

affect plasma performance. NTMs are usually triggered by another MHD instability, most often a

sawtooth reconnection event (see [1] and references therein). Empirically, it has been found that

the sawtooth period is the main physical parameter determining the triggering, and, consequently,

significant effort is spent on controlling sawteeth in present-day tokamaks so as to prevent the

appearance of NTMs [2]. It was also observed experimentally that the energetic particle-driven

fishbone instability can trigger NTMs [3]. However, this is not observed for every fishbone burst,

and the problem of identifying the conditions for the fishbone triggering of NTMs remains open.

Next-step burning plasmas, e.g. on ITER, will substantially differ from plasmas in present-day

machines because they will generate a large population of fusion-born alpha particles. With energetic

ions present in abundance, energetic particle-driven instabilities, such as fishbones, may become

an inevitable feature, and the fishbone triggering of NTMs  could turn out to be the dominant effect

even if the sawtooth behaviour is well controlled. Therefore, it is important to have a better

understanding of this process in order to be able to devise ways of controlling it. In this Letter, we

describe a mechanism for this type of triggering, whereby the fishbone is considered as an external

frequency sweeping perturbation that affects the NTM through toroidal mode coupling. The model

is comprised of only two equations for the magnetic island’s width and phase, and the various

parameters involved are identified by considering a typical instance of a fishbone triggered NTM

on JET.

That toroidal mode coupling may trigger NTMs was first suggested in [4]. In the latter work, a

forced reconnection was considered, namely, the MHD perturbation was acting as a direct drive for

the initial growth of the magnetic island, much as in the so-called Taylor problem [5]. The main

drawback of such an explanation is that the NTM should then be born in phase with the triggering

event, which is seldom observed, e.g. on JET [6].

The mechanism of NTM triggering by the fishbone essentially uses the frequency sweeping

character of the perturbation. This Letter shows that NTMs can be triggered by the fishbone under
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the following conditions: (i) the tearing mode is classically unstable, i.e. the stability parameter, ∆′,

is positive [7], (ii) the ∆′-driven island is stabilized at small amplitude by the polarization current

[8-10] to produce what we henceforth refer to as a “pre-NTM” magnetic island, and (iii) the main

effect of the fishbone is to exert an electromagnetic torque that modifies the frequency of the pre-

NTM island so that the polarization current becomes destabilizing.

The basic formalism of the toroidal mode coupling problem has already been described in [4],

and we refer the reader to this reference for more details. The main result is that the classical

stability parameter of a (m, n) NTM, where m and n are the poloidal and toroidal mode numbers

respectively, is changed by the nth harmonic of a (1, 1) fishbone into :

(1)

where ∆′ is the intrinsic stability parameter of the mode, ∆′c is a toroidal coupling coefficient, A(t)

is the amplitude of the nth harmonic of the fishbone, φ and  φfb refer to the phase of the NTM and of

the fishbone in the plasma rest frame, and Ψ is the reconnected flux. The latter is related to the

normalized island width  w = 4    ΨLs/(B0rs
2), where Ls = qR/s is the local shear length,  s = q′rs/q the

local shear, q(r) the safety factor, R the major radius, B0 the toroidal magnetic field, and rs the radial

location of the rational surface (i.e. q(rs) = m/n).

The real part of ∆′ given by Eq. (1) influences the island width evolution, whereas its imaginary

part has an effect on its phase, i.e. it accounts for the electromagnetic torque exerted by the fishbone

on the magnetic island [11]. In order to delineate clearly the main effect of the fishbone, we neglect

its contribution to the reconnection itself (although it may have a small stabilizing effect on the

NTM when the latter is not locked to it [12,13]), i.e. take Re(∆′) = ∆′, so that the only effect of the

fishbone will be on the island frequency. Therefore, the island width is governed by the Rutherford

equation [14]:

(2)

where τR ̃  µ0 rs
2/ (1.22η) is proportional to the resistive diffusion time, µ0 and η being the permeability

of free space and plasma resistivity respectively, βp is the plasma’s poloidal beta, ε = rs/R, and the

other coefficients will be defined shortly. As to the phase equation of the island, it is assumed to

satisfy the following relation (compare to [15]):

(3)

˜

˜

˜
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where τM = GW rs
2/(6GV µa) is proportional to the viscous diffusion time, τM = G3 τM /(√ 2Gw), wfb =

4    A(t)Ls/(B0rs
2), µa is a phenomenological perpendicular viscosity, and G3, V, W  are coefficients of

order unity [15]. Note that the first term on the right hand side of Eq. (3) is proportional to Im(∆′).

This equation differs from the one given in [15] insofar as we have introduced a new parameter, ω,

that refers to the island’s “natural” frequency, i.e. to the frequency of the island without any external

perturbation. Since, from a theoretical standpoint, it is still debated what this frequency exactly is,

its value has to be inferred from experimental data.

We now give the definition of the different terms on the right hand side of Eq. (2). The first one

is the classical tearing mode driving term that determines the width of saturated ∆′-driven islands.

The functional dependence of this classical term can be inferred from the theory rigorously derived

recently in cylindrical and slab geometry [16-19]. It is of the form Λ(w) = ∆′ + a2w[ln(w/w0)-b],

where a2, b, and w0 are coefficients whose precise definition can be found in the aforementioned

references. The term proportional to  abs ̃  0.6 Lq /Lp, where Lq = q/q′ and Lp = -p/p′, is the contribution

of the bootstrap current [14], taking into account the perpendicular diffusion length  wd ̃  5.1    R/(rsns)

(χ⊥/χ||)
1/4 [20]. Finally, the stabilizing effect of toroidal curvature leads to the Glasser-Greene-Johnson

term [21] that is proportional to aGGJ ̃  6ε
2Lq (q

2-1)/(q2sLp) and that has also been shown to depend

on wd [22].

The last term is the contribution of the polarization current [9], with TA  ̃      9.3q τA/(nsε), τA = R/vA

being the Alfvén time and vA = B0 /   µ0ρ the Alfvén speed, where ρ is the plasma mass density. Its

exact form is taken with the same island width dependency as in [23] but, in line with the recent

work of Fitzpatrick et al. [24], we assume that wpol ˜ ρi, where ρi is the ion Larmor radius. Contrary

to the other terms, this one depends on the island frequency, which is a crucial point as far as NTM

triggering is concerned, for it allows the fishbone to act on the island width in an indirect way

through the phase, Eq. (3). Therefore, it is important to keep track of this frequency dependence,

which is why we have introduced the factor g(φ)  that is modelled here in the following way:

(4a)

(4b)

where ωE = mEr /(rs B0) is the  drift frequency due to the radial electric field Er ,ω*pi = ω*i (1+ ηi),

ω*i = -mTi ni′/ (ers B0ni ) and ω*e = -mTe ne′/ (ers B0ne) are the ion and electron drift frequencies

respectively, ne (resp. ni) is the electron (resp. ion) density, Ti (resp. Te) is the ion (resp. electron)

temperature, ηi = dlogTi /dlogne, and   is the elementary charge. Equation (4) is in agreement with

the fact that the polarization current is stabilizing in the electron or ion drift branch and destabilizing

otherwise [25-27]. It also complies with the expression derived in [9].

In order to illustrate this model and show that it can indeed describe the triggering of NTMs, we

apply it to a specific event that occurred during pulse 61151 on the JET tokamak (see Fig.1). This

˜

˜

˜ ˜ ˜ ˜
˜

˜

˜

˜
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example is quite relevant in that no other major perturbation is present at the onset of the (3,2)

NTM, which leads one to conclude that the triggering is due to the fishbone only. The experimental

values of the model’s main parameters are listed in Table I. Concerning the natural frequency, it can

be seen on Fig.1 that the NTM frequency, in the laboratory frame, rises from a value that is

approximately 17-18kHz to about 20kHz at t
 ̃  

7.15s. Since the main physical profiles do not change

significantly over that period of time, as we have checked, it is reasonable to assume that this value

is the Doppler-shifted natural frequency to which the NTM relaxes after it has been triggered (the

low amplitude n = 1 mode is assumed to have a negligible effect on the NTM's dynamics). We thus

take ωlab/(2π) = 20kHz, where ωlab= ω + 2Ω3/2, Ω3/2  being the plasma’s toroidal rotation frequency

at the q = 3/2 surface.

There remain a few unknown parameters in our model, and we now address them in turn. First,

there are ∆′ and  ∆′c that both depend on the equilibrium profiles in an intricate way. We shall not

attempt to compute them precisely but rather give them a typical value, e.g.  rs∆′c = 2 and rs∆′ = 8.

Note that the sign of ∆′c is chosen arbitrarily, since it can be changed by a mere redefinition of the

island phase, whereas we have assumed ∆′ to be positive so as to ensure the presence of the pre-NTM

island. As to the a, b, and w0 coefficients, they essentially affect the large saturated island width,

which is not the main concern of this Letter, so they are assigned values of, e.g. a2 = 20, b = 1 and

w0 = 1. Following the estimates derived in [5] for typical JET plasmas, we take wd = 0.04 and

assume that the equilibrium radial electric field is small so that the E×B drift frequency is negligible.

The last two parameters have to be chosen arbitrarily, but within the reasonable assumptions that

τM  ˜ τR and  wpol  ˜ ρi /rs. Therefore, we take τM = 3τR and wpol = 1.6 ρi /rs.

Given this set of parameters, it is interesting to have a look at the right hand side of Eq. (2) to

understand the stability of the NTM without any perturbation. The fact that we have taken ∆′ to be

positive allows for another stable equilibrium, wp (see Fig.2), which is the pre-NTM island that has

already been mentioned. It is too small to be observed experimentally (about 1mm), but is still larger

than the linear resistive layer width so that the system is indeed in the nonlinear Rutherford regime

[28]. If this pre-NTM island is ever driven above the seed island width wsat, the system will naturally

evolve towards the large saturated state, wsat, which is the “seeding” process.

We finally need to model the fishbone instability, which amounts to giving an explicit expression

for its amplitude and frequency. Obviously, deriving its (effective) amplitude at the position of the

NTM from experimental data would be a difficult task. Therefore, the choice of wfb is again arbitrary.

It is, however, possible to determine its frequency from Fig.1, and we see that it drops from an

initial value fi ˜ 20kHz  to a final one ff ˜ 9kHz in a time of order 10ms. We therefore model its

evolution as an exponential decay between these two values over a time tfb = 8ms. Solving Eqs. (2)

and (3) numerically, we obtain the result shown on Fig.3 for a maximum fishbone amplitude wfb =

0.8. We see (Fig.3(a)) that the fishbone has a braking effect on the pre-NTM island, so that the

polarization current eventually becomes destabilizing, which results in a very rapid growth compared

to the resistive diffusion time τR. It is noteworthy that, by the time the fishbone amplitude is negligibly

˜

˜

˜

˜ ˜

˜

˜
˜

˜

˜



5

small, the island has not quite overshot the seed island width (Fig.3(b)), but is nonetheless able to

grow due to the fact that it has not yet relaxed to its natural frequency. The fishbone thus acts as an

indirect trigger for the NTM through the electromagnetic torque it exerts on the pre-NTM island. It

is the polarization current that actually drives the bifurcation from the partially-reconnected

equilibrium to the fully-reconnected one, which is why this new physical picture may be coined

enhanced, as opposed to forced, reconnection.

It is worthwhile to investigate the influence of the fishbone’s parameters within the context of

our model. Obviously, its amplitude should be the most important one. This is shown on Fig.4(a),

where, along with wfb , the viscous diffusion time has been varied as well. The result is qualitatively

straightforward, as it is all the easier for the fishbone to trigger an NTM when its amplitude is large or

the viscosity is small, and there is no NTM triggering below a certain threshold wfb   (dotted line).

More interestingly, the role of the fishbone’s final frequency and frequency sweeping rate (roughly

given by fi - ff) is shown on Fig.4(b). The runs on this figure have been performed by making a scan

of ff with a 100kHz step and then, for each such value, changing fi - ff continuously. It appears that

the NTM is never triggered outside a certain window, and the unstable region itself is filled with

gaps of varying size, so that a sub-region of greater instability can be seen (dashed line). Given the

crudeness of our model, these results should by no means be taken as quantitative, yet their qualitative

features exemplify the complexity of the triggering event. The interaction between a fishbone and

a pre-NTM island thus seems to require a fine tuning to be efficient, possibly explaining why, in

most instances, it takes more than one fishbone before an NTM is eventually triggered.

Obviously, a lot of work remains to be done in order to improve and validate this model, but we

believe we have shown that the mechanism we propose is plausible, both from a theoretical and

experimental point of view. This new physical picture emphasizes the importance of the polarization

current and, hence, stresses the need for a more comprehensive theory concerning the natural

frequency and the phase evolution of magnetic islands. We do not claim, however, that this

mechanism applies whenever an NTM is triggered, since a physical phenomenon that could

significantly affect any of the parameters involved in our model (e.g. a sawtooth precursor) may

also lead to instability, not to speak of forced reconnection that cannot be definitely excluded in

some cases. The triggering of NTM certainly is a complicated problem, but we think that this Letter

is a step forward in the endeavour to understand it.
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TABLE. I: Values of the model’s main parameters for JET Pulse No: 61151,
in SI units (except for temperatures expressed in keV), at t = 7.05s

R =   3.1

S =   1.2

Lp =   0.38

βp =   0.9

ω*pi =   24.4 × 103

B0 =   0.5

Ls =   0.42

abs =   0.9

τR =   18.8

ω*e =   -9.4 × 103

rs =   0.5

Lq =   0.42

aGGJ =   0.08

τA =   4.1 × 10-7

Ω3/2 =   6 × 104
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Figure 1: Magnetic spectrogram of the triggering of a 3/2 NTM by a fishbone during
Pulse No: 61151 on the JET tokamak.
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Figure 4: Influence of: (a) the viscosity and the fishbone’s amplitude on the triggering (region I) or not (region II)  of
the NTM; and (b) the chirping rate and final frequency of the fishbone (boxes refer to cases where the NTM is
triggered and the cross mark corresponds to the run of Fig.3).

Figure 3: Evolution of the island's laboratory frequency (a) and width (b); the dashed lines indicate
the beginning and end of the fishbone.
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