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ABSTRACT.

In discharges on the Joint European Torus (JET) with safety factor q(0) < 1 and high power Ion

Cyclotron Resonance Heating (ICRH), monster sawtooth crashes are preceded by sweeping frequency

“tornado modes’ in the TAE frequency range. A suite of equilibrium and spectral MHD codes is used

for explaining the observed evolution of the tornado mode frequency and for identifying temporal

evolution of the safety factor inside the q = 1 radius just before sawtooth crashes. In some cases, the

tornado modes are observed simultaneously with both positive and negative toroidal mode numbers.

Hence, a free energy source other than the radial gradient of the energetic ion pressure exciting these

modes is sought. The distribution function of the ICRH-accelerated ions is assessed with the SELFO

code and energetic particle drive due to the velocity space anisotropy of ICRH-accelerated ions is

considered analytically as the possible source for excitation of bi-directional tornado modes.

1. INTRODUCTION

The physics of highly energetic ions in tokamak plasmas is one of the most important burning

plasma topics [1] and is investigated on JET. Instabilities of high-frequency waves (50-500 kHz for

typical JET parameters) are often excited in JET by resonant interaction between shearAlfvén waves

and super-Alfvénic energetic ions accelerated by Ion-Cyclotron Resonance Heating (ICRH) [2] or

by ions produced with Neutral Beam Injection (NBI) [3]. Similar excitation of Alfvén instabilities

by fusion-born alpha-particles may occur in the burning fusion plasma of ITER, since for typical

ITER parameters the Alfvén speed is just below the velocity of fusionborn alpha-particles at birth.

Possible interplays between the high-frequency Alfvén instabilities and low-frequency MHD modes,

such as sawtooth oscillations in discharges with the central safety factor q(0) < 1 [4, 5] are of major

interest for burning plasmas since both Alfvénic and sawtooth instabilities may become strongly

coupled through the same population of energetic ions.

When a significant population of energetic ions is accelerated up to the MeV energy range by

high power ICRH in sawtoothing JET discharges, the sawtooth oscillations change their character

significantly and become so-called monster sawtooth oscillations [6]. In contrast to sawteeth in

Ohmically heated plasmas, the monster sawtooth oscillations have very long periods (˜1s or longer),

saturating or even decreasing the central electron temperature, dTe(0)/dt ≤ 0, during the pre-crash

phase, and much shorter crash times (˜50µs). Monster sawtooth crashes produce larger drops in

electron temperature and trigger neoclassical tearing modes more often. The long period of such

sawteeth is attributed to the stabilising effect of ICRH-accelerated energetic ions [7], while the

short crash time is explained by the electron inertia, which introduces a very short time scale in the

Ohm’s law in a singular layer surrounding the q = 1 magnetic flux surface [8]. However, some

characteristics of the monster sawtooth behaviour, such as the saturation or decrease of electron

temperature at the pre-crash phase, as well as the very occurrence of the crash while the fast ion

stabilisation persists, were more difficult to explain.

It was suggested that n = 1 fishbone oscillations preceding the crashes of monster sawteeth may
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expel fast ions from inside the q = 1 radius, thus triggering loss of fast ion stabilisation with subsequent

crashes [7]. However, it was then found that not all crashes have pre-cursors in the form of fishbones,

and a search for alternative possibilities continued. In the late-nineties, significant improvements

made in the detection of Alfvénic instabilities allowed an identification of another precursor to

monster sawtooth crashes - so-called ’tornado’ modes [9–11] with frequencies much higher than

the frequency of the n = 1 fishbones. Frequencies of these multiple modes are close to the frequency

range of Toroidal Alfvén Eigenmodes (TAEs), but in contrast to the usual TAEs, they exhibit a

significant sweep in frequency and are observed with mode numbers decreasing one-by-one during

the time preceding the sawtooth crashes. Due to the sweeping frequency evolution, tornado modes

were first associated with Energetic Particle Modes (EPMs). It was noted from the very beginning

[9] that tornado modes cause a much more significant degradation of the fast ion confinement than

TAEs. It was also suggested [10] that the very occurrence of the monster sawtooth crash may be

caused by the tornado modes expelling fast ions from the central region of plasma inside the q = 1

radius, so that the fast ion stabilising effect decreases below a critical value and the sawtooth crash

can no longer be prevented by the fast ions. In accordance with such theory, the saturation or

decrease of electron temperature, dTe/dt ≤ 0, at the pre-crash phase, is not caused by a sudden

change in electron heat conductivity. Instead, a saturation or decrease of the electron heating source

causes the electron temperature to roll over as the fast ion pressure gradient exceeds the critical

value for excitation of tornado modes and these modes expel fast ions from the centre of the plasma

to the region outside the q = 1 magnetic surface.

In parallel, a theory of low-shear TAEs was developed in order to explain modes observed in

TFTR DT experiments, in which the values of β exceeded the critical threshold for TAE suppression

[12, 13]. However, it was only understood after observation of ’odd’ tornado modes on JET that the

tornado modes are not EPMs as suggested in [10], but they are low-shear TAEs inside the q = 1 radius

[14]. The significant frequency sweep of tornado modes and the sequence of toroidal mode numbers

are caused by the proximity of the modes to the magnetic axis and by q(0) decreasing in time; both

effects were established in ideal MHD modelling with MISHKA and NOVA-K codes [14].

The identification of tornado modes as low-shear TAEs inside the q = 1 radius made it possible

to model these modes and to develop a dedicated experimental scenario for studying tornadoes in

JET plasmas with monster sawteeth [2]. It was noted in [14] that tornado modes are localised deep

in the plasma core and they rarely have more than two coupled poloidal harmonics. Under such

conditions, it became clear that detection of tornado modes is a significantly more difficult task

than detection of TAEs outside the q = 1 radius, since TAEs are closer to the magnetic pick-up coils

(Mirnov coils) outside the plasma, and TAEs consist of multiple harmonics due to greater magnetic

shear outside the q = 1 radius. The progress in detecting Alfvén Eigenmodes with core plasma

diagnostics on JET such as interferometry [15–17] and reflectometry [18] made it possible to observe

tornado modes even if these were localised very close to the magnetic axis and thus were not seen

by Mirnov coils.
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Recent JET experiments devoted to tornado modes have revealed that in many cases tornado modes

with both positive and negative toroidal mode numbers are observed simultaneously. The spectroscopic

analysis resembles the study previously done in [19], where the sequence of TAE excitation prior to

sawtooth crashes, as well as EAE excitation following the sawtooth crashes were studied. It is our

intention to study the experimentally observed bi-directional EAEs in another paper.

In cylindrical geometry, shear Alfv´en waves satisfy the dispersion relation ω = |k||m(r)vA(r)|,

where k||m(r) is the parallel component of the wave vector as a function of minor radius r and vA(r)

= B0/ √4πρ0 is the Alfvén velocity. However, these waves suffer from strong continuum damping.

In tokamaks, the toroidal geometry introduces perturbations, known as toroidal coupling terms,

which lead to a coupling between neighbouring poloidal harmonics of the wave [20, 21], expressed

by the coupling condition

(1)

The resulting TAE gap structure supports discrete frequency TAEs at magnetic flux surfaces

characterised by

(2)

where m and n are the poloidal and toroidal mode numbers, respectively, in the Fourier decomposition

of the wave. Moreover, the frequency of TAEs within the TAE gap range is given by [22]

 (3)

where R0 is the major radius of the torus.

TAEs can be modelled with MHD codes in order to verify the experimentally observed bi-

directional modes. However, whereas MHD modelling of TAEs gives a deeper understanding of

plasma equilibrium properties, mode locations and mode widths, it does not consider the question

of drive necessary for the excitation of the bi-directional tornado modes. The drive coming from a

monotonically decreasing pressure is only positive for modes propagating in the ion diamagnetic

direction, which corresponds to propagation in the same direction as inductive current (co-

propagation) on JET. Mathematically, the necessary condition for a positive drive of TAEs due to

hot ions is ω < ω∗ [21], where the diamagnetic frequency is given by

(4)

Here, f0 is the unperturbed hot ion velocity distribution function, Jϕ is the toroidal canonical

momentum, wc = eB0/cM is the cyclotron frequency, where M is the particle mass, and v is the

k||m(rm) = −k||m−1(rm)
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particle velocity. In order to explain counter-propagating tornado modes with n < 0, the drive coming

from fast ion anisotropy in the velocity space [23] has to be considered. Analytic theory for the

drive was previously carried out in [24], where the stabilising effects due to the mode structure was

considered for excitation by both passing and trapped hot ions in a small banana width limit.

The paper is organised as follows. In Section II, experimental data for tornado mode Pulse No:

66203 of the tornado mode session on JET is presented. The existence of the observed bi-directional

tornado modes are then verified, by a suite of MHD codes, in Section III. Theory for bi-directional

tornado mode drive, arising from velocity anisotropy in the ICRH-accelerated fast ion distribution

function, is presented and applied to experimental data in Section IV. Finally, we summarise and

discuss the results obtained in Section V.

2. EXPERIMENTAL OBSERVATIONS ON JET

Figure 1 shows electron temperature, line-average electron density, and power waveforms in JET

discharge (Pulse No: 66203) with magnetic field 2.7T and plasma current 2MA, where bi-directional

tornado modes were observed.

High power ICRH with a frequency corresponding to the hydrogen cyclotron frequency at the

magnetic axis was used for accelerating hydrogen minority (nH/ne ≈ 2.5%) ions, so that ICRH

generated an energetic tail of hydrogen ions and, via the second harmonic resonance, some deuterium

tail. Low-power blips of NBI were used for measuring the ion temperature and the safety factor

profile. An inductive current flat top of 2 MA was obtained one second before the start of ICRH,

and short-period sawteeth in the Ohmic phase of the discharge appeared before ICRH power was

applied. The transition from Ohmic sawteeth to monster sawteeth is shown in Figure 2.

In this discharge, eight monster sawteeth were observed as can be seen from Te measurements in

Figure 1, and all of them were preceded by bi-directional tornado modes. Figures 3 (a)–(c) show the

examples of bi-directional tornado modes preceding the first monster sawtooth crash at  ˜11.3s.

Figure 3 (a) shows toroidal mode numbers of the poloidal magnetic field perturbations derived from

the phase shifts between signals measured with toroidally separated Mirnov coils located just outside

the plasma. The toroidal mode numbers of the co-current propagating modes with positive n are seen

to decrease in time one-by-one from n = 9 to n = 2 as the sawtooth crash approaches. The counter-

propagating modes with negative toroidal mode numbers display a less regular sequence of appearance

occurring simultaneously with n = -6, -5, and, somewhat later, with n = -4 and n = -2.

Figures 3 (b), (c) show spectrograms of electron density perturbations detected in the same

frequency range with the O-mode interferometry [15]. Figures 3 (a) and 3 (b) show that tornado

modes with both positive and negative mode numbers are detected with Mirnov coils and O-mode

interferometry. However, the O-mode interferometry also shows a set of sweeping frequency Alfvén

cascades in the range 50–150kHz, which were hardly visible by using the Mirnov coils.

In order to clarify the co-existence of Alfvén cascades and tornado modes, another example of

tornado modes preceding sawtooth crash is shown in Figure 4. Figure 4 shows, somewhat clearer
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than in Figure 3 (c), an image of both Alfvén cascades and tornado modes detected with the O-

mode interferometry. Although there is a frequency gap 200–220kHz separating Alfvén cascades

and tornado modes, this figure suggests that tornado modes may be related to Alfvén cascades in

this case. It is important to note that Alfvén cascades in the low-shear region inside the q = 1 radius,

in contrast to the advanced tokamak scenarios with q > 1, may not be necessarily associated with a

reversed magnetic shear. At least two other effects may play a role in forming the Alfv´en cascade

eigenmodes very close to the magnetic axis, namely (i) magnetic axis itself may form a potential

barrier in ideal MHD providing a sufficiently flat (but still monotonic) q-profile [25], and (ii) the

FLR effects of thermal ions may form Rosenbluth-Rutherford modes in the vicinity of the magnetic

axis [26].

Taking into account that the experimental data shows only one set of Alfvén cascade eigenmodes

in Figures 3 (c) and 4, it is unlikely that these modes have negative toroidal mode numbers, which

would be shifted in frequency due to the Doppler shift. Since the problem of explaining the bi-

directional tornado modes seems to be independent of the relation between tornado modes and

Alfvén cascades, we focus here on the bi-directional modes in the TAEfrequency range only in

what follows, while the very interesting question about the coupling of tornado modes and Alfv´en

cascades will be considered elsewhere.

It is of special interest to consider bi-directional tornado modes during NBI. The unbalanced

beam injection on JET spins up the plasma toroidally and this toroidal rotation causes Doppler shift

in frequencies of modes with different toroidal mode numbers. In this way, frequencies of positive

and negative mode numbers are well separated and it makes the analysis of the data less ambiguous.

Figure 5 shows bi-directional tornado modes during NBI as these are observed with Mirnov coils.

Figure 6 shows high-frequency density perturbations detected with the O-mode interferometry at

the same time. No Alfvén cascades are detected by interferometry in this case.

Figure 5 shows the results of a toroidal mode number analysis of JET Pulse No: 66203 just

before a giant sawtooth crash at t = 20.2s. The excitation of tornadoes with negative mode numbers,

n < 0, is delayed in comparison to the excitation of positive mode number (n > 0) tornadoes.

Moreover, some of the counter-propagating modes are upward-chirping whereas copropagating

modes are downward-chirping. From the observation of negative mode number tornadoes, our first

idea was that we are most likely to have a hollow fast ion pressure profile in these discharges due to

low-field side ICRH. However, modelling of the ICRH-accelerated distribution function with the

self-consistent code SELFO [27] shows that this is not the case at the time of excitation of tornado

modes. Possible explanations of the observation of negative toroidal mode number tornadoes are

discussed further in Section IV.

We note that at about twice the TAE range of frequencies, bi-directional EAEs are found to be

excited after the sawtooth crash, when the safety factor profile has been lifted due to the effect of

the reconnection event. Since Alfvén cascades are also observed as Figs.3 (c) and 4 show, we are in

a position to test whether a reversed shear safety factor profile better models the observed temporal
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evolution of tornado modes in Fig. 5. In Section III, this idea is further investigated.

3. MODELLING WITH MHD CODES

The experimental observations of bi-directional tornado modes on JET are investigated further

below with a suite of MHD codes; HELENA [28], CSCAS [29] and MISHKA [30, 31]. The aim of

the MHD modelling is to identify the radial location of the tornado modes, to verify the toroidal

mode numbers suggested by the mode number analysis, and to reproduce the temporal evolution of

the mode frequencies. where   and   are the poloidal and toroidal coordinates, and B  and B  are the

toroidal and poloidal magnetic field components. Since Bθ/Bζ ˜ O (∈), equation (5) states that q

O(1). In order to study the possibility of a reversed magnetic shear scenario, a reversed shear equilibrium

just outside the error bars of MSE diagnostics as well as a reversed shear equilibrium from a similar

type of discharge, but with larger negative magnetic shear, have been generated. The safety factor

profiles of the three basic equilibria used for tornado mode modelling are illustrated in Fig.7.

A. EQUILIBRIUM RECONSTRUCTION

The MHD code HELENA [28] is first used to construct an equilibrium in straight field line

coordinates from a Motional Stark Effect (MSE) measured safety factor profile. The safety factor is

defined through

(5)

B. ALFVÉN EIGENMODE MODELLING

The Alfvén Continuum Gap (ACG) structure, which is generated with the CSCAS code [29] and is

modified as the value of the safety factor changes, provides a graphical way to determine the radial

positions and normalised frequency range of possible TAEs. In particular, since the safety factor

profile is included in the ACG structure diagram, it is instructive to consider the CSCAS output in

order to judge whether TAEs are to be located outside the q = 1 surface, or inside the q = 1 surface,

in which case they are called tornado modes.

Starting from the reconstructed MSE equilibrium, a sweep in the safety factor value on the

magnetic axis is performed with the HELENA code. For each value of q(r = 0) = q0, the MHD

spectral code MISHKA [30, 31] is used in order to scan the Alfvén continuum gap structure, observed

in CSCAS for tornado modes. An initial guess of the normalised eigenmode frequency,

(6)

is then made. Note that the centre of the TAE gap corresponds to normalised frequency ω = 1/2 (see

Eq.(3)). A complete scan of the TAE gap in this way finds all the supported modes by the specific

q0 = const equilibrium.

q(r) = ~ 
B • ∇ζ
B • ∇θ

rBζ
R0Bθ

w =
wR0

vA
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The supported modes consist of two dominant poloidal harmonics, for which the poloidal mode

number m is consistent with the coupling condition, Eq. (1). Representative tornado mode structures

for n = +4, +5 and +6 are illustrated, together with the ACG structure from CSCAS, in Figs. 8-10.

As the modelled TAEs inside q = 1 are shifted radially outwards, due to a decrease in q0, they start

to couple to edge-localised modes. In order to minimise this coupling, it is appropriate to consider a

larger number of grid points and to introduce a perfectly conducting wall in MISHKA [32].

3.3 MODELLING RESULTS

In order to describe the results of bi-directional tornado mode modelling, we assume (i) a linear

decrease of q in time, and (ii) the radial gradient of q(r) from MSE measurements is constant at all

times. This facilitates a linear mapping of the modelled decrease in q0 to the temporal evolution of

the normalised tornado mode frequencies. Furthermore, we map the normalised frequency ω by

taking the values ωA(r = 0) = 7.9 Mm/s and R0 = 3.0 m, and including the experimentally observed

Doppler shifts. The validity of considering only constant values for the Alfvén velocity is confirmed

by LIDAR Thompson scattering measurements of electron density. The plasma rotation frequency

is measured by charge exchange, and the measured frequency in the laboratory frame is given by

(7)

where ωTAE = 2πƒTAE is the TAE frequency in the rest frame, Eq. (3), and ƒrot (r = 0.4) = 2.3kHz at

t = 20s in our discharge, JET Pulse No: 66203. The results of the MSE equilibrium modelling are

presented in Fig.11, from which a good agreement with the experimental data in Fig.5 is confirmed.

From Figs.3 (c) and 4, we learn that evidence for a reversed shear scenario exists. Therefore, we

proceed with two reversed shear safety factor equilibria; the one constructed from the MSE measured

equilibrium (just outside MSE error bars) and the one that uses an invented, strongly reversed

safety factor from JET Pulse No: 54956. These two additional safety factor profiles are depicted in

Fig.7. The proposed idea consists of identifying (i) s > 0 positive tornadoes, where s = (r/q)dq/dr is

the magnetic shear of the safety factor profile, (ii) s > 0 negative tornadoes associated with the

same magnetic surface, and (iii) s < 0 negative tornadoes, which appear late before the sawtooth

crash and are associated with a magnetic surface with a value of q one step lower than the previous

one, see Eq. (2). The third group of tornado modes would then complete the “corridor” of tornado

modes located at two different radii and expel resonant hot ions, potentially giving rise to the

sawtooth crash.

Apart from being able to handle three groups of tornado modes, the reversed shear scenario

would be able to give rise to a group of multiple Low-Shear TAEs (LSTAEs). For a low enough

shear, the number of LSTAEs is given by the scaling formula [33]

(8)

ˆ

ˆ

ˆ

ˆ

flab = fTAE + nfrot

NLSTAE ~ ∈/ŝ
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The minimum of the reversed shear safety factor profile, qmin, for this profile is then artificially

moved radially inwards in order to obtain two to three LSTAEs. We modify the polynomial

coefficients of the expression for the amplitude of the two flux functions in the Shafranov equation,

from which the HELENA equilibrium is obtained. The two to three LSTAEs found in this way have

the correct frequency chirping and frequency spacing in order to explain the lower group of n < 0

tornadoes.

However, the difference in frequencies between the upper and lower groups of counterpropagating

tornado modes is found to be too high - a factor of q(r6)/q(r5) |n=6 = 0.917/0.75 due to different

resonant flux surfaces (see Eq. (2)). This would actually make the upper group of counter-propagating

modes higher in frequency than the co-propagating modes, in contradiction to what is experimentally

observed and illustrated in Fig.5. The idea of having a reversed shear equilibrium is therefore

abandoned.

Returning to the modelling of the MSE measured safety factor profile equilibrium, we explain

the change in spectral behaviour of the tornado modes, both positive and negative, around t = 20s,

by a formation of global TAEs. A similar transition, from local to global Alfvén eigenmodes, was

reported in Ref. [32]. The reason for the transition to global structure comes from an increase of the

shear s as the mode moves radially outwards, locked at a position determined by Eq. (2). After the

modes have transformed into a global structure, their spectroscopic use for determining the safety

factor, q(r), is lost [32].

We note that our modelling results are in agreement with the co-propagating tornado modes and

the lower counter-propagating tornado modes, but an explanation of the multiplicity of the two

groups of counter-propagating modes for t - 20.1s, i.e. just before the sawtooth crash, also seen in

Fig.5, has to be sought. These additional counter-propagating tornado modes are not seen in any

other of the six sawtooth crashes in JET Pulse No: 66203, so perhaps it is not statistically justified

to give an account of these tornado modes.

IV. TAE GROWTH RATE THEORY

Several theoretical models have predicted the presence of TAE instability due to the resonant

interaction with hot ions, cf. [21, 34], where it has been shown that the TAEs can be strongly

excited if the mode frequency ! is lower than the diamagnetic frequency of the fast ions, ω*. In [24],

a generalised expression for the linear growth rate of the TAEs, which takes into account the large

particle orbit width effects and the effect of mode localisation as well as the excitation by both

passing and trapped hot ions, is derived. An application of this theory to a strongly anisotropic

slowing-down velocity distribution generated by NBI and of fusion produced alpha particles has

shown that stabilisation of the TAE instability due to large particle orbit width is much more

pronounced in the case of an isotropic alpha particle velocity distribution. Here, we analyse the

general expression for the TAE instability growth rate with respect to the role of the anisotropy in

the hot particle velocity distribution.

˜

ˆ
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According to [24, 35], the destabilisation of TAEs is sensitive to the ratio between the radial excursion

of the hot particle orbits from the flux surfaces, ∆b, and the TAE localisation scale length, ∆m. In the

limit of low magnetic shear and large mode numbers, the inner and outer mode structure of the TAE

can be described by [22]

(9)

(10)

where K0(x) is the zeroth order MacDonald function, αm = 4/(πs), s is the magnetic shear, rm is the

mode localisation radius, R0 is the major radius at the magnetic axis,  ∆m = (π/8)dr2
m R0 with d =

2.5-5 and  (o) ∆m  = rm/m are the inner and outer widths of the mode, respectively, and Cm is a

constant determined by the boundary conditions at the gap surface. Note that, in spite of the fact

that  ∆m / ∆m  = rm/R0 <<1, most of the mode energy is concentrated in the inner region of the mode.

For well-passing particles it can be estimated that ∆p ˜ qv/ωc, where ωc is the particle cyclotron

frequency, which for ω*/ω gives  ∆b /∆m  > 1. For trapped particles, the width of the banana orbits is

(∆b)max ˜ 2√2qm /κmaxv/(ωc∈ m   ), where ∈ m = rm /R0, implying that ∆b /∆m  > 1 can be satisfied.

Furthermore, the excursion of particle orbits can be comparable to or larger than the orbit of the

excited TAE mode, i.e. ∆b ≥ ∆m  ≥ rm /m for passing particles and qvA/ωc ≥ √∈mrm /m for trapped

particles, where vA=B0 / √4πρ0 is the Alfvén velocity.

The general expression for the TAE instability growth rate is given by [24]

(11)

where

(12)

and

(13)

Here, 〈•〉 ∫(1/τb)•dt denotes bounce averaging, ωr is the real part of the mode frequency, ωb = 2π/τb

is the bounce frequency, s is the bounce harmonic number, ei and M are the ion charge and the ion

mass, respectively, f0 is the unperturbed part of the hot ion velocity distribution function, E = Mv2/2 is

the particle energy, λ = µB0/E is the pitch-angle variable, with µ = Mv2 /2B0 being the magnetic

moment, and Jϕ = Ψ-hv||/ωc is the toroidal canonical angular momentum, where the poloidal flux

ˆ ˆ
(i)

(o)

(i) (o)

b
p (o)

t 1/2 p (i)

(o)

⊥

r - rm

∆m

21
αm

1
2

Φ(i) = Cm           arctan                +      ln                   +1     + const ,m (i)

r - rm

∆m
(i)

r - rm

∆m
Φ(o) = -CmK0 ,m (o)

Σ
s,m,σγ =

4π3e2

c2wrM
2

i
dJϕ    EdE    (1/ωb)dλδ (ωr + m〈θ〉 - n 〈ϕ〉 - sωb)|Gm|2Πf0

^

Σ
m

drr (|Φ′m|2 + (m2 / r2) |Φ′m|2)vA
-2

τb

0
Gm = Φ′m sin θ -    Φm cos θ - i J0 (ξ)e-iS0(0, r)vD

dt

τb

v⊥
vD

d
dξ

im

r

-ωr .Π = 
δ
δE

δ
δJϕ

δ
MωcR0

^
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function is defined as Ψ = Ψp/R0B0 = ∫ RBθdr/R0B0, h = 1 + (r/R0) cos θ = 1 + ∈ cos θ and v|| = v · B0/B0.

Furthermore, vD = (v|| + v⊥ /2)/R0ωc is the magnetic drift velocity, ξ = kθv⊥/ωc is the Larmor radius

parameter, J0(ξ) is the Bessel function of the first kind of zeroth order, and

(14)

The wave field perturbation, Φ, is described by a Fourier decomposition in poloidal harmonics

according to

(15)

where θ and ϕ are the poloidal and toroidal angles, respectively, and n is the toroidal number. The

resonance condition, expressed by the delta function in Eq. (11), is discussed below. The summation

over the sign of the particle parallel velocity   is included in order to incorporate trapped particles,

for which dt ̃  σdθ and the trapped particle orbit is divided into two parts: σ = +1 for t ∈ [0, τb/2] and

σ = -1 for t ∈ [τb/2, τb].

In order to analyse the role of anisotropy in the hot ion velocity distribution on the instability

growth rate, we follow Ref. [23] and write the operator Π in Eq. (13) as

(16)

Thus the sign of the growth rate  as defined by Eq. (11) is determined by the sign of the expression

(17)

where the diamagnetic drift frequency is given by

(18)

In the absence of particle anisotropy, i.e. when δf0/δλ = 0, and for a Maxwellian particle velocity

distribution, i.e. when δf0/δE < 0, Eq. (17) implies a positive growth rate only for co-propagating

modes, n > 0, such that the diamagnetic drift frequency satisfies ω* > ωr. However, anisotropy may

facilitate excitation of co-propagating modes whenever ω* < ωr as well as excitation of counter-

propagating modes having n < 0. The conditions for this to occur are

(19)

(20)

2 2

˜

ˆ

0

t
S0 (0, t) = dt′(ωr + mθ - nϕ).

Φ =       Φm  (r)e-imθ + inϕ-iωt ,Σ
m

- -ωr ωr .Π = 
δE E δλ δJϕMωcR0

^

--1 .= 
δf0Πf0 δf0ω* λ

^

ωr ωr E δλδE

.
δf0 / δJϕ
δf0 / δE

n
MωcE0

ω
* 
=

δf0 /δλ < 0,

|δf0 
/δλ| > -1 ,

δf0 ω*E

λ δE ωr
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where it is still assumed that δf0/δE < 0.

A TAE DRIVE DUE TO PASSING PARTICLES

In order to perform the integration along the particle orbits when calculating the growth rate explicitly

we use the equations for particle drift motion

(21)

(22)

(23)

The resonance condition is determined by the delta function in Eq. (11) together with Eqs. (21)–

(23). For well-passing particles it becomes

(24)

where k||m = (nq - m)/qR0, ω
p ˜ |v|||/qR0 is the bounce frequency and the superscript ’p’ denotes

passing particle quantities. By taking s = ±1, one finds that this resonance condition supports

symmetric excitation resonances, |v||| = (vA/3, vA), and passing particles can thus support counter-

propagating modes.

(i) Local theory:  ∆p << ∆p

For well-passing particles we find from Eqs. (21)–(23)  ∆p = vD/ωc. In the limit  ∆p << ∆(i) =, the

function Gm is mainly determined by the inner mode structure. Using the fact that |Φ(i)′ (r0)/Φ
(i)

(r0)| ˜ 1/∆m >> 1/ ∆m  ˜ (r0/m)-1, one obtains.

(25)

Substituting (25) into (11) we obtain the following expression for the growth rate

(26)

where v|| = vr, Jϕ =  Ψm and ωr = vA/2qR0. The summation over vr in the above expression corresponds

b

b
(i)

b b m
˜

m
˜

(i) (o)

r = -νD sinθ , 

θ =        -    cosθ  , 
ν||

qR0

νD
r

ϕ =         ,        
ν||

qR0

ωr − k||m ν|| − sωb = 0 ,p

vD
4|Gm|2       
    

 |Φm ′|
2 J0               (δs,1, + δs,-1)

2
(i) mv⊥

rm, ωc

0

vr /√2∈

Σ
vr = vA, vA/3

v⊥
2

1-vr +×

v⊥ dv⊥ J0 vr

,
2 2

δf0
δE

λ
E

δf0
δλ

ω∗
ωr

mv⊥
rm, ωc

4π3q2M2

B0

γ
ωr

2
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to the possible resonances |v||| = vA and |v||| = vA/3, and all quantities are calculated at r = rm.

(ii) Nonlocal theory:  ∆(i) << ∆p << ∆(0)

In this case the function Gm is still determined by the radial derivative of the inner mode

structure, i.e.

 (27)

which to the lowest order in ∈m leads to

 (28)

where Jϕ 1,2 = Ψm - (v/ωc)[1- λ = (2- λ)∈m]1/2, Ψm˜ rm/2qR0, and we have used Eq. (9) to obtain

(29)

Furthermore

 (30)

and Dp = ∆b /∆m  with ∆m << |rm|. substituting Eq. 28 into Eq. (11) together with

(31)

and taking into account the fact that I(Dp) ˜2π
2/3Dp for Dp >> we find

(32)

(iii) Nonlocal theory: ∆m  ≤ ∆b  < rm

m b m

2

p
(i)

p

p(o)

Gm
  = (-1)s

      
 dθΦm ′ (r0 + ∆b cosθ) sin θe-isθ,(i)

0

2π
vD
2π

p

dJϕ
 |Gm|2   

 

Jϕ1

Jϕ2 2

2

(i)

Cm

∆m

-1 -

-

δf0
δE

λ
E

δf0
δλ

ω∗
ωr

-1ω∗
ωr

2vD∈m

π2q
I(D  

p)× ,δf0
δJϕ

Jϕ = Ψm

λ
E

δf0
δλ

Φm = Cm′ (r-rm) + ∆m /αm

(r-rm)2  (r-∆m)2

(i)
(i)

2(y + Dp cos θ) + 1/αm

(y + Dp cos θ)2 + 1
I(D  

p) = dy       dθ    sin2 θ    
-D

p
 

D
p

π

0

rm - ∆b 

rm + ∆b 

Φmdrr Cm′ 2
πr

2∆m

(i)
(i)

2
p

p

0

vr /√2

Σ
vr = vA, vA/3

v⊥
2

1-vr +

v⊥ dv⊥ I(D  

p)J0 vr

.
2 2

δf0
δE

λ
E

δf0
δλ

ω∗
ωr

mv⊥
rm, ωc

64q2M2

3B0

γ
ωr

2
2

-
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As long as the particle orbit excursion from the magnetic surface ∆b exceeds the outer mode width

∆m  , the function Gm is mainly determined by the outer mode structure. Using the resonance condition

(24) and changing the variables according to r = r0 + ∆b cos θ and θ = ωb t we obtain

 (33)

withn Wp = ∆p  / ∆m . Since the mode energy is still mostly determined by the inner mode structure,

we substitute (31) and (33) into (11) and obtain

(34)

where

(35)

B. TAE DRIVE DUE TO TRAPPED PARTICLES

We consider here well-trapped paticles with the trapping parameter κ2 ≡ (1 - λ + λ∈)/(2∈λ) << 1

and assume narrow banana orbits, i.e. |qv||/(∈rωc)|   1, the validity of which was confirmed with the

use of the CASTOR-K code [36] for tornado modes with n > 4. With these assumptions and making

use of the equations of particle drift motion (21)–(23) we find that

(36)

with θ1 = -2 arcsin κ and the relation between time and the poloidal angle defined by ωb t = σ [π/2 +

arcsin(1/κ sin(θ/2))]. Here ωb ˜ √(∈/2)(v/qR0) is the bounce frequency and the precessional drift

frequency is given by ωD ˜ nqv2/2rR0ωc. The resonance condition becomes

(37)

which determines the resonant velocities as

(38)

The above expression implies that for co-propagation, n > 0, there is only one resonant velocity vr

p

(o)

p p

(o)
b

t

t

t

Gm
  = -i dθΦm  ′ (r0 + ∆b cosθ) J0                     e

-isθ eiWpsin θ(o)

0

2π
sωb
2π

p mv⊥
rm, ωc

2

0

vr /√2∈

Σ
vr = vA, vA/3

v⊥
2

1-vr +×

v⊥ dv⊥         J0 vr

,
2

2
2 δf0

δE

H(W 
p)

W 
p

λ

E

δf0
δλ

ω∗
ωr

mv⊥
rm, ωc

∆m

∆
p

32q2M2

B0

γ
ωr

2
2

-

(i)

b

2

H (W  

p) = dy     dθ K0 (|y + W  

p cos θ|) cos (-θ + W  

p sin q)
-W 

p
 

W 
p

π

0

S0 (0, t)     qR0 k|| (θ−θ1) + (ω−ωD) tt

ωr − ωD − sωb = 0t t

vr  = vr    = -s – + .s2rωc    ∈/2

nq2

r2ωc ∈

2n2q4

vA rωc

nq2
–

2
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= v+
r  for all values of s. However, for counter-propagation, n < 0, both resonant velocities are

possible if and only if s > (q/r)(2|n|vAR0/ωc)
1/2. For typical parameters of JET plasmas and for

tornado modes with n = [-4,-5,-6], this condition requires bounce harmonics satisfying s > 4.

(i) Local theory:  ∆b << ∆m

Similarly to the case of passing particles we find that the function Gm is mainly determined by the

radial derivative of the inner mode structure at r = rm. Then using Eq. (36) and the equations for

particle drift motion together with the resonance condition (37) for s = 1, we obtain

(39)

Now substituting (39) into (11) and transforming the integration variable according to dλ ̃  -2∈dκ2,

we arrive at the following expression for the growth rate

(40)

where vr is given by Eq. (38) and

(41)

The above expressions take into account the effect of resonant interaction with the bounce motion

and the toroidal precession motion of fast ions. The influence of the precessional drift frequency on

the resonance condition can be neglected if vA/(ωcrm) << ∈m/(nq2).

(ii) Nonlocal theory: ∆m << ∆b << ∆m

The function Gm is approximated as in the case of passing particles, i.e.

 (42)

which for s = 1 gives

(43)

(o)(i) t

t (i)

|Gm|2  = k2 |Φm  ′|  J0 (ξ).(i)v4

4ωc R0

2
2

Gm
  = Φm  ′ (r) vD sin θe-iSp(0(0,t),(i)

0

τb
dt

τb
t

t

0

κmax

1-J0  (ξ) κ2 dκ2
  (ξ)= ,

δf0
δE

λ

E

δf0
δλ

ω∗
ωr

4π3    2∈qM2

B2 R0

γ
ωr

2 -
vA vr

D1

6

0

2

D1  = + .
nqvr

rR0ωc

∈

2

s

qR0

dJϕ
 |Gm|2   

 

Jϕ1

Jϕ2 2

(i)∆m

2J0(ξ) vDκ2∈m

π2q
-1 -

-

λ
E

δf0
δλ

ωr

ω∗

-1ωr

ω∗

δf0
δJϕ

δf0
δJϕ

λ
E

δf0
δλ

2

(y + Dt
 cos θ) + 1/αm

(y + Dt
 cos α)2 + 1

dy dα
-Dt 

Dt

-π/2

π/2

(y + Dt
 cos θ) + 1/αm

(y + Dt
 cos α)2 + 1

e-i(α+π/2) + e-i(α+π/2)   sin αeiκ sin α    
2

,

Cm
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where ∆b = 2(2/∈m)1/2qκv/ωc is the banana width at a given value of κ and Dt = ∆b/2∆m. Substituting

(43) into (11) we obtain the following “nonlocal” expression for the TAE growth rate due to trapped

particles

(44)

where vr is defined by Eq. (38).

(iii) Nonlocal theory: ∆m  ≤ ∆b < rm

Taking into account the fact that the function Gm is mainly determined by the outer mode structure

and using Eqs. (31), (36) and (37), we find from Eq. (11) for s = 1 resonance

(45)

where W t = ∆b/2∆
(o) , vr is given by Eq. (38), and all quantities are calculated at r = rm. The function

H(W t) is defined as

(46)

The above integrals can be evaluated analytically by approximating K0 ˜  πδ (y) to obtain H(W t) =

2π2/W t for W t >> 1 and H(W t) = 2π2W t/3 for W t << 1.

The above set of expressions for the linear growth rate of TAEs, Eqs. (26), (32), (34), (40), (44)

and (45), modify some pre-factors of Ref. [24]. Moreover, Eq. (32) has been kept in a less simplified

form. However, the drive mechanism in the expressions is the same, and the remaining integrands

have been rewritten in order to obtain a condition for positive growth rate of bi-directional tornado

modes, which is considered next.

(o) t

m
t

t t (i)

×

+

(y + Dt
 cos α) + 1/αm

(y + Dt
 cos α)2 + 1

dy dα
-Dt 

Dt

-π/2

π/2

e-i(α+π/2)

(y - Dt
 cos α) + 1/αm

(y - Dt
 cos α)2 + 1

×

ei(α+π/2) sin αeiκsin α  
2

0

κmax

1-

J0 κ2 dκ2=

,
δf0
δE

λ

E

δf0
δλ

ω∗
ωr

4    2∈qM2vA vr

B2 R0 D1

γ
ωr

2 mvr

rm, ωc

-

6

0

2

0

κmax

1-J0  (ξ) κ2 dκ2= ,
δf0
δE

λ

E

δf0
δλ

ω∗
ωr

32    2/∈qMvA vr
6

B2 R0 D1

γ
ωr

2 -
0

2

mv⊥
rm, ωc

∆m

rb

(i)

t
H(W 

t)
W 

t

H (W  

t) = dy        dθ   K0 (|y + W  

t cos α|) e-i(α+π/2)

-W 
t
 

W 
t

π/2

-π/2

1

4

+ K0 (|y - W  

t cos α|) e-i(α+π/2)   sin αeiκ sin α  
2

.
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C. VELOCITY ANISOTROPY DRIVE FOR TORNADO MODES

We model the ICRH-accelerated protons with a velocity distribution function [23]

(47)

strongly peaked in the pitch angle variable around h i. Here,    is the peaking parameter indicating

the degree of anisotropy, T is the tail temperature and   is a normalisation constant chosen in such a

way that

(48)

In order to analytically estimate the drive of bi-directional tornado modes, we start by rewriting Eq.

(20) in order to obtain the velocity anisotropy criterion for driving tornado modes with negative

toroidal mode numbers,

(49)

The form of the hot ion velocity distribution function in Eq. (47) is suggested by SELFO modelling

[27]. Figure 12 illustrates modelled pitch-angle distribution functions of fast protons for JET Pulse

No: 66203. The modelling shows that for energies E ̃  1MeV, the tail temperature is T = 527keV, the

pitch-angle centre is 〈λ〉 = 0.96, dβ/dr = -0.12 and β = 0.05. From Eq. (49), we then find σλ,d =

[0.0509, 0.0551, 0.0594] for n = [-6,-5,-4], where Eqs. (2) and (3) have been used in order to

obtain the values of the safety factor on the three different magnetic flux surfaces and the resonant

frequencies, ωr = ωTAE, respectively.

We note that the change in σλ very well explains the experimental observation in Fig.5 that

counter-propagating tornado modes are delayed as compared to co-propagating tornado modes,

even though they are associated with the same magnetic flux surface and, hence, the eigenmode

solutions appear simultaneously. However, the damping effect due to dβ/dr is too high for counter-

propagating tornadoes to be excited together with their corresponding co-propagating tornadoes.

As the value of σλ ∈ [0.013, 0.065] drops below the critical value σλ,d, determined by Eq. (49), the

velocity anisotropy drive for counter-propagating tornadoes becomes larger than the universal damping

coming from a monotonic hot ion pressure profile. Since the limit for n = -6 is the most restrictive, it

does not appear ahead of the n = -5 and n = -4 tornadoes, which would be the case otherwise.

For the parameters of JET Pulse No: 66203 at 20.2s, we also find that the trapped particle width

satisfies ∆b >> ∆m. Hence, we are in the limit where the narrow banana width approximation is

marginally satisfied. Results from CASTOR-K modelling show that this is indeed the case.

t (o)

f0 = αβ exp (-E/T) exp (-(λ-〈λ〉)2/σ 
2

 )λ

-π

π
8πf0

B2

dθ
β = d3pEf0 .

0
2π

Tλ(λ - λ〈λ〉)
σ2  < σ2      =    .ω ∗

ω r

λ λ,d
Ε  1-



17

CONCLUDING REMARKS AND DISCUSSION

Recent observations on JET have shown that bi-directional tornado modes can be excited by fast

ions generated due to ICRH. In the present work the spectrum of bi-directional tornado modes is

analysed with a suite of MHD codes in order to determine the radial location, the toroidal mode

numbers and the temporal evolution of the modes. Furthermore, the drive mechanism for bidirectional

tornado modes both due to passing and trapped fast ions is investigated analytically and a condition

for a positive instability growth rate, in terms of the parameters of the fast ion velocity distribution

function, is derived and analysed. It is found that the free energy coming from anisotropy of the fast

ion velocity distribution function can strongly contribute to the mode excitation. For relevant plasma

parameters, it is shown that the excitation condition is satisfied just before a giant sawtooth crash

occurs. The results also explain why the counter-propagating tornado modes are excited simultaneously,

whereas co-propagating tornado modes are excited one-by-one. The reason is that, due to fast ion

velocity space anisotropy, the TAE growth rate becomes positive in the case n < 0 for almost identical

values of the peaking parameter that characterises the degree of anisotropy.

Modelling by the CASTOR-K code indicates that the small banana width limit in the case of

excitation by trapped fast ions is a good approximation for n = +6 tornado modes, and a reasonable

approximation for n = +5 tornado modes. However, it is found that the excitation of n = +4 tornado

modes is governed by potato-type orbits of the trapped fast ions. Since in our case rn = +6 > rn = +5 >

rn = +4, this thus indicates that the tornado modes located radially further out have a smaller overlap

with potato orbits and, instead, have a larger overlap with banana orbits of trapped fast ions. In the

near future, it is our intention to formulate a theory describing excitation of the TAEs by trapped fast

ions having potato orbits. We also note that the analytical expressions for the TAE growth rate have

been derived by applying a perturbative approach and the results should be verified by using numerical

codes. Since at presence the CASTOR-K code can only be used for a growth rate calculation for the

copropagating TAEs, an extension to the case of bi-directional TAEs would be required. Finally, we

emphasize that in order to obtain realistic excitation conditions, the rates due to relevant damping

mechanisms should be included in the analysis, which has been omitted in the present paper.
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Figure 1: Top: Electron temperature Te measured with
multi-channel ECE diagnostics at different radii on JET.
Middle: Electron density ne(0) measured with LIDAR.
Bottom: ICRH (black) and diagnostic NBI (red) power
waveforms.

Figure 2: Transition from short-period, ˜100 ms, Ohmic
sawteeth to long-period,˜1s, monster sawteeth, is
observed after high power ICRH is applied.
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Figure 3: (a) Magnetic spectrogram showing toroidal mode numbers of the observed bidirectional tornado modes
preceding the monster sawtooth crash at 11.3s. (b) Zoom of Figure 3 (c) showing tornado modes with both positive
and negative mode numbers in the interferometry data (to be compared to Figure 3 (a)). (c) Spectrogram of high-
frequency density perturbations measured with the O-mode interferometry (frequency 50.47GHz) [15]. Tornado modes
are seen in the TAE frequency range around 200–240kHz, frequency-sweeping Alfvén cascades are seen in the frequency
range 50–150kHz.
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Figure 4: Spectrogram of high-frequency density perturbations measured with the O-mode interferometry (frequency
50.47GHz). Tornado modes are seen in the TAE frequency range around 200–240kHz, frequency-sweeping Alfvén
cascades are seen in the frequency range 100–200kHz.

Figure 5: Magnetic spectrogram showing the temporal
evolution of tornado modes and TAEs (no chirping) at
the time t = 20.2s in JET Pulse No: 66203. From toroidal
mode number analysis, tornado modes with both negative
and positive mode numbers are identified. Their existence
is verified by modelling (Sec. III) and is further motivated
by a velocity anisotropy drive estimate (Sec. IV).

Figure 6: Spectrogram of high-frequency density
perturbations measured with the O-mode interferometry
(frequency 50.47GHz). Positive tornado modes are seen
in the TAE frequency range around 200–240kHz. However,
the negative tornado modes, measured by Mirnov coils in
Figure 5, are not detected by interferometry.
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Figure 7: Radial safety factor profiles q(r) normalised to the value on the magnetic axis, q0 = q(r = 0), as functions
of normalised poloidal flux, ψp

1/2 ˜ r/a, where a is the minor radius of the plasma edge. The three equilibria are the
MSE measured equilibrium (solid line), a nonmonotonic modified MSE equilibrium (dashed line) and an invented
equilibrium from JET Pulse No: 54956 (dash-dotted line). Variations of the two non-monotonic q-profiles are also
modelled.

Figure 8: Left: Alfvén continuum gap structure (from CSCAS) for n = +4 shear Alfvén waves with a safety factor on
magnetic axis q0 = 0.81. Thin lines denote q(ψp

1/2) and ne(ψp
1/2) = const profiles and the central frequencies of TAE

and EAE gaps. Right: Mode structure (from MISHKA) of the mode associated with the gap at ψp
1/2 = 0.31.
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Figure 9: Left: Alfvén continuum gap structure (from CSCAS) for n = +5 shear Alfvén waves with a safety factor on
magnetic axis q0 = 0.81. Thin lines denote q(ψp

1/2) and ne(ψp
1/2) = const profiles and the central frequencies of TAE

and EAE gaps. Right: Mode structure (from MISHKA) of the mode associated with the gap at ψp
1/2 = 0.36.

Figure 10: Left: Alfvén continuum gap structure (from CSCAS) for n = +6 shear Alfvén waves with a safety factor on
magnetic axis q0 = 0.81. Thin lines denote q(ψp

1/2) and ne(ψp
1/2) = const profiles and the central frequencies of TAE

and EAE gaps. Right: Mode structure (from MISHKA) of the mode associated with the gap at ψp
1/2  = 0.39.

0.1

0.35

0.60

0.85

1.1
Pulse No: 66203, n = 6, q,0 = 0.81

0.25 0.5 0.750 1
ψ,p1/2

JG
06

.4
96

-1
2c

Ω

-0.2

0

0.2

0.4

0.6

0.8Pulse No: 66203, n = 5, q, 0 = 0.81, Ω = 0.50 

rV
(r

) 

m = 5

m = 4

0.40.20 0.6
ψ, p1/2

JG
06

.4
96

-1
3c

0.1

0.35

0.60

0.85

1.1
Pulse No: 66203, n = 6, q,0 = 0.81

0.25 0.5 0.750 1
ψ,p1/2

JG
06

.4
96

-1
4c

Ω

-0.2

0

0.2

0.4

0.6

0.8Pulse No: 66203, n = 6, q, 0 = 0.81, Ω = 0.49 

rV
(r

) 

m = 6

m = 5

0.40.20 0.6
ψ, p1/2

JG
06

.4
96

-1
5c

http://figures.jet.efda.org/JG07.496-12c.eps
http://figures.jet.efda.org/JG07.496-13c.eps
http://figures.jet.efda.org/JG07.496-14c.eps
http://figures.jet.efda.org/JG07.496-15c.eps


24

Figure 11: Spectrogram showing the temporal evolution
of modelled tornado modes before the sawtooth crash event
at tcrash = 20.2s in JET Pulse No: 66203. The agreement
with experimental data is verified by a comparison with
Fig.5. However, the experimental observation of two groups
of multiple counter-propagating tornado modes for t > 20.1s
is not reproduced, as discussed in the text.

Figure 12: SELFO modelling output showing the hot ion
velocity distribution function at different energies. The
form of the hot ion velocity distribution function suggests
an analytic model given by Eq. (47).
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