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ABSTRACT.

The interaction between plasma rotation and perturbation fields is described by the ambipolarity

constraint and the parallel momentum balance, both emanating from the revisited neoclassical

theory, and the electrodynamical screening of the resonant perturbation field at the singular surfaces.

This screening depends mainly on the slip between the rotating plasma and the resonant field. The

neoclassical theory, valid in the collision dominated regime and accounting for gyro viscosity includes

arbitrary plasma cross -sections, anomalous viscosity, ponderomotive forces,Neutral Beam Injection

(NBI), pressure anisotropization and a momentum source due to ergodicity which has a considerable

impact on the plasma rotation as demonstrated in TEXTOR.

To estimate the influence of the perturbation coils on the plasma rotation, the radial magnetic

field (proportional to the helical flux function) are Fourier analyzed (using ‘intrinsic’ coordinates)

and the total field is used for field line tracing thus obtaining the ponderomotive momentum input

and the extension ∆e of the ergodic layer at the edge. Both procedures account for the full plasma

geometry. ∆e is assumed to be independent from the rotational state because of the boundary condition

Vt=0. In a second step the obtained velocity profiles are used to compute the screening at the

singular layers and thus the reduction of the island width due to plasma rotation.

The mainresults canbe summarized asfollows: Using in the case of the TEXTOR Pulse No:

94092 the diffusion coefficient DM = 2 10-6 m (typical for the 12/4 configuration) the observed

increase of vt by ∆vt ≈ 5km/sec can be sec reproduced. Inside the plasma the slip prevents any

influence of the ponderomotive forces, thus yielding a constant increase of the vt(r) - profile by ∆vt.

Assuming in the case of the error field correction coils (n= 1) of JET the current Ihel = 30kA and

using for the plasma background the data of Pulse No: 67951 in the static case an ergodized layer

(∆e(n = 1) ≈ 20cm in the vicinity of the unperturbed x -point) and large m= 2, m= 3 (n= 1) islands

(Wm=2,n=1 =10cm) are obtained whereas in the n=2 configuration the analogous parameters are ≈

∆e(n= 2) 18cm and Wm = 4cm i.e. ∆estays roughly the same and the island width is strongly reduced

thus indicating the superiority of this configuration. Plasma rotation (vtmax = 180km/sec) reduces

the width Wmto small value. (However, tearing mode physics which may lead to mode locking is

not included in this consideration).

1. INTRODUCTION

The interaction between the poloidal or toroidal spin-up [1]-[35] and the perturbation fields, is an

important issue for fusion oriented devices and is therefore under investigation experimentally and

theoretically. The importance of the perturbation coils [26]-[45]is underlined by the fact, that they

are considered as a means to mitigate the ELMs.

The revisited neoclassical theory [2]-[6] which is essentially based on Braginskii’s equations

[7]-[8], allows within the framework of a rigorous analytical approach the calculation of the two

dimensional velocity field on the flux surfaces and the perpendicular ambipolar electric field, i.e.

the quantities which determine the electrodynamical screening and which are believed to be important
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for the L-H transition. This theory is valid in collision dominated plasmas with steep gradients and

was able to reproduce the toroidal spin up in the divertor tokamak ALCATOR C-MOD [4], [5], [24].

Since the momentum input due to helical coils and due to the beam have a strong impact on the

velocity field, in [11] and [12] the respective source terms due to the ’ponderomotive forces’ [14]

and the forces due to pressure anisotropization [10] were included in the neoclassical momentum

balances. Depending on the island overlap the helical perturbations can act as means for ergodizing

the magnetic field in particular in the vicinity of the separatrix and thus for the ’ergodic’ momentum

source at the plasma edge [13].

The neoclassical equations were modified to account for anomalous viscosity as well [11].

In the H -mode the region of the high confinement is -as in ALCATOR  [12] -restricted to the

edge region where a temperature pedestal is build up due to the steep velocity profile (thus due to a

large velocity shear). However, the large pressure gradient in the pedestal region in general exceeds

the ballooning-peeling limit and thus gives rise to the edge localized modes (Type I ELMs) which

are supposed to be dangerous for the divertor plate. Therefore at DIIID the use of perturbation coils

(’I -coils, C -coils’) were under investigation and it was demonstrated that in wide range of plasma

parameters ELM suppression was achieved [43]. Although precise mechanism for this is still under

investigation, the additional parallel transport due to ergodization of edge region at the separatrix

[26] is considered as the main reason for the ELM suppression. In this context the reduction of the

normalized pressure gradient may lead to ELM -stabilization.

This underlines the importance of the width ∆e of the ergodic layer at the separatrix.

An important obstacle in the application of the perturbation coils could be the excitation of

islands in the bulk plasma and thus evoking disruptions. Therefore the screening of the perturbation

field due to plasma rotation at a high slip -frequency is considered by applying the aforementioned

model in which the source term due to the ponderomotive forces acounts for screening and breaking.

Thus the impact of rotation on the island width can be assessed.

The paper is organized as follows: In section (2) the basic equations of the revisited neoclassical

theory are summarized and the characteristic quantities are given. In section (3) the electromagnetic

screening and in section (4) the source terms for a self consistent model are discussed. A short

summary of the treatment of the magnetic field structure by Fourier analysis and field line tracing is

given in section (5). Finally, after some remarks about the geometry of the perturbation coils [section

(6)], results concerning more recent shots at TEXTOR and JET are presented in section (7).

2. AMBIPOLARITYCONSTRAINTANDPARALLELMOMENTUMBALANCE

As mentioned already, the revisited neoclassical theory accounts in particular for steep temperature

and density gradients at high collisionality. Since it is a collision dominated theory, it is based on the

fluid equations for particle, momentum and energy conservation [2]-[6]. For a two-component plasma

with the velocities uj, the densities nj,the particle sources Sj (x, t), the friction forces  Rj (x, t) and

the momentum input S M (x, t) (j=e,i) we get as momentum conservation equation

→→→→→→→→→→ →→→→→

j
→→→→→ →→→→→
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(1)

Pj, E and B are the scalar pressure, the electric and magnetic field, respectively. We project equation

(1) in the toroidal direction and account for inertia, parallel, perpendicular and gyro-viscosity [7]-

[8], average over a flux surface, impose the ambipolarity constraint and get for the poloidally averaged

toroidal velocity uφ [11]

(2)

uθ is the averaged poloidal speed, η2 is the perpendicular viscosity coefficient. The radial coordinate

r is the effective radius r =                 V (ψ) is the volume of the flux surface ψ. M1 is a metric quantity

of the order unity accounting for elongated cross -sections [11]. In the case of a circular cross -

section we get M1 = 1 analytically. [2]. For elongated cross -sections M1 can be evaluated numerically.

For a JET -plasma with an elongation k = 1.7 we get M1 = 0.95, i.e. close to unity, mainly due the

definition of the effective radius. We note that using the minor Å„  half axis of a flux surface as

radial coordinate would increase M1 by √k [11].

We note that as in [11] the classical viscosity must be replaced by an anomalous one to reproduce

TEXTOR -or JET -data. Here the growth rate of the ITG -instability (Ion Temperature Gradient -

instability) was used to define the diffusivity for the momentum transport in analogy to the energy

transport. The velocities Q and S are defined by [4], [11]

 (3)

and

(4)

with the velocity vn =                  and the well known ratio

(5)

The important quantity Λ =                     acts as a switch for the finite  Larmorradius effects. For large

gradient lengths LT the neoclassical result is retrieved, i. e.     is becoming small. The charge

exchange reactions are characterized by the charge exchange frequency vcx = < σv >cx n0. < σv >cx is

→→→→→ →→→→→

V (ψ)
2p2 R

T
eB

δln(n)
δr

q2R2

LT r
vi

Ωi Q
S

duj

dt
mjnj         = - ∇Pj - ∇ . ∏j - eZjnj(E + uj × B) - Rj + Sj

M

[rη2(      -M1                                     uθ)] 
∂

∂r

∂uø

∂r

1
r

0.107q2 ∂ln T Bø

1 +          ∂r    Bθ
Q2

S2

= mini (     + vcx) uø + TNBI + TANI + Tj × B + Tergot

∂

∂t

Q = [4uθ - 5vn(1 +     )]
Bø

    B

1
2η

Bø

    B
S =

8vnη

Λ

η = ∂r 
∂ln(T)

∂r 
∂ln(n)
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the rate coefficient for charge exchange, and n0 the neutral gas density. The source terms TNBI,

TAN I, Tj×B ,Tergot
 account for NBI, pressure anisotropization due to helical perturbations, for the

j× B - force at the singular surfaces and for the averaged radial current in the ergodized region [39],

[41].

We define the dimensionless quantities g =      , h =       and x =         .

Here we used the (constant, positive) velocity vT =               . Tin is the temperature at the point Pin

with radius rin and the length Lψ = LT (rin) is LT at Pin. In the case of ALCATOR C-MOD [4] Pin is

the ’inflection’ point which is defined as the locus of vanishing curvature of the ion temperature

pedestal. In the case of TEXTOR (without temperature pedestal) Pin is assumed to coincide with

the plasma edge (i. e. rin = rmax, rmax is the minor plasma radius). The length Lψ = LT (rin) is LT (           )

at Pin.With G =                              h and x′ = x +          we get the dimensionless equation (by

multiplying with            where tc =               is the characteristic time [11])

(6)

Taking the parallel components of the terms in the momentum equation 1 and accounting in particular

for the gyro-viscosity tensor [4] we get a nonlinear relation between the poloidal and toroidal

plasma velocities  [4] in the case of large aspect ratio and circular cross -section.

 (7)

Here the definitions g* =                 , and h* =          are used, to cast equation (7) in a convenient form.

Tergop
 accounts for momentum input by the averaged radial current due to ergodization.

3. SCREENING OF HELICAL PERTURBATION FIELDS.

In general the plasma rotates at a speed different from that of the perturbing field. Therefore the slip

frequency ω (like in an induction motor) must be accounted for [14]. This frequency is defined as ω

= ωp - ωf . ωp is the plasma rotation frequency ωp = mΩθ,p - nΩφ,p and ωf  the helical field rotation

frequency ωf  = mΩθ, f - nΩφ, f .m, n are the poloidal and toroidal mode numbers, respectively. Ωθ,p,

Ωθ,f ,Ωθ, p , Ωθ, f are the poloidal rotation frequency of the plasma, the poloidal rotation frequency of

the helical field, the toroidal rotation frequency of the plasma and the toroidal rotation frequency of

the helical field, respectively. If the slip frequency is very large, no momentum transfer to the

singular surface can be expected because of the eddy currents which prevent the penetration of the

helical field. At low slip frequencies the eddy currents are small enough to allow the field to penetrate.

→→→→→

uφ

vT

→→→→→

uθ
vT1

eBφ

Tin

Lψ

δln T
δr

Bφ
Bθ

δg

 δx

0.107q2

Q2

S21+

δlnT

δx

r-rin

Lψ
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Lψ
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nimivT

nimiLψ
2

η2(rin)

ˆ

Bθ

Bφ

uθ
ηvn

uθ
ηvn

ˆ ˆ ˆ ˆ ˆ[x́η2G] = TCX + TNBI + TANI + Tj × B + Tergot

1
η2

∂

∂x

1
x́
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1
2

   1
[    ]2

0.45Λ
1 + 
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 1 + 
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S2 
 Q2

S2 
 Q2

-  g*[h* - (1 +    )] + 1.9[h* - 0.8(1 +      )]2} + Tergop 

2
η 

1.6
η 

∂x 
∂T̂

1
 

ˆ
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Outside the singular layer ideal MHD can be applied and the equilibrium condition under the influence

of the helical field

 (8)

is given by the ’ideal tearing mode equation’ [14].

(9)

j(r) is the plasma current density which is asumed to be parabolic in r, Bθ is the corresponding

poloidal field. Equation (9) allows to compute ’tearing mode stability index’

(10)

We assume here ∆′ < 0 so that the plasma is tearing mode stable [11]. Otherwise the tearing mode

physics would invalidate the subsequent considerations. According to the considerations in [14] at

the singular surface the plasma acts roughly like the rigid armature of an induction motor because

viscosity and inertia prevent the large displacement of the plasma correlated to the large changes of

the magnetic field due to equation (9). The dependence of the flux function ψs in the singular layer

with the width δs can then inferred from Ampere’s and Faraday’s law. The first one relates the

current density js to the jump of the magnetic field across the layer

(11)

ψv is the flux function of the vacuum field of the perturbation coils at r=rs. On the other hand Ohm’s

law connects the current density with the electric field generated by the oscillating magnetic field in

the singular layer with the electrical conductivity σs

(12)

For ψs one gets in this (‘rigid armature’) approximation

(13)

With

τs = υ0σ rsδs

The width of the layer can be estimated as [14]

ψ = ψ(r)exp[i(mθ - nø + ωf t)]

(r      ) -    ψ-                      ψ = 0 
d

dr

dψ
dr

m2

r2

1
r

dr 
dj   µ0m

Bθ(m - nq)

∆′ =  r 
dψplasma

dr

rs+

rs-

µ0 js =         r            =        (∆′ψs + 2mψv)
dψ
dr

1
∂srs

1
∂srs

rs+

rs-

µ0 js = µ0Eσs = µ0ψsσs = iµ0ωψsσs

2m

-∆′ + iωτs
ψs = ψv
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(14)

Here the hydrodynamic time is

(15)

τa is the Alfvén -time

(16)

ns is the ion density at the singular layer. The shear parameter s is defined by

(17)

The viscous diffusion time can be expressed as

(18)

Finally, the resistive time is

(19)

Accounting for the layer physics in the ‘visco -resistive’ regime [14], [15] in which the plasma

inertia is neglected, we get for the characteristic time τs

(20)

with fgeo = 1 in [15] However, more recently, in [28] and [27].  fgeo = (1 + 2q2)1/3 was introduced. In

contrast to [15] this factor accounts for the inertia [45] in the layer equation.

Real and imaginary part of expression (13) allow e. g. to compute the phase shift between ψs and

ψf . For static fields the phase shift vanishes and ψs = ψv          is in general larger than ψv (‘amplification’).

At high slip frequencies, beyond the critical frequency

the flux function in the singular layer is considerably lower than ψv .

2m
-∆′

2
1
6

τh

τRτV
δs = rs [         ]

R0

rsnss
τh =         τa

2
nsmiµ0 

B2
     0

rs

va

rsτa =     =            = rs
nsmiµ0

B0

rq′
q

s =

2rsmins

η2(rs)
τV =

2τR = µ0rsσ(rs)

1
3

2
3

1
3τs = τV R = 2.104     (     )  τHτR fgeo

rs

δs

τR

τV
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Since              = (      )1/6  (      )1/6           = ƒτ depends only very weekly on the plasma parameters, it

follows from equation (13) that the ‘screened’ Fourier component is given by

(21)

with α =         which is of order unity since in [11] the estimate ∆′ ≈ 5 was obtained.

4. MOMENTUM SOURCES

The analytic expressions for the momentum sources mentioned already before are given and discussed

here.

4.1.THE ROLE OF RADIAL CURRENTS DUE TO FIELD LINES TO CHASTIZATION

The electric currents under the condition of magnetic field line stochastization originate from the

radial excursion of the field lines under the influence of the radial field of perturbation coils. Due to

the generalized version of Ohm’s law the current density parallel to the field lines is given by

(22)

Replacing the parallel derivative according to b ·∇ sin(α)        by the dr radial derivative (where α

is the angle between the field line and the toroidal direction). We get

(23)

Projecting the obtained current in the radial direction and averaging over the unperturbed flux

surfaces [41] we obtain the radial current due to ergodization.

(24)

Ln = -dr/d ln n and LT = -dr/d ln T are the e-folding lengths of plasma density and electron

temperature of the prescribed plasma background. Here it is assumed that < j||,r > is a perturbation

which does not perturb the magnetic field of the background plasma, i. e. a low beta approximation

is made where the magnetic field is large enough.

Since the mean squared displacement perpendicular to the unperturbed field lines after moving

by the distance Lk in the toroidal direction is DM Lk (DM is the field line diffusion coefficient and Lk

the (somewhat modified) Kolmogorov length) we get the estimate <sin2(α) > =        .

A more refined analysis can be found in [41]. Because of ambipolarity the radial current density

(24) must be compensated by the averaged radial component of the perpendicular current density

<j⊥,r >:

δs
2mrs

τH

τV

τH

τR

1
2m

−∆′
2m

→ d
dr

˜˜ ˜
DFL

LK
˜

s vBm,n = Bm.n
1

α2+ (ωτV R fτ)2

Te

e
jǁ = σǁb · [-∇Φ +      (∇ln n + 1.71∇ln Te)]

Te

e

d
dr

d
dr

d
dr

jǁ = σǁ[-   Φ +      (     ln n + 1.71     ln Te)]sin(α)

Te

e
< jǁ,r >= σǁ < sin2 (α) > [Er -   (Ln

-1 + 1.71LT
-1)]
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< j⊥,r > + < j||,r > = 0

The unperturbed perpendicular current density and the ambipolarity constraint to be imposed on

this current density, was considered in section 2. The additional toroidal momentum input is given

by the Lorentz force density

Tergot 
= Bθ < j⊥,r >

Analogously we have for the poloidal momentum input

Tergop = Bφ < j⊥,r >

The respective dimensionless source terms are Tergot
=                     and Tergot

= -               . η0

[3] is the parallel viscosity coefficient.

4.2. NEUTRAL BEAM INJECTION

Due to neutral injection [6] the momentum deposited in a radial volume element ∆V =2πR2πrdr

during the time ∆t is [11] ∆(mvi Ni)∆V = mN0 ∆t        v0. dl is the line element along the beam path,

v0 =           the speed of the neutrals and lmfp the mean free path length due to charge exchange.

Using the beam -, the torus -geometry and the charge exchange cross -section we get [11]

vi          =                           1.68 107                                   .

4.3. PRESSURE ANISOTROPIZATION DUE TO THE HELICAL PERTURBATIONS [10]

The helical perturbations modulate the absolute value of the total  field B = B0 (θ) [1 + Σm,n bm,n(θ,

φ)]. B0(θ) =     B0,φ + B0,θ is the axisymmetric Tokamak field and the bm,n(θ, φ) are given by bm,n(θ,

φ) =                       sin (mθ-nφ + φm,n). Bθm,n (Bφm,n) are the Fourier components of the perturbing

poloidal (toroidal) field [11] and φm,n are the phases. Due to the pressure anisotropization introduced

by the modulation we get as braking term <eφ · ∇Π >= Kvφ [20],[32] with [10]

 (25)

This expression is derived for the plateau regime and it is valid in the vicinity of of the rational

surface with q =       . However, at the rational surface itself the Pfirsch -Schlüter regime is entered.

In this regime the expression (25) must be modified, thus a singularity does not appear. More

details are given in [11].

In analogy to NBI the dimensionless source term due to the braking by helical perturbations is

given by Tbr = tci        g

ˆ Bφ <j⊥,r>
nin Mi vTη2

Bφ R
2 <j⊥,r>

η0ηνn

2
3

˙

Eb

2mb

dl
lmfp

m
sec2

N0 <σν>cx

2πR02πr√ 2∈′√ κ

˙ 1
R0 [m] r [m] √∈

PMW
RkeV

˙

2 2

→

Bθ m,n +Bφ m,n

B0,φ +B0,θ
2 2

m
n

ˆ Kn
η2

ˆ
ˆ

Σ
m,n

  πpi

vTi R0
K = 

(B0,θBθm,n + B0,φBφm,n)2

B0

n2q

|m - nq|4
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4.4. THE TORQUE DUE TO THE J ××××× B FORCES IN THE SINGULAR LAYER

Due to the aforementioned screening the dependence of the momentum density transferred to the

singular flux surface, on the slip frequency is given by [14], [11]

(26)

in rs - δs /2 <r <rs + δi /2 and Tj×B = 0 elsewhere. Ψv is the vacuum flux function at the singular

surface [14]. For the numerical treatment the discontinuous source term defined by the equation

(26) is replaced by a continuous one as in [11].

5. MAGNETIC FIELD STRUCTURE

Fourier analysis of the radial field performed at the singular surfaces provides the input for the

preceding rotation model, field line tracing is here the main method to demonstrate the destruction

of of the flux surfaces in the vicinity of the x -point.

5.1. FOURIER ANALYSIS OF THE PERTURBING MAGNETIC FIELD

The Fourier sine -coefficients of the radial field Br are given by

 (27)

θ* is the intrinsic angle with the property that a field line θ* - θ*  =  1/q (φ - φ0) becomes a straight

line on the specific flux surface [17]. (φ0
 - φ0 ) is the starting point.

For large aspect ratios and circular cross-section θ* and θ almost agree, but, in particular in the

vicinity of the separatrix of an elongated plasma, they significantly disagree.

A formula analogous to (27) holds for the cosine -coefficients Bmnc
 .In the following the geometrical

sum

 (28)

of both is envisioned because this sum is decisive for the island width and is almost independent

from the phase φm,n = arc tg (        ). 100 gridpoints were chosen in the toroidal and in the poloidal

directions, respectively. Since the coil configuration envisaged in the following  mainly have a

periodicity in φ and not in θ*, the Fourier decomposition

(29)

is envisaged as well. The coefficients Bns (r, θ
*) depend on the effective radius r and the intrinsic

angle θ*, whereas the coefficients (27) depend on r only.

→ →

*

0
* *

Bmnc
Bmns

TEM

4π2rrsδs R0
Tj

*
 × B = TE

*
  M =                   = -                       |Ψv|2 

8π2m3R0

µ04π2rrsδs R0

ωτs

(-∆′)2 + (ωτs)2

0

2π

0

2π1
2π2Bmns =              dθ*           dφBr[θ(θ*),φ] sin (mθ* - nφ)

Bmn =    Bmns
2

  + Bmnc
2

0

2π− 1
2πBns (r,θ*) =             dφBr[θ(θ*),φ) sin nφ
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5.2. FIELD LINE TRACING BY MEANS OF THE GOURDON CODE [31]

To investigate the edge region under the influence of the perturbation coils, the island structure and

the ergodic region around the unperturbed separatrix has to be resolved concerning the size and the

phase of the (remnant) islands which have a strong poloidal dependenc because of the vicinity of

the x -point. Also the structure of the ergodic region around the unperturbed x -point has a significant

poloidal dependence. Therefore the edge region is resolved using the (r, θ) -representation mentioned

below.

We assume that the equilibrium magnetic field and the radial perturbing field can be superimposed

independently. Thus the obtained total magnetic field vector can be used to track the field lines [31].

This presuposes ∆′ < 0 and that the slip frequency between the perturbing field and the plasma at

the singular surface is small. The field line equations are given by

(30)

(31)

R, z, φ are cylindrical coordinates. The cylinder axis is the symmetry -axis of the plasma equilibrium

[36]. The magnetic field of the nonaxisymmetric conductors is computed by means of BIOT-

SAVART’s law.

This field is stored on a spatial mesh set up in the R, z, φ domain which the field lines are

expected not to leave. The field needed during field linetracing is computed by interpolating within

the mesh. For the Poincaré -plot two representations by means of different coordinate systems are

used to store the intersection points with the plane φ = const.[17]:

1. Cylindrical coordinates R, z around the axis of symmetry and

2. Toroidal coordinates (polar coordinates around the magnetic axis). The toroidal coordinates (r,

θ) are defined by

(32)

and

 (33)

R0 is the radius of the magnetic axis. Cartesean coordinates ymag = Ly      and xmag = Lx      are used

to enhance  the visibility of the island structures. Lx and Ly are the lengths of the x -and y -axis. The

first representation gives a realistic view of the island shape and size, the second enhances the

visibility of the island structures, in particular at the plasma edge, but distorts the islands at the

plasma center.

r
a

θ
2π

1
R

∂R

∂φ
BR

Bφ
=

1
R

∂z

∂φ
Bz

Bφ
=

r =    (R - R0)2 + z2

θ = arctan
z

R - R0
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In the examples given below 600 turns per initial point had been chosen so that the number of

intersection points with the plane φ = 0 is much larger than that of the initial points which are

uniformly distributed on a line z = const. between the radii Rmin and Rmax. Since the field lines

starting at initial points radially in the vicinity of Rmax reach sometimes the limits of the computational

domain, the field line tracing is interrupted giving rise to intersection points which are outside the

bulk of the intersection points. These points appearing in Figs.4 -22 have no significance and should

be ignored.

6. PERTURBATION COILS

Several conductor configuration had be foreseen, mainly in the vicinity of the plasma edge, at

DIIID, TEXTOR and JET. Here we concentrate on the latter two.

6.1. DYNAMIC ERGODIC DIVERTOR AT TEXTOR

The perturbation coils at TEXTOR [11] have the dominant Fourier components in resonance with

the q = 3 surface, i. e. the pitch of the conductors corresponds to the (mean) field line pitch at the

q = 3 surface. To control the penetration depth, the winding can be switched as mixture of a (m = 12,

n = 4), (m = 6, n = 2) and a (m = 3, n = 1) winding. The coil currents are then given by

j = 1,...,16. The mixing factors are p2 = p3 = 0 for the (m = 12, n = 4) -, p2 = 1, p3 = 0 for the (m = 6,

n = 2) -and p2 = 0, p3 = 1 for the (m = 3, n = 1) -winding.

6.2. ERROR FELD CORRECTION COILS AT JET

A n = 3 coil system, located on top of the P4 -poloidal field coils, is envisaged at JET to achieve the

ergodization of the separatrix region [28]. Available now are the Error Field Correction Coils (EFCCs)

[16] producing n = 1 and n = 2 modes for the error field correction. The EFCCs (Fig.7) were

implemented at JET to compensate the field errors        ≈ 10-4 and thus to avoid locked modes which

may lead to disruptions. Mainly the (m = 2, n = 1), (m = 1, n = 1) (m = 3, n = 1) modes are considered

to play a significant role. The EFCCs are mounted at the outer limbs of the yokes. The toroidal

extension of one coil is 70o and the shape is approximately that of square with a side length of 6 m.

The maximum distance of the conductors from the axis of symmetry is 7m. The maximum current

in each coil (with 3 turns) is 48kA, i.e. 16kA per turn. The EFCCs can be configured for n = 1 where

two neighboring coils are switched in parallel and the two opposite coils have the opposite current

direction (Fig.8). n = 2 can be achieved by choosing current direction to change in neighbouring

coils (Fig.9). The EFCCs are supposed to produce Fourier components of the same order as the

saddle coils used before [11], i. e. of the order 10-4 Tesla.

δΒ
Β

2π
4

2π
8

2π
16

Ij = Id [(1 - p2 - p3) sin (j       + ωt) + p2sin (j       + ωt) + p3sin (j       + ωt)]
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7. RESULTS

The magnetic fields of the aforementioned coils are analyzed by Fourier decomposition and field

line tracing. Depending on the slip frequency between the plasma and perturbing field the islands

predicted by field line tracing may be suppressed (large slip) or may be generated as prodicted (low

slip) as pointed out in section 3. Furthermore, depending on the sign of ∆′ the islands may grow (∆′

> 0) or the ’vacuum’ size maystay(∆′ < 0).

7.1. TEXTOR

The spectrum of the DED at the q = 2 surface and the possibilities to brake or accelerate the plasma

were discussed in [11]. Here we consider the screening and the change of the plasma rotation by an

ergodic zone as described insection 4.1.

The main parameters of the investigated shots are Timax = 1.3keV, Temax = 1.63keV, nmax =

3×1013cm-3, η =1.6, Bφ = 2.23T, PMWco
 = 0.25MW, PMWcounter 

= 0, plasma current Ip = 300kA, in the

case of Pulse No: 94092 and Timax = 2.2keV, Temax = 2.1keV, nmax = 3.4×1013cm-3, η =1.6, Bφ =2.25T,

PMWco
 = 0.35 MW, PMWcounter 

= 1.3MW, plasma current Ip = 300kA in the case of Pulse No: 97613.

To show the effect of an ergodic layer between re1 = 40cm and re2 = 43cm (typical for the 12/4

configuration) field line stochastization with the typical parameters DM = 2×10-3m and Lk = 40m is

assumed in addition. The gradient lengths of density and temperature in this layer are Ln = LT =

0.05m according to the experimental data of the aforementioned shots. The temperature at the inner

rim of ergodic layer is 100eV.

The unperturbed maximum toroidal velocities vTmax = 40 km (Pulse No: 94092, sec Fig.3 and

vTmax = 140km/sec (Pulse No: 97613, Fig.4 can be reproduced within  sec  an accuracy of 10%. In

the case of Pulse No: 94092 the toroidal velocity increases by ≈ 5km/sec if the ergodic layer (Ihel ≈

6kA)is switched on (Fig.3). To avoid the mode locking, the NBI of Pulse No: 97613 is predominantly

in the counter direction. Therefore Tergo (Ihel ≈ 20kA) effects a reduction of vt by ∆vt ≈ 20km/sec

(Fig.4). The velocity gradient stays in both cases outside the ergodic layer almost the same, i. e. the

ponderomotive forces due to the Fourier components of the 12/4 configuration are negligible. This

is confirmed by the screening factor (blue curve in Fig.5). These results agree within the errorbars

(≈ 3km/sec) with the experimental findings.

Figure 6 demonstrates the plasma braking at the q = 2 surface for IDED ≥ 2kA. The screening

factor outside the q = 2 surface is fs = 1. However, experimentally, a locked mode appears due to

the fact that the slip frequency is zero. Therefore the tearing mode physics dominates which is

beyond the scope of the considerations here.

7.2. JET

The choice of the JET -data corresponds to Pulse No: 67945 [44] in which the configuration of

Fig.8 was used: Major radius R0 = 296cm, minor half axis a = 85cm, effective radius rmax =120cm,

plasma current Ip = 1.6MA, toroidal field Bt = 1.84T, NBI = -power PNBI = 18MW, Timax = 7kev,

˜
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maximum electron density nemax =4.5×1013cm-3 and maximum toroidal speed vtmax = 180km/sec.

The configuration of Fig. 9 is treated here as well, however, a comparison with the experimental

data was not possible (yet). Figure 10 shows the spectrum for the n = 1 configuration. The (m = 1,

n = 1) component is the largest because of the good overlap with sin(θ∗ - φ). The (m = 2, n = 1)

component is comparable to the (m = 1, n = 3) component and both are around 20% of the just

mentioned component because both components have a considerably reduced overlap with the

repective sin -function.

Figure 11 shows the analogous spectrum for the n = 2 configuration. The (m = 1, n = 2) component

is the largest component, followed by the (m = 2, n = 2) component. From this one can expect that

the resonances are far inside and hardly disturb the confinement.

As a reference for the subsequent field line tracing results in Figs.14 (R, Z - representation) and

15 (r, θ - representation) show the unperturbed case, i. e. the assumed equilibrium with KAM -

surfaces. A single null plasma with q(r = 0)=0.9 and q95 = 4 was chosen. We note that in this case

the points marking the field lines are not always uniformly distributed of a specific flux surface.

However, this bunching depends on the rationality of q - value of the flux surface and does not

mean that the KAM - property is affected.

The results of the Fourier analysis are confirmed by the field line tracing shown in Fig. 16 (n =

1) and 18. As expected, the n = 1 configuration (Ihel = 30kA) generates pronounced islands at the q

= 2 and q = 3 surfaces (Fig.16). The islands are mainly separated by KAM - surfaces with small

islands inserted. The ergodization of the separatrix region is clearly visible; at the x - point (of the

unperturbed separatrix) the thickness of the ergodized layer is around 20cm.

The environment of the unperturbed x - point is shown in Fig.17 with a two times higher resolution

(the number of the initial points had been doubled). The poloidal range is [230o - 300o]. The q = 3

islands near the unperturbed x - point are at their tips toward the x -point somewhat eroded indicating

that the ergodization of the x - point region is effective. This is compatible with the fact that in this

region no remnant island are visible just in contrast to Fig.19.

The Poincaré plot (Fig.18) generated for the n = 2 configuration with Ihel = 30kA is consistent

with the spectrum (Fig.11) as well. The (m = 3, n = 2) and (m = 4, n = 2) island chains are visible but

the island widths are rather small, corresponding to the small Fourier components. At the x-point

(of the unperturbed separatrix) the thickness of the ergodized layer is roughly the same as in the n

= 1 case.

The environment of the unperturbed x - point is shown in Fig.19 with a two times higher resolution

like in Fig.17. In the ergodic region around the unperturbed x - point remnant islands are inserted

which originate from resonances with q > 3 flux surfaces.

Figure 20 shows the screening due to plasma rotation (for m = 2). Here we note that the analogous

curve for m=3 is rather similar to that in Fig.20.

In Figure 21 the screening is a taken into account by reducing the field of the EFCCs according

to the screening factor fs: the ergodized sheath at the boundary stays almost unaffected, whereas
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inside the unperturbed separatrix the radial extension of the q = 2 - islands is strongly reduced. An

analogous result is obtained for the n = 2 configuration (Fig.22). Here the islands almost disappear.

As in Fig. 18 the ergodized region at the x - point contains small islands just outside the q=3 which

seem to be more pronounced than in Fig.18. This could increase the transport parallel to the field

lines.

8. CONCLUSIONS AND DISCUSSION

The interaction between plasma rotation and the perturbation fields seems to provide the possibility

to screen off the perturbation field in the plasma interior and to provide the necessary ergodization

at the edge. The experiments and the calculations at TEXTOR and JET show that the rotation level

is large enough to avoid the penetration of the external field leading to mode locking. The ergodization

of the plasma boundary in TEXTOR is strong enough to generate radial currents leading a significant

change of the plasma rotation.

In the case of the EFCCs (n=1) at JET the current Ihel is limited at around 35kA (≈75% of the

maximum possible current). Increasing the momentum input could extend the window for Ihel.

The ergodization of the boundary region is in spite of the long distance between plasma edge and

the perturbation coils strong enough to mitigate the ELMs.

In fact, the screening in the boundary layer is negligible thus allowing for a good penetration of

the field in this region. An improvement should be possible by using the EFCCs in the n=2

configuration because the calculation predict much smaller vacuum islands which are almost removed

by the screening effect. The boundary region contains in this case remnant islands which may

possible allow a complete ELM - mitigation.

At ITER the main problem is that the momentum transfer from a high energy beam decreases

with increasing energy (assuming the same power). Since an energy of 1 MeV is envisaged [46], a

decrease of the momentum input by a factor ≈ 3 could lead to a rotation speed considerably lower

than in JET . In addition it follows from the global momentum balance that this speed scales inversely

with the major radius which is roughly twice as large as that of JET. Since the power at ITER is

roughly twice as large than that at JET, the effect of the major radius is presumably compensated.
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Figure 1: The Dynamic Ergodic Divertor (DED) at
TEXTOR has helical windings which are roughly parallel
to the field lines in the q=3 surface. Here the winding is
switched in the m=3 and n=1 configuration

Figure 2: The DED can be switched to the m=12, n=4
configuration, where two neighboring conductors the
opposite current direction. This is the configuration with
the highest m and n

Figure 3: In the case of co-injection the ergodic
momentum input (PNBI=0.35MW) increases the toroidal
velocity by 5 km/sec in the boundary region. Except for
this region the gradient of the profile stays unchanged.

Figure 4: In the case of counter - injection the ergodic
momentum (PNBI =1.3MW) input decreases the toroidal
velocity by 20 km/sec in the boundary region . Except for
this region the gradient of the profile stays unchanged as
in Fig.3. The sign of the ergodic momentum input is the
same as in Fig.3.
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Figure 5: Toroidal velocity and screening for Pulse No:
97613 The ponderomotive forces are well screened in the
plasma interior.

Figure 6: The braked solution demonstrates the action of
the ponderomotive force at the q = 2 surface. This solution
is obtained for IDED > 2kA.

Figure 7: The Error Field Correction Coils (EFCCs) are mounted at the outer limbs of the yokes. The toroidal
extension of one coil is 70o and the shape is approximately that of square with a side length of ≈ 6m. The maximum
distance of the conductors from the axis of symmetry is 7m. The maximum current in each coil (with 3 turns) is 48 kA,
i.e. 16kA per turn.
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Figure 8: EFCC’s configured for n=1 where two
neighboring coils are switched in parallel and the two
opposite coils have both the opposite current direction

Figure 9: EFCC’s configured for n=2 where two
neighboring coils have the opposite current direction

Figure 10: Spectrum for the n=1 configuration. The (m=1,
n=1) component is the largest because of the good overlap
with sin(θ - φ). The (m=2, n=1) component is comparable
to the (m=1, n=3) component and both are around one
half of the (m=1, n=1) component.

Figure 11: The analogous spectrum for the n=2
configuration. The (m=1, n=2) component is the largest
component, followed by the the (m=2, n=2) component.
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Figure 13: The radial field of the n=2 - coil configuration
(Fig.9) at the q=3 surface. For θ = 0 the dependence Br
≈ sin(2φ - π/2) can be seen which is the main reason for
the large B2,1 component in Fig.11. Since the coils have
the ’natural’ mode number n=2 almost no modulation of
of the aforementioned dependence can be seen.

Figure 12: The radial field of the n=1 - coil configuration
(Fig. 8) at the θ = 3 surface. For θ = 0 the dependence Br
≈ sin(φ) can be seen which is the main reason for the
large B1,1 - component in Fig.10. Also the modulation by
the B3,1- component is evident in accordance with Fig.10.

Figure 14: Unperturbed configuration; Since mainly the x-point region is of interest here, one divertor coil was assumed
below the elliptical and triangular plasma with JET - dimensions (R0 = 296cm, a=85cm, δ = 0.3 ,rmax = 120cm).
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Figure 15: The configuration as in the Fig. before using the (r, θ) representation.

Figure 16: The Poincaré plot generated by the n=1 configuration in (Fig.8) is consistent with the spectrum (Fig.11).
As expected, the n=1 configuration generates pronounced islands at the q=2 and q=3 surface. The ergodization of
the separatrix region is clearly visible; at the x-point the thickness of the ergodized layer is around 20cm.
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Figure 17. The Poincaré plot generated by the n=1 configuration in (Fig.8) for theenvironment of the x - point in the
poloidal range [230o-300o]. The number of initial points hade been doubled to in crease the mean density of the
intersection points with φ =0. The ergodic region around the unperturbed x - point does not contain remnat island in
contrast to Fig. 19.

Figure 18: The Poincaré plot generated by the n=2 configuration in (Fig.9) is consistent with the spectrum (Fig.11)
as well. The (m=3, n=2) and (m=4, n=2) island chains are visible but the island widths are rather small.
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Figure 20: The toroidal plasmarotation effects at the beginning of the current rise in the EFCC
- coils a screening factor which is very small in the plasma interior.

Figure 19: The Poincaré plot generated by the n=2 configuration in (Fig.9) for the environment of the x - point in the
poloidal range [230o-300o]. The number of initial points have been doubled to in crease the mean density of the
intersection points with φ = 0. Remnant island are inserted in the ergodic region around the unperturbed x - point.
This region seems to be somewhat smaller than in Fig.17.
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Figure 22: As in Fig. 21 the screening effects a reduction of the island size and removes it almost.

Figure 21: The screening effects a strong reduction of the island size but does not remove it mainly because the island
width is proportional to    Br/B0

 , (Br/B0 << 1)
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