
 A. Murari, G.Vagliasindi, P. Arena, L. Fortuna, O.Barana, M. Johnson
and JET-EFDA Contributors

EFDA–JET–PR(07)23

Prototype of an Adaptive Disruption
Predictor for JET Based on Fuzzy

Logic and Regression Trees



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



Prototype of an Adaptive Disruption
Predictor for JET Based on Fuzzy

Logic and Regression Trees

 A. Murari1, G.Vagliasindi2, P. Arena2, L. Fortuna2, O.Barana1, M. Johnson3

and JET-EFDA Contributors*

1Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova, Italy.
2Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi-Universit degli Studi di Catania, 95125 Catania, Italy

3EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK
* See annex of M.L. Watkins et al, “Overview of JET Results ”,

 (Proc. 21st IAEA Fusion Energy Conference, Chengdu, China (2006)).

Preprint of Paper to be submitted for publication in
Nuclear Fusion

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK



.



1

ABSTRACT

Disruptions remain one of the most hazardous events in the operation of a Tokamak device, since they

can cause damage to the vacuum vessel and surrounding structures. Their potential danger increases

with the plasma volume and energy content and therefore they will constitute an even more serious

issue for the next generation of machines. For these reasons, in the last years a lot of attention has been

devoted to devise predictors, capable of foreseeing the imminence of a disruption sufficiently in

advance, to allow time for undertaking remedial actions. In this paper, the results of applying Fuzzy

Logic and Classification and Regression Trees (CART) to the problem of predicting disruptions at

JET are reported. The conceptual tools of Fuzzy Logic, in addition to being well suited to accommodate

the opinion of experts even if not formulated in mathematical but linguistic terms, are also fully

transparent, since their governing rules are human defined. They can therefore help not only in

forecasting disruptions but also in studying their behaviour. The analysis leading to the rules of the

Fuzzy Predictor has been complemented with a systematic investigation of the correlation between

the various experimental signals and the imminence of a disruption. This has been performed with an

exhaustive, non-linear and unbiased method based on Decision and Regression Trees (CART). This

investigation has confirmed that the relative importance of various signals can change significantly

depending on the position of the plasma in the parameter space. On the basis of the results provided

by CART on the information content of the various quantities, the prototype of an adaptive Fuzzy

Logic predictor was trained and tested on JET database. Its performance is significantly better than

the previous static one, proving that more flexible prediction strategies, not uniform over the whole

discharge but tuned to the operational region of the plasma at any given time, can be very competitive

and should be investigated systematically.

1. INTRODUCTION AND RATIONALE

The Tokamak configuration is affected by uncontrolled and irreversible losses of confinement, called

disruptions. Plasma disruptions are considered one of the most critical issues for next step devices,

since they constitute a severe hazard for the integrity of the machine [1].  This is due to the fact that,

on a typical time scale of a few milliseconds, the energy stored in the plasma is lost, producing a large

heat flux to the plasma facing components. Moreover, during the fast evolution of the magnetic

configuration, high electro-mechanical stresses are induced on the Tokamak structures; a significant

amount of runaway electrons can also be generated, with additional potential detrimental effects on

the vacuum vessel.

Even if disruptions can be potentially very dangerous, in present day machines the quest for better

performance pushes the plasma close to its operational limits. In this perspective, reliable methods to

predict the occurrence of a disruption are extremely important, since forecasting sufficiently in advance

the imminence of disruption can give the opportunity to intervene and avoid or alleviate the hard

conditions a disruption can lead to. This will become even more crucial in the next generation of

experiments, where unforeseen disruptions could have serious consequences.
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Since Tokamak fusion plasmas are complex, nonlinear systems, driven far from equilibrium by powerful

additional heating systems, many causes can destabilise them and cause a disruption. A complete

model, allowing to reliably predict the plasma configurations which are going to disrupt, does not

exist. Therefore, due to the lack of algorithmic solutions, in the past many efforts have been devoted

to predicting disruptions using neural networks. This approach of neural networks was used to predict

the disruption boundary for the high-≤ disruption in DIII-D [2]. The network, a three layer feedforward

perceptron, used as inputs 33 diagnostic signals and produced as output the value of the normalized

beta βN = βt(aB)/Ip at the time of disruption for each discharge. The ratio of the actual value of ≤N and

the predicted one was used as the detection parameter. A neural network for predicting the time to

disruption (ttd) in ASDEX Upgrade tokamak [3] was developed using seven signals and some of their

derivatives as inputs. In JET a two layer feedforward perceptron model [4] was developed and trained

to distinguish between pre-disruptive and stable plasmas. The best performance (90% of disruptive

pulses detected and 5% of false alarms) were  obtained using seven input parameters: locked mode

amplitude, density, input power, radiated power, the safety factor (q95), the plasma internal inductance

(li), the poloidal beta (βp) and the derivative of the stored energy. Further developments in this direction

are described in [5], which reports the results of estimating the probability of disruption using an

artificial neural network (ANN). The ANN was trained using both disrupted and safe pulses with the

following conditions: plasma current Ipla>1.5MA, X-point configuration and flat-top plasma current

profile. In [6] a fuzzy neural approach for plasma disruption prediction was proposed. A Fuzzy Inference

System (FIS) was used in combination with a neural network to predict the time to disruption (ttd),

achieving a Root Mean Squared Error (RMSE), averaged on the total number of shots, of 0.0191. An

alternative fuzzy time series approach was also proposed in [7], again providing the ttd as output and

predicting the onset of a disruption, in the range from 400 to 0.5 ms before the disruption, with a

success rate of the order of 93% with very limited false alarms.

A Fuzzy Logic predictor was also developed by some of the authors as reported in [8]. The approach

adopted in that case (see section 4 for more details) consisted of developing a series of Fuzzy Rules to

determine the probability of disruption. Contrary to NNs, which are black boxes and can be used only

as transfer functions, Fuzzy Logic is fully algorithmic and therefore allows drawing a direct link

between any inference rule and its effects on the prediction accuracy. This renders much easier the

interaction with the experts and, on the other hand, can contribute to the learning process, since the

various theories can be confirmed or falsified by the output of the predictor. The Fuzzy predictor

described in [8] provided as output the probability of disruption, which was considered a more consistent

quantity to provide than the time to disruption, which is for example very difficult to interpret if, for

any reason, the disruption does not really take place after the time of its occurrence having been

predicted. Moreover, the probability of disruption, as determined by the position of the plasma in the

operational space, is also a much better quantity to use in the phase of scenario development, when

new configurations are designed and the associated risk has to be evaluated. Indeed this information

on the probability can be combined with estimates of the potential damage in a consistent risk evaluation
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assessment. On the other hand, as in all the previous works, a static predictor was devised, optimised

on the basis of the data of the whole database and valid for the entire flat top phase of the discharge.

In this paper, an alternative approach to disruption prediction for JET is presented, based again on

Fuzzy Logic but with an adaptive character. This was motivated by a feature selection analysis,

performed on the Classification And Regression Tree (CART) [9] method, which was undertaken to

assess the relative importance of the various input signals, the same used in [8]. This has shown that,

depending on the plasma status, and therefore on the probability of disruption, the various signals

have a clearly different relevance in detecting the probability of disruption (see section 5).  Therefore

it was decided to develop an adaptive fuzzy predictor (see section 6), which consists of different sets

of Fuzzy Rules optimised for various plasma regimes, characterised by a different probability of

disruption. Given the positive results obtained with this prototype, possible strategies for a real time

predictor, based on this adaptive approach, have been identified, which would allow providing an

estimate of the disruption probability at various future times on the basis of the present plasma state .

With regard to the structure of this paper, in the next session a brief review of the disruptions

evolution and their causes are given to set the stage. In section three the basic elements of Fuzzy Logic

are summarised to provide the reader, not familiar with this topic, with the background indispensable

to follow the rest of the paper. The description of the adopted database, of the diagnostic signals used

as inputs and a brief overview of the predictor originally developed in [8], are the subject of section

four. In section five, the correlation analysis of the inputs and the nonlinear correlation between the

inputs and the desired output, i.e. the probability of disruption are reported. In the following section

six the main characteristics of the new adaptive Predictor and the obtained performance are described

in detail. Section seven contains a summary of the results and an outline of the possible evolution of

the work, both on JET and other devices.

2. DISRUPTION EVOLUTION AND CAUSES

In a disruption it is possible to identify four different phases [1], [10]:

1) the initiating event

2) the precursor phase

3) the thermal quench

4) the current quench

The initiating event can be external to the plasma, for instance a mechanical failure or a glitch in the

control system, or internal, i.e. unforeseen plasma conditions, like unusually high radiated power, that

can bring the plasma to a disruptive phase. During the precursor period, which depends strictly on the

initiating event, MHD instabilities develop in the plasma, leading it to the thermal quench. During the

thermal quench almost the entire thermal content of the plasma is lost. This phase is followed by the

current quench, during which the magnetic energy is dissipated mainly by radiation [11].

In order to have a sufficient time for the intervention, a predictor should produce an alarm during
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the “precursor phase”. Depending on the different initiating event, there are different precursor events

that should be taken into account and these can be better identified by looking at different signals (see

section 5). Given the nature of the precursor phase, for classification purposes it is customary to

distinguish different disruption classes:

a) Mode Lock (ML)

b) Density Limit (DL)

c) High radiated power (RP)

d) H/L mode transition (HL)

e) Internal Transport Barrier (IT)

f) Vertical Displacement Event (VDE)

2.1. MODE LOCK

During plasma operation, MHD instabilities can occur due to the presence of an external perturbation

of the magnetic field or to instable current or pressure gradients, leading to the creation of the so

called magnetic islands. These perturbations typically rotate in the frame of reference of the laboratory,

inducing eddy currents in the wall of the vacuum vessel. These currents produce a magnetic field that,

due to the Lenz’s law, acts to stabilize the instability. They also produce a slowing down of the

rotation velocity of the instability, leading to a decrease of the eddy currents themselves and to a

reduction of their stabilizing effects. It can happen that the instability reaches a state in which it ceases

to rotate and “locks to the wall”. In these conditions, the instability can grow much more rapidly and

eventually reach dimension that can occlude a whole sector of the torus, so modifying the current

profile to the point of inducing a disruption.

2.2. DENSITY LIMIT

Every tokamak has both a low and high density limit [12]. The upper density limit is the most relevant

as the fusion reaction rate scales with the square of the density, so the aim of a fusion experiment

would consist of working at the highest density achievable avoiding disruptions in order to maximize

the energy output. In general, there is no fixed high density limit as it depends on the plasma

configuration. Usually, increasing the density causes an increase in the radiated power, in particular

due to line radiation from the edge of the plasma, where the local electron temperature decreases at

high densities. When the radiated power exceeds the local heating power, the plasma detaches from

the wall and the temperature and current profile contract. This situation is unstable and typically leads

to a disruption.

2.3. HIGH RADIATED POWER

They are quite similar to the density limit disruptions apart from the fact that, in this case, the increment

in the radiated power occurs slightly before the increment in the plasma density. It is due to an increase
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in the presence of impurities, which cause an increment of the radiation. A particularly dangerous

radiating instability is the MARFE (Multifaceted Asymmetric Radiation From the Edge) [13]. It is a

poloidally localised, toroidally symmetric region of increased emission where the power lost by radiation

becomes larger than the power flowing into this region by conduction. As the plasma cools, the

radiating power increases, further enhancing the cooling process and leading to a disruption.

2.4. H/L TRANSITION

The H-mode, or High confinement, regime is a state of the plasma, reached when the plasma heating

overcomes a characteristic power threshold, characterized by a better confinement. An H/L transition

is a transition from the H-mode to the L-mode, or low confinement, regime. When this occurs at high

density, usually after a premature reduction of the additional heating, it can lead to a disruption (typically

a density limit type disruption).

2.5. INTERNAL TRANSPORT BARRIER

In some plasma configurations, usually called “advanced scenarios”, an Internal Transport Barrier

(ITB) can appear. These barriers reduce considerably the transport of particles and energy from the

inner to the outer side of the plasma. An ITB requires a steep pressure gradient that can lead to

instabilities and disruptions. This kind of disruption is very difficult to predict as the time-scale of the

precursor phase is really low. Usually the time from the occurrence of the precursor signal (a high

variation in the Poloidal Beta signal) and the thermal and current quench phase is very short, of the

order of few tens of ms.

2.6. VERTICAL DISPLACEMENT EVENT

Other things being equal, configurations with elongated shapes have better performance with respect

to plasmas with circular cross-section. These configurations, on the other hand, are vertically unstable

so they require the presence of a vertical position and velocity controller. If this controller fails, the

plasma naturally moves towards the vacuum vessel producing a vertical displacement disruption.

Usually this kind of disruption is very difficult to foresee as the dynamic of the event is very fast, but

it is very unlikely for these disruptions to happen spontaneously. Usually they are due to failures of

the control system.

The high number of possible disruption causes, interacting nonlinearly, and the unavailability of a

dynamical model of the plasma behaviour, particularly at the boundary of the operational space where

disruptions are more likely, are the main reasons which in the past motivated the adoption of black

box approaches like ANNs for disruption prediction. On the other hand, the methods of Fuzzy Logic

seem to be quite suited to this application, since they allow modelling complex non linear systems and

handling operational spaces with non Boolean boundaries. Fuzzy Logic has also been applied

successfully in the few last years to manage knowledge expressed in linguistic form. This is somehow

also the case of disruption prediction in Tokamaks, where the experts possess a significant amount of
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knowledge, which is difficult to express in the formal language of rigorous mathematics but can be

extremely important in helping to predict the occurrence of disruptions efficiently. The basic methods

of Fuzzy Logic to operate with fuzzy sets and nonlinear systems and their potential to handle linguistic

variables, and therefore to mimic human reasoning, are briefly summarised in the next section.

3. BRIEF INTRODUCTION TO FUZZY LOGIC METHODS

The term “Fuzzy Logic” [14] has become of widespread use today to identify a coherent logical

edifice, based not on crisp sets, like Boolean logic, but on fuzzy sets. A fuzzy set is an alternative to

the traditional notion of set membership and logic that has its origin in ancient Greek philosophy and

in the so-called “Law of the Excluded Middle” originally formulated by Aristotle. It states that an

element X must either be in set A or in set not-A, so that a classical or “crisp” set is a container that

completely includes or excludes any given element.

In many practical applications, it is often necessary to handle phenomena characterised by unsharp

boundaries, for which it is not always easy to attribute drastically the membership of an element to a

set or its complementary. To overcome this difficulty, Zadeh introduced the notion of fuzzy set, which

allows defining the membership of an element to a set using the whole interval [0,1] and not only the

Boolean discrete values 0 and 1. In more detail, a fuzzy set F defined on U (called the universe of

discourse) is given by [14]:

F = {(u, µF (u)) | u ∈ U}

where µF(u) is the membership function, a curve that specifies how each element of U is mapped to

the real interval [0, 1], that is

µF (u) : U → [0, 1]

In other terms, for each u ∈ U, the membership function defines the degree of membership of u to the

fuzzy set F. The degree varies continuously from zero (no membership) to one (full membership)

according to the particular properties of the fuzzy set.

In analogy to classical set theory, for fuzzy sets it is possible to define a series of quantities and

properties. One of the most basic is the support of a fuzzy set F, which is the crisp set S(F) composed

by the elements which have a nonzero degree of membership to the fuzzy set F: SF = {u ∈ U | µF (u)

> 0} . Another essential definition is that of the complement of a fuzzy set F, which is the fuzzy set F

defined by the membership function µF (u) = 1 - µF (u).

Since it has been demonstrated that fuzzy logic can be considered a superset of standard Boolean

or crisp logic, it is possible to extend the logical operation AND and OR. Given two fuzzy sets A and

B, the union of the two fuzzy sets A OR B is a fuzzy set given by the membership function µA or B =

max (µA(u),µB (u)). The intersection of two fuzzy sets, A AND B is the fuzzy set defined by the

membership function µA or B = min (µA(u),µB (u)).

On the basis of the previously described fuzzy sets, it is possible to define a fuzzy system, which
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consists of a nonlinear set of fuzzy rules and an appropriate inference mechanism. The set of rules

represents the knowledge base of the fuzzy system and the inference mechanism processes the

knowledge base in a quantitative way to yield the desired results. Fuzzy rules are particularly suited

to formulate conditional statements based on fuzzy notions and can therefore be used to process

information in a way much more similar to human decision making [15] than classical logic. Usually

a fuzzy rules is a if-then rule of the form:

if x is A then y is B

where A and B are two fuzzy sets defined in the universes of discourse X and Y, with x ∈  X and y ∈

Y.

A typical fuzzy system is a logical procedure that maps a set of scalar inputs to one scalar output.

In general, a typical fuzzy system with N inputs u1,....,uN , one output variable v0 and M fuzzy rules

can be written in the following form:

Rule 1. IF (u1,F1,1) AND (u2,F2,1) AND ... AND (uN,FN,1) THEN (v0, G1)

...

Rule j. IF (u1,F1,j) AND (u2,F2,j) AND ... AND (uN,FN,j) THEN (v0, Gj)

...

Rule M. IF (u1,F1,M) AND (u2,F2,M) AND ... AND (uN,FN,M) THEN (v0, GM)

Fi,j identifies the fuzzy set associated with the ith input variable in the jth rule and Gj is the consequent

fuzzy set associated with the output variable in the same rule.

Evaluating an if-then rule implies two different steps: first evaluating the antecedent, i.e.

fuzzyfying the input and applying the necessary fuzzy operators recalled in the antecedent clause,

then applying the result to the consequent, the so-called implication.

Evaluating the antecedent implies the calculation of the degree of activation of the rule. Referring

to the typical fuzzy set reported before, when the operation among the input in the antecedent

clause is an AND, the degree of activation ªj for the jth rule is evaluated as follows:

λj = min {µFi, j (ui)}

The resulting consequent can be considered a new fuzzy set G′
j defined by the membership function:

µG′i (u) = λj µGi (u)

Once evaluated the rules, that is the degree of activation of all the single fuzzy rules and the degree

of membership of the output variable to the various fuzzy sets involved in the implication, it is

necessary to aggregate the results of the various rules together in order to obtain a scalar value, that

represents the output of the fuzzy system, v0.  This process is called inference or defuzzification.
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4. DATABASE, INPUT SIGNALS AND THE STATIC FUZZY PREDICTOR

4.1 DATABASE

At JET a disruption database has been created and is regularly maintained to monitor the disruptability

(the ratio of disruptive and safe discharges) of the scenarios and to record the force each disruption

produces on the machine. This database contains all disruptions since discharge 27000. A subset of

this database is devoted to the EFDA period and records all disruptions since year 2000. The database

used for the original Fuzzy detector described in [8] was extracted from this EFDA database, adopting

the same criteria as applied in previous works done at JET [5], i.e. plasma current above 1.5 MA and

flat-top X-point configurations. At the time of the wok reported in [8], the aforementioned criteria left

814 disruptive pulses. These disruptive pulses of the database have been studied by experts at JET, to

provide a classification of the disruption causes. The ones for which a solid classification was available

have been used in the present work and form the so called “disruptive database”. To define and

optimise the Fuzzy rules, other databases were created including temporal windows, which do not

present disruptions and that can be considered safe. A database includes the same disruptive pulses

but 2 seconds before the disruption takes place. Such an interval is considered adequate to guarantee

the absence of precursors in the vast majority of the cases. This database is called “Pre-disruptive

Safe”. Moreover, non disruptive pulses have been selected from the same campaigns. In this case the

time window was chosen considering the time when the plasma reaches the X-point configuration

and adding 7s, because this is the time phase when there is the highest probability of disruption in the

disruptive database. This is called “Safe” database. Finally, two other sets of pulses were selected for

testing the performance of the predictor, whose pulses were not used for developing the fuzzy inference

system. They are called, respectively, “Disruptive Test” and “Safe test”. Altogether therefore five sets

of pulses were used to devise the original static Fuzzy predictor described in [8]. They are summarised

in Table 1 and fully described in [8].

4.2 DIAGNOSTIC SIGNALS

The diagnostic signals utilised have been chosen on the basis of previous experience on disruption

prediction [3][4][5]. They present the following properties that make them suitable for being a disruption

predictor input:

a) none of the  signals are post-processed and are therefore available in real time

b) they refer to global measurements of the plasma parameters

c) they can be normalized to obtain machine independent parameters, as they are calculated and

measured almost in every tokamak

After careful observation of the signals from the various pulses, both disruptive and safe, it has been

noticed that useful information can also be obtained from the trend that some of the diagnostic signals

present during the time window. So, some of the diagnostic signals taken into account have been

derived. These signals are the poloidal beta, the safety factor and the internal inductance.

Moreover, the radiated power is a useful indicator when it is close or overcomes the total input power.
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So instead of using its absolute value, the difference Pnet = Pinput-Prad proves to be a better choice.

In the end a total of 12 signals has been used as input to the static fuzzy predictor

4.3 THE STATIC FUZZY PREDICTOR

As reported in [8][16], a Fuzzy Inference System [16] was previously devised, to predict the proximity

of a disruption at JET and to compare its performance with other methods. This predictor is called

static because it was trained to work for whole discharges, without any allowance for different phases

during the shot. It has 12 inputs, which are the ones described in the previous section, and one output,

the probability of a disruption, in the range [0, 1], where 1 represent 100% probability of an incipient

disruption. For every input to the Fuzzy Inference System 3, 4 or 5 membership functions were

selected according to the experimental trend of the input signals. After a systematic analysis of the

input signal behaviour for disruptive and non disruptive pulses in the database, 36 if-then rules were

devised. In order to evaluate the performance of the designed predictor, a rule for discriminating

between correct and wrong prediction was needed. Since the output of the fuzzy network can be

interpreted as the probability of the specific configuration (in terms of input signals) to be disruptive,

a shot can be considered disruptive if the output is above a certain threshold that has been chosen

around 0.5 but that can be changed in order to reflect the “risk aversion” of the experimental team

with regard to a certain plasma configuration. In order to prevent false detection in case of spurious

transients in the plasma, that can be similar to pre-disruption phase, the condition of remaining above

the threshold for at least 2 consecutives time steps or, in other words, at least 40ms was added.

All the details about the structure rules and performance of this Static Predictor are given in

references [8].

5. CORRELATION ANALYSIS

In order to investigate the relative importance the signals given as input to the predictor, a feature

selection analysis based on the Classification and Regression Trees has been performed. A brief

description of the CART method is given in the following section 5.1; the details of its application to

the problem subject  of this work are provided in section 5.2.

5.1 CLASSIFICATION AND REGRESSION TREES ANALYSIS

Classification and Regression Trees [9] is a non-parametric statistical method, which uses a decision

tree to solve classification and regression problems using both categorical and continuous variables.

The method was introduced by Breiman et al. [9] to build a decision tree, which describes one output

variable as a function of different explanatory variables. When the output is categorical, CART produces

a classification tree, whereas if the output is continuous it will produce a regression tree. The analysis

roughly consists of three steps.

During the first stage, an overgrown tree is produced using a recursive partitioning technique to

select variables and split points using a splitting criterion. Several criteria are available for determining
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the splits, including Gini, Twoing and Ordered Twoing. For a more detailed description of the mentioned

criteria one can refer to Breiman et al. [9]. In the application described in this paper, the Gini criterion

was adopted. According to this method, to find the best variable for splitting a node, the algorithm

checks all possible splitting variables (called splitters), as well as all possible values of the variable to

be used to split the node. To choose the best splitter, called also primary variable, the maximization of

the average “purity” of the two child nodes is sought. For a binary target variable, for example being

disruptive or not, the aim of the split is to group all the inputs into a group of disruptive discharges and

another group without disruptive discharges. Since a complete separation is typically not achievable

with one single variable, the procedure is repeated for the child nodes until pure terminal nodes are

obtained (solutions exist to handle the cases in which the variables are not enough to reach a complete

set of pure nodes). In addition to selecting the primary variables, surrogate variables, which are those

variables that give in a specific node a similar split to the primary variable and provide the second best

reduction in impurity in the child nodes, can also be identified and selected. They may be used in

classifying observations having missing values for the primary variables.

The tree obtained at this stage is called maximal tree. It closely describes the training set and

usually shows overfitting of the training data. So very often additional measures have to be taken to

converge on a better a compromise between the tree complexity and its predictive power.

The second step in CART algorithm is, then, the pruning of the maximal tree, which results is the

creation of smaller subtrees obtained by successively cutting terminal branches. The pruning relies on

a cost-complexity method, in which both the tree accuracy and complexity are considered. This method

relies on a complexity parameter, called a, which is gradually increased during the pruning process.

Beginning from the terminal nodes, the child nodes are pruned away if the resulting change in the

predicted misclassification cost (a measure of the accuracy) is less than α times the change in the tree

complexity. Thus, α is a measure of how much accuracy a split must add to the entire tree to counterpart

the additional complexity. As α is increased, a series of trees with decreasing complexity is obtained.

The last stage is the selection of the optimal tree among the various pruned trees derived during the

previous step. This selection is based on the evaluation of the predictive error also called

misclassification or relative cost. The goal consists of selecting the optimal tree maximizing the relative

cost and minimizing the tree complexity (i.e. the number of nodes) so that the information in the

learning data set is fit but not overfit. As the number of nodes increases, the relative cost decreases

monotonically for the database used during the learning process. This corresponds to the fact that the

maximal tree will always give the best fit to the learning data set. In contrast, the expected cost for an

independent dataset reaches a minimum, and then increases as the complexity increases. This reflects

the fact that an overfitted and overly complex tree will not perform well on a new set of data.

In general this step would need an independent set of data to be accessed, but this requirement can

be avoided using the technique of Cross-Validation (CV). It consists of dividing the entire sample

randomly into N (usually 10) sub-samples, stratified by the response variable. One sub-sample is then

used as the test sample and the other N - 1 (e.g., nine) are used to construct a large tree. The entire
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model-building procedure, i.e. tree growing and pruning, is repeated N times, with a different subset

of the data reserved for use as the test dataset each time. Thus, N different models are produced, each

one of which can be tested against an independent subset of the data. Trees within the sequences are

matched up, based on their number of terminal nodes, to produce an estimate of the performance of

the tree in predicting outcomes for a new independent dataset, as a function of the number of terminal

nodes or complexity. Using this method, a minimum cost is obtained when the tree is complex enough

to fit the information in the learning dataset, but not so complex that noise in the data is fit as well.

The final tree obtained has various nodes at which different variables are used for the splitting

criteria. A variable that is not selected in the final tree could be considered as less important in describing

the dataset than the variables that appears in the tree. However, it could happen that the variable is

masked. For instance, a variable x1 could be a surrogate of a variable x2, never occurring in this way

as a primary splitter although is the best splitter after variable x2. CART allows the evaluation of the

importance of the different explanatory variables to describe the output in the selected dataset trough

the so-called “variable ranking method”. Variable importance is the sum across all nodes in the tree of

the improvement scores that the variable induces when it acts as a primary or surrogate splitter. In this

way, variables that never appear in the tree being always a surrogate of another variable, are also

considered in the final classification of the variables.

The importance values so produced allow ranking the different input signals from high to low

importance. In this way, CART can be used for feature selection, being able to identify the most

important variables to describe the output.

5.2 CART APPLICATION TO THE  DISRUPTION PREDICTION PROBLEM

It is this last feature of CART that has been exploited to evaluate the relative importance of the

different input signals in the disruption prediction process. In order to do so, the database used for the

development and test of the static fuzzy predictor has been provided as input for the building of a

classification tree. The samples from a disruptive pulse were labelled with a ‘1’ while the data from

safe pulses as ‘0’. The data from the various databases were joined together and, subsequently, separated

in time intervals of 100ms producing a total of three datasets (see later). From the full data, which

comprises a total of 400ms sampled at 20 ms, the last three samples were discarded as considered too

near to the disruption and, also, in order to produce a result that is easily comparable with the other

predictors, whose performance are evaluated at 100ms from the disruption. Each dataset has been

used to build a classification tree and to evaluate the variable importance in each time interval.

Table 3 reports the variable ranking for the time intervals [td-440, td-100] (the full data set), [td-

440, td-340], [td-320, td-220] and [td-200, td-100] which represent the three sub-datasets.

It is possible to observe how the variable ranking changes depending on the distance from the

disruption. For instance, the dWdia/dt is very important in discriminating a disruptive from a safe

pulse near to the disruption, whereas it plays a less important role earlier in the discharge. The CART

method therefore indicates very clearly that the various input signals have a different importance as
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indicators of a disruption, depending on the time interval considered. It is worth mentioning that the

correlation technique presented, which performs an exhaustive search for the best univariate splits

over all the variables of the data base, is fully non linear and unbiased. The relevance of the CART

results on the optimisation of disruption predictors is considered in the next section.

6. THE PROTOTYPE OF AN  ADAPTIVE FUZZY PREDICTOR

Following the results illustrated in the previous section, an additional predictor has been devised

from the classification tree built for the input signals in the interval [td-440, td-340]. This new

fuzzy predictor, called “earlier predictor” in the following, has been developed starting from the

original one, which had been optimised for the whole discharge. The new optimization has been

obtained by performing an iterative adaptation to the subset of the data pertaining to the interval

[td-440, td-340]. First of all, some rules have been rescaled according to the variable ranking

information from the CART. In particular, the rules involving only variables that have a relative

importance below 50 have been multiplied by a factor 0.5. Some of them, as they do not have a

significant impact after rescaling, have been deleted in order to reduce the complexity of the

predictor. Then, to increase further its performance, additional rules have been developed,

interpreting the classification tree and the threshold values derived from the primary splitters.

This optimisation process has converged on a final fuzzy network with a total of 26 rules.

This “earlier predictor” has been tested on the data samples distant from the disruption and its

output compared with the fuzzy network developed for the full discharge. Table 4 reports the

comparison of the two predictors. A shot is considered disruptive if the output of the network

remains above the threshold of 0.45 for more than two time steps [8]. The results of the table

show very clearly that, with the new partial predictor, at 340 ms from the disruption the correct

prediction rate has increased and, even if the number of false alarms grows, the overall performance

is significantly improved.

The performance improvements of the “earlier predictor” suggest alternative strategies for

the implementation of disruption predictors. Instead of developing static predictors, valid for the

whole discharge and therefore for any value of disruption probability, it is conceivable to devise

“adaptive predictors”, namely fuzzy nets optimised for different disruption probabilities. In this

way, a predictor could be fine tuned according to the disruption probability and, therefore, the

imminence of disruption. A possible strategy could consist of identifying different predictors

optimised for different disruption probabilities and switch from one to the other depending on

the plasma status. To illustrate the potential of such an approach, a combined use of the “earlier”

and the static predictors has been tested. The strategy for the simultaneous operation of the two

predictors has been organised starting always with the “earlier” predictor and switching to the

static predictor when the output of the first network is above a primary threshold for two time

steps. Once the switching occurred, the shot is considered disruptive if the output of the static

predictor is above a secondary threshold just for one sample. The primary threshold has been
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chosen smaller than the secondary one and equal to 0.4. The secondary thresholds, to compare

the results with those obtained adopting only the static predictor, are 0.45 and 0.51.

Table 5 and Table 6 report the comparison between the new adaptive predictor here illustrated and the

static one using the threshold of 0.51 and 0.45 respectively. The overall performance of the predictor

is improved using the new approach as regards both the number of Missed Alarms (MA) and  the

number of false alarms (FA).

CONCLUSIONS

In this work, a critical revision of a previous static fuzzy predictor for JET disruptions has been

reported. The correlation analysis of the inputs proves the limitations of a static approach. At different

levels of disruption probability, and therefore at different times before a disruption, the same diagnostic

signal can carry information of significantly different importance and therefore must be weighted

accordingly. Consequently, a prototypical adaptive predictor has been developed, which consists of a

set of different Fuzzy systems optimised for different disruption probabilities. The various Fuzzy

systems can be used when the monitored signals enter the relative subspace of disruption probability.

This new adaptive predictor provides a tool to define a more optimised and better performing prediction

strategy than the previous static one.  On the other hand, it maintains all the advantages of a white box

approach and therefore can also be systematically used to complement the analysis of the experts in

the study of disruption physics.

The present work must be interpreted as a first step because additional refinements could be

easily implemented. First of all, more expert knowledge could be inserted in the rules, which were

devised more on the basis of the database contents than mathematical modelling of the underlying

physics. Moreover, the results obtained with the prototype of an adaptive Fuzzy predictor open the

way to a more systematic investigation of adaptive strategies for disruption prediction at JET and

elsewhere. A more sophisticated  method, than the preliminary one tested so far, could utilise different

fuzzy nets, each one optimised for a specific time interval of the training data set. A preliminary

analysis seems to indicate that intervals of the order of 100 ms would be adequate far from the

disruption, whereas shorter intervals could be beneficial in the last time period. These various nets

could be run in parallel and would provide the probability of disruption for their respective time

interval in the future (for example a predictor optimised for the interval 500-400ms before the

disruption would give the probability of disruption for this interval in the future). A global algorithmic

controller could then manage the predictions of these nets and issue an alarm when considered

appropriate. A set of thresholds for the various predictors could be identified, to find the best trade-

off between machine integrity and the scenario development needs. To conclude, it is worth

mentioning that also other approaches, based on ANNs [5] or Support Vector Machines [17], could

also be implemented in an adaptive way and their performance compared, to converge on the most

suited technique for the next generation of devices.
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Databases Number of pulses

Disruptive 164

Disruptive test 128

Safe  84

Pre-disruptive Safe 164

Safe test 137

Table1: list of the databases used for the analysis

Signal name         Unit

Plasma current Ipla  [A]

Mode Lock Amplitude Loca  [T]

Plasma density Dens [m-3]

Total Input Power Pinp  [W]

Plasma Internal Inductance Li

Stored Diamag. Energy Derivative dWdia/dt  [W]

Safety factor at 95% of minor radius q95

Poloidal beta βp

Safety factor derivative dq95/dt [s-1]

Plasma Internal Inductance derivative dli/dt [s-1]

Poloidal Beta derivative dβp/dt [s-1]

Net power Pnet  [W]

Table 2:  list of the signals used as input of the fuzzy predictor.
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[td-440, td-100] [td-200, td-100]   [td-320, td-220]   [td-440, td-340]

Variable  Importance     Variable     Importance     Variable     Importance     Variable     Importance

dWdia/dt 100,00      dWdia/dt 100,00    dli/dt    100,00   Ipla 100,00

dli/dt 82,88   dli/dt   50,46 dWdia/dt    99,20 dli/dt 69,42

Ipla 70,88   dβp/dt    37,01     Ipla    79,40 Pnet 68,23

Pnet 67,96    Pnet   35,03   li    70,47    li 54,78

dq95/dt 54,90     q95   27,54      q95    62,06 dq95/dt 53,92

Dens 53,24     ≤p   24,80     Pnet    59,00 Pinp 49,58

dβp/dt 52,96      li   24,37      βp    57,05   dWdia/dt 38,78

li 52,36   Loca   22,74   dq95/dt    56,19 Q95 37,97

Loca 46,75    Pinp   20,49   d≤p/dt    38,68 Loca 37,39

Pinp 45,26    Ipla   16,36    Pinp    38,41 d≤p/dt 36,57

βp 43,47   Dens   13,34    Dens    37,91 Dens 35,55

q95 33,55  dq95/dt    9,87    Loca    30,13    βp 28,77

Table 3: Ranking of the various signals as calculated by CART for the time intervals [td-440, td-100]
(the full data set), [td-440, td-340], [td-320, td-220] and [td-200, td-100].

   Missed Alarms (MA)   False Alarms (FA)      Correct Prediction

“Earlier” predictor

Shots 83 / 292 (28%)     52 / 221 (23.5%)     378 / 513 (74%)

Static predictor

Shots 203 / 292 (70%)       7 /221 (3.1%)     303 / 513 (59%)

Table 4: comparison between the “earlier predictor” and the “static predictor”. The first column reports the total
number of missed alarms while evaluating disruptive pulses in the datasets; the second column reports the total
number of false alarms in safe pulses; the last column contains the total number of correct predictions, i.e. pulses
identified as disruptive in disruptive databases and pulses identified as non-disruptive in “safe” databases.
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Adaptive predictor Static predictor

Database set MA/TOT Database set MA/TOT

Disruptive 7 / 164 (4.3%) Disruptive 16 / 164 (9.7%)

Disruptive test 19 / 128 (14.8%) Disruptive test 18 / 128 (14.0%)

Total 26 / 292  (8.9%) Total 34 / 292  (11.6%)

Database set FA/TOT Database set FA/TOT

Safe 8 / 84 (9.5%) Safe 9 / 84 (10.7%)

Pre-disruptive Safe 16 / 164 (9.7%) Pre-disruptive Safe 15 / 164 (9.1%)

Safe test 3 / 137 (2.2%) Safe test 11 / 137 (8.7%)

Total 27 / 385 (7.0%) Total 31 / 385 (9.1%)

Table 5: comparison of the predictors’ output using a secondary threshold of 0.51

Adaptive predictor Static predictor

Database set MA/TOT Database set MA/TOT

Disruptive 3 / 164 (1.8%) Disruptive 9 / 164 (5.5%)

Disruptive test 12 / 128 (9.4%) Disruptive test 14 / 128 (10.9%)

Total 15 / 292  (5.1%) Total 23 / 292  (7.9%)

Database set FA/TOT Database set FA/TOT

Safe 11 / 84 (13.1%) Safe 11 / 84 (13.1%)

Pre-disruptive Safe 29 / 164 (17.7%) Pre-disruptive Safe 30 / 164 (18.3%)

Safe test 6 / 137 (4.3%) Safe test 27 / 137 (19.7%)

Total 46 / 385 (11.9%) Total 68 / 385 (17.7%)

Table 6: comparison of the predictors’ output using as secondary threshold 0.45
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Figure 1: General structure of a classification tree for a binary target variable: 0 and 1. xi is the selected split
variable (splitter) and ai is the selected split value.
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