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ABSTRACT

We discuss the processes underlying the excitation of fishbone-like internal kink instabilities driven
by supra-thermal electrons generated experimentally by different means: Electron Cyclotron Res-
onance Heating (ECRH) and by Lower Hybrid (LH) power injection. The peculiarity and interest
of exciting these electron fishbones by ECRH only or by LH only is also analyzed. Not only the
mode stability is explained, but also the transition between steady state nonlinear oscillations to
bursting (almost regular) pulsations, as observed in FTU, is interpreted in terms of the LH power
input. These results are directly relevant to the investigation of trapped alpha particle interactions
with low-frequency MHD modes in burning plasmas: in fact, alpha particles in reactor relevant
conditions are characterized by small dimensionless orbits, similarly to electrons; the trapped par-
ticle bounce averaged dynamics, meanwhile, depends on energy and not mass.

1. INTRODUCTION AND BACKGROUND

Fishbone-like internal kink instabilities driven by electrons have been observed for the first time
on DIII-D in conjunction with Electron Cyclotron Resonance Heating (ECRH) on the high field
side [1]. There, the excitation was attributed to barely trapped supra-thermal electrons, which are
characterized by drift-reversal and can destabilize a mode propagating in the ion diamagnetic di-
rection in the presence of an inverted spatial gradient of the supra-thermal tail. Similar but higher
frequency modes were observed in Compass-D [2] during ECRH and Lower Hybrid (LH) power
injection, with chirping frequency comparable with that of the Toroidal Alfvén Eigenmode [3]
(TAE), ω <∼ ωTAE . Observations of electron fishbones with ECRH only [4, 5] and LH only [6, 7]
have been also reported in HL-1M and FTU, respectively. More recently, electron fishbones have
been observed in Tore Supra [8] due to resonant excitation of a double-kink mode by supra-thermal
electrons generated with LH power injection.

In the present work, we analyze the peculiar features of electron fishbones versus those of the
well known ion fishbone [9, 10, 11]. Due to the frequency gap in the low-frequency shear Alfvén
continuum for modes propagating in the ion diamagnetic direction [11], effective electron fishbone
excitation favors conditions characterized by supra-thermal electron drift reversal, consistently
with experimental observations. For the same reason, the spatial gradient inversion of the supra-
thermal electron tail is necessary, explaining why ECRH excitation is observed with high field
side deposition only [1, 4, 5, 12, 13]. Here, we also discuss the peculiar roles of circulating supra-

thermal electrons for electron fishbone excitations with LH only: the barely circulating population
providing directly the mode drive and the well circulating particles controlling both the drift-
reversal condition as well as the ideal MHD stability via their effect on the plasma current profile.
The role of LH current drive in controlling sawtooth oscillations via the local magnetic shear at the
q = 1 surface (q being the safety factor) was recently documented by the HT-7 tokamak [14].

As in the case of ion fishbones, two branches of the electron fishbone are shown to exist: a
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discrete gap mode [11] and a continuum resonant mode [10]. Contrary to the gap mode, the
continuum resonant mode can propagate in the electron diamagnetic direction as well. Thus, it
does not require neither drift-reversal nor inverted spatial gradient of the supra-thermal electron
tail. However, its threshold condition in this case is higher and it requires high power densities
to be excited. So, even the case of the continuum resonant fishbone mode tends to favor the
branch propagating in the ion diamagnetic direction, which minimizes continuum damping. If
the effective temperature of the supra-thermal electron tail is sufficiently high, the present theory
predicts that fishbone oscillations can be excited at frequencies comparable with those typical of
the Geodesic Acoustic Mode (GAM) [15] or the Beta induced Alfvén Eigenmode (BAE) [16, 17].
Unlike the case of fishbone gap modes in the ion diamagnetic gap [11] of the low-frequency shear
Alfvén continuum, fishbone gap modes in the BAE gap [18] do not favor the propagation in the
ion diamagnetic direction, since the gap structure is nearly symmetric in frequency [19]. Here, we
discuss these issues using one single general fishbone-like dispersion relation [20, 21], describing
mode excitation by trapped as well as circulating supra-thermal electrons in both monotonic and
reversed magnetic shear equilibria [22].

In this work, we also analyze the nonlinear physics of electron fishbones, of which FTU experi-
mental results provide a nice and clear example (see Figure 1): during high power LH injection, an
evident transition in the electron fishbone signature takes place from almost steady state nonlinear
oscillations (fixed point) to regular bursting behavior (limit cycle). Here, we present a simple yet
relevant nonlinear dynamic model for predicting and interpreting these observations.

These results are directly relevant to the investigation of trapped alpha particle interactions with
low-frequency MHD modes in burning plasmas: in fact, alpha particles in reactor relevant condi-
tions are characterized by small dimensionless orbits, similarly to electrons; the trapped particle
bounce averaged dynamics, meanwhile, depends on energy and not mass. Rigorously speaking,
the same argument applies to barely circulating particles as well, whose definition is given in Sec-
tion 2. For these reasons, we could draw a symmetry between trapped ion (alpha particle) and
trapped electron dynamics and exploit the combined experimental use of LH and ECRH analo-
gously to what is done with Neutral Beam Injection and Ion Cyclotron Resonance Heating.

2. MODE DISPERSION RELATIONS

The fishbone dispersion relation can be obtained by the standard matching procedure of mode
structures in the ideal region and inertial layer [23] and generalizing the results therein. Here,
we choose to solve quasi-neutrality and vorticity equations following the procedure of Ref. [24],
where the solution of the kinetic layer equations in the Fourier space are matched to the ideal
region. Letting x = −kθ(r − rs), with kθ the poloidal wave vector (here, kθrs = −1) and rs the
radius of the q(rs) = 1 surface, we introduce the representation

δφ(x) =
∫

dηe−iηxδΦ(η) (1)
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for the scalar potential fluctuation and other fields. For finite shear, s = rsq
′
s/qs, the asymptotic

ideal region solution for odd parity modes when approaching the inertial layer is [24]

|η|δΦ ' −i(∆δφ/2π)(kθ/|kθ|) (η/|η|)
(
1 + |η|δŴ/s2

)
, (2)

for 1 ¿ |η| ¿ |γ/ω|−1, with γ/ω the normalized mode growth rate and δŴ the normalized
potential energy, which, for low-pressure and high aspect ratio tokamak equilibria with circular flux
surfaces, is given by δŴ = (2|kθ|R0/B

2
0)(δW/|∆δξr|2)(q2(rs)/rs) [10]. Here, R0 is the tokamak

major radius, B0 the on axis magnetic field, ∆δξr is the jump of the radial mode displacement
across the inertial layer (with ∆δφ the corresponding jump in δφ) and δW the mode potential
energy. Meanwhile, the inertial (kinetic) layer solution is [20]

|η|δΦ ' −i(∆δφ/2π)(kθ/|kθ|) (η/|η|) (1 + i|η|Λ/|s|) . (3)

Here, Λ is the generalized inertia term introduced in [20]. Given Eqs. (2) and (3), the mode
dispersion relation reads [10, 11]

iΛ|s| = δŴ = δŴf + δŴk , (4)

where the fluid δŴf , in its simplest expression, is given by [25]

δŴf = 3π∆q0

(
13/144− β2

ps

) (
r2
s/R

2
0

)
(5)

with βps = −(R0/r
2
s)

2
∫ rs
0 r2(dβ/dr)dr, ∆q0 = 1 − q(r = 0) and β = 8πP/B2

0 the ratio of
kinetic and magnetic pressures. The fluid term, δŴf , includes the contribution of the energetic
(hot) particle adiabatic and convective responses as well [10]. Meanwhile, the kinetic δŴk is [10]

δŴk = 4
π2

B2
0

mω2
c

R0

r2
s

∫ rs

0

r3

q
dr

∫
EdEdλ

∑

v‖/|v‖|=±1

eiq(r)θωde−iθ eiθωde−iq(r)θ
τb QF0

ω̄d − ω
, (6)

where m is the energetic particle mass, ωc = (eB/mc) is the cyclotron frequency, E = v2/2,
λ = µB0/E = (B0/B)v2

⊥/v2, B · ∇(ζ − q(r)θ) = 0, ζ is the “toroidal angle” chosen such
that (r, θ, ζ) is a toroidal flux coordinate system with straight field lines (q = q(r)), (...) =

(
∮

v−1
‖ d`)−1

∮
v−1
‖ (...)d` denotes bounce-averaging, ` is the arc length along the equilibrium B-

field, τb is the bounce/transit time for magnetically trapped/circulating particles, ωd is the magnetic
drift frequency and QF0 = (ω∂E+ω̂∗)F0, ω̂∗F0 = ω−1

c (k×B/B) ·∇F0, with F0 = F0(E , λ, v‖/|v‖)
the fast particle equilibrium distribution function. In deriving Eq. (6), we have closely followed
[10] and solved for the energetic particle distribution function

δf =
e

m

∂F0

∂E δφ + δH =
e

m

∂F0

∂E δφ− e

m

QF0

ω
δφ + δK , (7)

neglecting finite orbit widths and separating both adiabatic (∝ ∂EF0) as well as convective (∝ QF0)
responses. In this way, one obtains

δK =
e

m

QF0

ω

eiq(r)θωde−iθ

ω̄d − ω
δφ0(r)e

i(ζ−q(r)θ) , (8)
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with δφ = δφ0(r) exp i(ζ−θ). In this form, the dispersion relation neglects the thermal ion kinetic
response in the ideal region [26], whose analysis is outside the scope of this work and, for our
purposes, we can consider as included in the expression of δŴf along with the contribution of the
energetic (hot) particle adiabatic and convective responses [10]. Note that Eq. (6) depends only
on the fast particle energy: the only residual mass dependence would be through their finite orbit
width, which are neglected in the present treatment since we are assuming that the characteristic
orbit size is much smaller than the fluctuation wavelength in the ideal region. This fact confirms
our conjecture that experimental studies of electron fishbones are relevant for understanding alpha
particle dynamics in burning plasmas, as noted in Section 1. More detailed discussions on this
issue are presented in Section 4.

For the s = 0 case but finite S2 ≡ r2
sq
′′
s/q

2
s , Eq. (4) cannot be applied; meanwhile, the asymp-

totic expressions corresponding to Eqs. (2) and (3) are changed to

|η|δΦ ' −i(∆δφ/2π)(kθ/|kθ|) (η/|η|)
(
1− (2k2

θr
2
s/3q

2
s)|η|3δŴ/S4

)
, (9)

for the ideal region, while the inertial (kinetic) layer solution becomes [27]

|η|δΦ ' −i(∆δφ/2π)(kθ/|kθ|) (η/|η|)
(
1 + iα1α2(α1 + α2)|η|3/6

)
, (10)

where, α1 and α2 are defined as

α1 = −
(
−2|kθrs|

qsS2

(
Λ + k‖sqsR0

))1/2

,

α2 =

(
2|kθrs|
qsS2

(
Λ− k‖sqsR0

))1/2

. (11)

By asymptotic matching procedure between Eqs. (9) and (10), we readily derive the mode disper-
sion relation with a simple inertial layer at rs [22]

−S
(
∆q2

s − Λ2
)3/4

[
1 + ∆qs/

√
∆q2

s − Λ2

]1/2

= δŴf + δŴk , (12)

with k‖sqsR0 = ∆qs = qs − 1 in this case.
Equations (4) and (12) are the basis for our linear stability studies of electron-fishbones. Their

general structure in is known; however, we want to emphasize two novel aspects: (i) that Eq. (6)
describes the resonant excitation of internal kink fluctuations by both trapped as well as barely

circulating supra-thermal electron tails; (ii) that the analysis of the generalized inertia term, Λ [20,
21], demonstrates the existence of ion- and electron-fishbones at frequencies comparable with that
of GAM [15] and BAE [16, 17]. That well circulating supra-thermal electron tails can control the
internal kink stability via their influence on the q-profile, i.e. δŴf , has been noted for explaining
recent observations on the HT-7 tokamak [14] and will be simply assumed in this work.

4



2.1. RESONANT EXCITATION BY TRAPPED AND BARELY CIRCULATING SUPRA-THERMAL
TAILS

For analyzing the different roles of trapped and circulating particles, we move from (E , λ) to
(E , κ2) space, with

κ2 =
2(r/R0)λ

1− (1− r/R0)λ
, (13)

κ2 < 1 [0 ≤ λ < (1 − r/R0)] indicating circulating particles, while trapped particles have
κ2 > 1 [(1 − r/R0) < λ ≤ (1 + r/R0)]. Using the (s, α) model tokamak equilibrium [28] (α =

−R0q
2dβ/dr), the following expressions for the (transit, bounce) time of (circulating, trapped)

particles are obtained:

τ−1
b =

(
1

4IK(κ)
,

κ

4IK(1/κ)

)
(2E)1/2

qR0

[
2(r/R0)

2(r/R0) + (1− r/R0)κ2

]1/2

(14)

Here, IK stands for the complete elliptic integral of the first kind. In the same way, the bounce
averaged precession frequency ω̄d can be computed as [29, 30]:

ω̄d =
E

ωcR0

(q/r)(κ2 + 4r/R0)

2(r/R0) + (1− r/R0)κ2

[
1 +

2

κ2

(
IE(κ)

IK(κ)
− 1

)
− 4α

3κ2

(
2(1− 1/κ2)

+ (2/κ2 − 1)
IE(κ)

IK(κ)

)
− κ2

κ2 + 4r/R0

α

2q2
+

4

κ2
s

(
IE(κ)

IK(κ)
− π

2IK(κ)

(
1− κ2

)1/2
)]

(15)

for circulating particles (κ2 < 1), whereas, for magnetically trapped particles (κ2 > 1) [26, 29, 30],

ω̄d =
E

ωcR0

q

r

[
2IE(1/κ)

IK(1/κ)
− 1 + 4s

(
IE(1/κ)

IK(1/κ)
+

1

κ2
− 1

)

− α

2q2
− 4α

3

(
1− 1/κ2 + (2/κ2 − 1)

IE(1/κ)

IK(1/κ)

)]
, (16)

where IE stands for the complete elliptic integral of the second kind. By direct inspection of
Eqs. (14) to (16) and accounting for the fact that

∫
dEdλ =

∫
dEdκ2(2r/R0) [2(r/R0) + (1− r/R0)κ

2]
−2

by definition of κ2, we see that only circulating particles with (r/R0)
1/2 <∼ κ2 < 1 contribute to

δŴk on the same footing as trapped particles with κ2 > 1. Meanwhile, κ2 is the strength of the
poloidal modulation of the parallel velocity along the particle trajectory; thus, we denominate cir-
culating particles with (r/R0)

1/2 <∼ κ2 < 1 as barely circulating to distinguish them from the well

circulating particles with κ2 < (r/R0)
1/2. The peculiar roles of trapped and barely circulating

particles will be further discussed in Section 2.2 in connection with the generalized inertia term,
Λ, appearing in Eqs. (4) and (12).

Equations (4) and (12) generalize the electron fishbone dispersion relations, analyzed recently [12,
13, 31], to both trapped and barely circulating fast particles, including (s, α) model equilibrium
effects on ω̄d. A detailed discussion of the circulating electron effect on δŴk was recently given
in [32]. A further extension of Eqs. (4) and (12) to a broader frequency range than that usually as-
sumed near the ion diamagnetic gap [11] in the low-frequency shear Alfvén continuum is discussed
in Section 2.2.
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2.2. GENERALIZED INERTIA AND HIGH-FREQUENCY FISHBONES

For the present scope, we need an explicit expression of the generalized inertia term, Λ, appearing
in Eqs. (4) and (12), for two limiting cases: (i) the banana regime, |ω| ¿ ωbi ¿ ωti, with ωbi(ωti)

the thermal ion bounce(transit) frequency, where [26, 33]

Λ2 =
(
ω2/ω2

A

)
(1− ω∗pi/ω)

[
1 +

(
1.6(R0/r)

1/2 + 0.5
)
q2

]
; (17)

(ii) the high frequency regime, |ω| À ωti, where [19]

Λ2 =
ω2

ω2
A

− ω2
BAE

ω2
A

[
1 +

ω2
BAE

q2ω2

(46/49) + (32/49)(Te/Ti) + (8/49)(Te/Ti)
2

(1 + (4/7)(Te/Ti))
2

]
. (18)

Here, ωA = vA/(qR0), vA is the Alfvén speed, ω∗pi = k ×B/B · ∇Pi/(nimiωci), k is the wave-
vector, ωBAE = qωti(7/4 + Te/Ti)

1/2 and ωti = (2Ti/mi)
1/2/(qR0). The shear Alfvén frequency

gap is given by the condition IReΛ2 < 0 [20, 21] (Λ is generally complex), while the shear Alfvén
continuous spectrum is described by [19]

Λ2 = k2
‖q

2R2
0 . (19)

The correct form of the enhancement factor ∝ q2 in Eq. (17) was first pointed out in [26]:
the 1.6(R0/r)

1/2q2 factor comes from trapped κ2 > 1, and barely circulating particles, 1 >

κ2 >∼ (r/R0)
1/2; the 0.5q2 term, meanwhile, is due to well circulating particles, κ2 <∼ (r/R0)

1/2

(see A for a more detailed discussion). It differs from the well known 2q2 factor [34] due to the
intrinsic limitation of the ideal MHD model in assuming an isotropic pressure response: 2q2 would
be the result for δP = δP‖, while δP⊥ 6= δP‖ for the geodesic curvature dynamics in toroidal sys-
tems. The problem of the kinetic bulk ion inertia enhancement for low frequency (banana-regime)
MHD modes was analyzed in Refs. [33, 35, 36], where estimates were given for both inertia en-
hancement as well as ion Landau damping. A more systematic analytic approach was given in
Refs. [26] and [37]. More recently, it was pointed out that ion Landau damping due to the preces-
sion resonance with thermal (bulk) ions may be of crucial importance in determining the internal
kink mode stability in ITER [38]. Here, it is worthwhile noticing that the inertia enhancement
factor is identical to the zonal flow (ZF) polarizability induced by Ion Temperature Gradient (ITG)
turbulence [39, 40]. This is not a coincidence and is due to the fact that, at long wavelengths, shear
Alfvén wave compressibility due to geodesic curvature coupling at k‖ = 0 is identical to the corre-
sponding dynamics of electrostatic waves with kζ = kθ = 0, provided that diamagnetic effects are
neglected. For this reason, we must expect a correspondence between ZF polarizability and shear
Alfvén wave inertia enhancement in the banana regime, as in Eq. (17); a similar correspondence is
expected between GAM and Eq. (18), as pointed out in [21, 41] (see also the following discussion).

Similar considerations apply for Eq. (18), for ωti ¿ |ω| ¿ ωA, where the ∝ 1/q2 term is
different from (2q2)−1, predicted by ideal MHD [15]. It was proposed in [42], within the limits of
a local approximation (i.e. without the proof of the existence of unstable eigenmodes), that com-
pressibility effects, associated with wave-particle resonances due to the periodic toroidal transit

6



motion of thermal ions, may be a source of instability for short wavelength shear Alfvén waves.
Later, other authors [43, 44] numerically demonstrated the existence, well below the ideal stability
threshold, of electromagnetic instabilities due to ion magnetic drift resonances, assuming the very
short wavelength limit |ωti| ¿ |ω| ≈ |ωdi|. The effect of ion transit resonances was reconsidered in
[45, 46], where it was demonstrated numerically that the ω = ωti resonance has analogous effects
to those of ω = ωdi, and in [47], where these effects on resistive interchange modes were analyzed.
All these analyses of short wavelength drift-type modes are important for the present investigation
since the inertial (kinetic) layer physics is the same at high and low mode numbers [24] and, there-
fore, they are relevant for the computation of the renormalized plasma inertia for low frequency
MHD fluctuations. For the same reason, these studies were readily extended to the investigation
of long-wavelength (low-mode-number) MHD modes [37, 48, 49]. With the same expression of
Λ, derived in Refs. [42, 45], Ref. [19] demonstrated the existence conditions of fluctuations of the
shear Alfvén branch, excited by both energetic as well as thermal ions below the ideal MHD stabil-
ity threshold, based on the general fishbone-like dispersion relation [20, 21] in the form of Eq. (4).
In the long wavelength limit, the expression of Λ of Refs. [19, 42, 45] accounts for the inertia
enhancement as well as ion Landau damping for ωbi ¿ |ω| ¿ ωA. For ωti ¿ |ω|, it reduces to
Eq. (18) (see also [37]), with an exponentially small ion Landau damping, ∝ exp(−ω2/ω2

ti). This
favors the formation of fishbone gap modes near the BAE accumulation point for conditions with
ωBAE À ωti, i.e. Te/Ti À 1 and/or q À 1 [27]. Note that, due to the symmetry of the frequency
gap described by Eq. (18), fishbone gap modes near the BAE accumulation point can be equally
excited in both ion as well as electron diamagnetic directions. Meanwhile, the existence condition
for the “BAE”-fishbone gap mode is given by IRe

(
δŴf + δŴk

)
< 0 [20, 21]. That the shear

Alfvén continuum accumulation point (Λ2 = 0) given by Eq. (18) is degenerate with the GAM
frequency [15], as pointed out in [21, 41], can be verified by direct comparison with the kinetic
expression of the GAM frequency given by Ref. [50]. The degeneracy of BAE accumulation point
and GAM frequency has been recently noted also in Ref. [51].

3. LINEAR EXCITATION OF ELECTRON FISHBONES

In this Section, we examine more closely the excitation of electron-fishbones on the basis of the
mode dispersion relations, Eqs. (4) and (12), introduced and analyzed in Section 2. We also dis-
cuss some experimental evidence of both low- as well as high-frequency fishbones, for which the
generalized inertia term is given by Eqs.(17) and (18), respectively. This frequency classification
strictly applies to discrete gap modes, which tend to be excited nearby the shear Alfvén continuum
accumulation points. It can be extended to continuum resonant modes as well, when the mode
drive is sufficiently weak that proximity to accumulation points matters for minimizing continuum
damping. Generally, strongly driven continuum resonant modes can be excited regardless the shear
Alfvén continuum structure.
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3.1. LOW-FREQUENCY FISHBONES

The crucial features of low-frequency electron fishbone excitations are dictated by the asymme-
try of the shear Alfvén continuum structure at low frequency [11], quantitatively expressed by
Eq. (17), which favors the excitation of modes propagating in the ion diamagnetic direction. Con-
sistently with experimental observations [1, 4, 5], high field side ECRH fulfills this requirement and
guarantees both drift-reversal of the barely trapped supra-thermal electrons as well as the inverted
spatial gradient of the supra-thermal tail (ω∗/ω > 0) necessary for effective mode excitation. The
case of mode excitation by LH only [6, 7] follows the same physics with few additional twists. The
fast electron population which effectively excite the mode are the trapped and barely circulating
particles (κ2 >∼ (r/R0)

1/2), because of Eqs. (6) and (15). Meanwhile, LH power forms a parallel as
well as a perpendicular fast electron tail (via Coulomb collisions), which is moderately slanted to-
ward the counter-current direction; i.e., despite that it guarantees the inverted spatial gradient of the
supra-thermal tail (ω∗/ω > 0), it is less selective than high field side ECRH in producing particles
with drift-reversal. In the case of mode excitation by LH only [6, 7], the presence of circulating
supra-thermal particles is crucial for two reasons: (i) barely circulating particles (κ2 >∼ (r/R0)

1/2)
effectively contribute to the mode excitation as described by Eq. (6); (ii) well circulating particles
(κ2 <∼ (r/R0)

1/2) modify the current profile, eventually reversing the magnetic shear and broad-
ening the fraction of trapped particles characterized by drift reversal, as shown in Eq. (16). Note
that this effect modifies directly the kinetic contribution to the internal kink potential energy and is
not associated with the MHD (fluid) potential energy change, controlled by LH power via current
profile modification, as recently discussed for explaining HT-7 observations [14]. As in the case of
ion fishbones, two branches of the electron fishbone exist: a discrete gap mode [11] and a contin-
uum resonant mode [10]. The latter does not generally require neither drift-reversal nor inverted
spatial gradient of the supra-thermal tail; however, it has a higher excitation threshold and, thus, it
is unfavored, particularly for the branch propagating in the ω∗e direction.

Applying Eq. (12) to FTU shot # 20865 (see Figure 1), the almost steady oscillation of the mode
in the low LH power phase and the absence of sawtooth oscillations suggest that 1 À ∆qs > 0.
This is consistent with the q-profile reconstruction by transport simulations, reported in Figure 2
(FTU has no q profile measurements near the magnetic axis). Even in the high LH power phase
(Figure 3), the minimum-q value remains extremely near unity. From experimental observations,
ω ' 60 krad/s, ω∗pi ' 23 krad/s, ωbi ' 70 krad/s, ωti ' 400 krad/s, ωBAE ' 900 krad/s and ωA '
9.5 Mrad/s. Thus ω∗pi < ω <∼ ωbi ¿ ωti and we can apply Eq. (17), showing Λ2 > 0. Given the
ω <∼ ωbi condition, a further generalization of Eq. (17) would be necessary for a rigorous analysis
including mode damping by precession [38] and precession-bounce resonances with thermal ions.
These results, however, would simply lead to a redefinition of the mode excitation threshold (see
Eq. (25) below) at the expense of technical complications; thus, they will be reported elsewhere.

Given Eq. (12), for Λ2 > ∆q2
s the mode can be considered as continuum resonant mode [10],

following the standard classification [10]. Meanwhile, Λ2 < ∆q2
s would correspond to a gap
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mode [11]. In either case we can assume Λ2 ∼ ∆q2
s = O(10−4), consistent with q-profile recon-

struction by transport simulations and with experimental observations. At larger values of ∆qs,
the mode frequency near the accumulation point would rapidly increase up to the BAE frequency
and Eq. (18) would apply, rather than Eq. (17). Besides the obvious consequence of increasing the
MHD stability of the system, i.e. δŴf , this fact would imply that higher effective supra-thermal
electron temperature are needed for both balancing δŴf by δIReŴk and for efficiently driving the
mode via wave particle resonances (see Section 3.2). Altogether, we expect that increasing ∆qs

increases the stability of the system, as verified experimentally on FTU.
In the case of the gap mode near the accumulation point [11], the existence condition is δŴf +

δIReŴk < 0 and real mode frequency is given by

(IReΛ)2 = ∆q2
s −

(
δŴf + IReδŴk

)2

S2∆qs

, (20)

while the growth rate is obtained from

γ = Γ
(
gIImδŴk − IImΛ

)
, (21)

where g ≡ −
(
δŴf + IReδŴk

)
/ (S2∆qsIReΛ) and Γ−1 = ∂IReΛ/∂ω − g∂IReδŴk/∂ω.

For the continuum resonant mode [10], Eq. (12) can be written as

iS
(
Λ2 −∆q2

s

)1/2
[
∆qs − i

(
Λ2 −∆q2

s

)1/2
]1/2

= δŴf + δŴk . (22)

Assuming ∆q → 0, for simplicity, the mode dispersion relation becomes

δŴf + IReδŴk = (S/
√

2)Λ3/2 ' 0 , (23)

which determines the mode frequency [10]; meanwhile, the mode growth rate is defined by [52]

γ = Γ
[∫ rs

0
(r/rs) (∂βh,res/∂r) dr − βh,c

]
, (24)

where Γ = −(R0/rs)(∂IReδŴk/∂ω − 3S/(2
√

2)Λ1/2∂Λ/∂ω)−1, the effective resonant fast elec-
tron normalized pressure, βh,res, is defined such that IImδŴk ≡ (R0/r

2
s)

∫ rs
0 rdr∂rβh,res and the

critical excitation threshold βh,c is given by

βh,c = (rs/R0)(S/
√

2)Λ3/2 . (25)

Note that the ∝ βh,res term in Eq. (24) would change sign for the case of mode excitations by fast
ions.

Despite the different structures of Eqs. (20) and (21) with respect to Eqs. (23) and (24), their
extension to the nonlinear regime follows the same derivation. For this reason, we derive the
nonlinear amplitude equations describing the fishbone cycle, in Section 4, limiting specific ap-
plications to the simple case of Eqs. (23) and (24). Analogous derivations in other more general
cases, included in Eqs. (4) and (12), follow consequently.
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With FTU shot # 20865 data, S = 0.52 and βh,c ' 0.34×10−4 at t = 220 ms, while S = 4.4 and
βh,c ' 4.9×10−4 at t = 280 ms. Lower Hybrid power deposition computations provide the supra-
thermal electron tail distribution function [53], which give

∫ rs
0 (r/rs)dr∂rβh,res ' 0.85 × 10−4 at

t = 220 ms (see Figure 4) and
∫ rs
0 (r/rs)dr∂rβh,res ' 6.0×10−4 at t = 280 ms (see Figure 5). This

is consistent with mode excitations and the transition observed in Figure 1, when the power level
is stepped from given PLH = 0.76 MW up to PLH = 1.69 MW. The bursting fishbone activity is
further discussed in Section 4.

3.2. HIGH-FREQUENCY FISHBONES

At higher frequencies, ω À ωti, Eq. (18) applies instead of Eq. (17); thus, the asymmetry of the
shear Alfvén continuous spectrum is lost and modes can equally propagate in both ion and elec-
tron diamagnetic directions. Equation (18) describes the formation of the Beta induced Alfvén
Eigenmodes (BAE) [16] spectral gap: so, electron fishbones propagating in the electron diamag-
netic direction and normal pressure profiles could be excited. More precisely, high power ECRH
experiments with on axis resonance would be needed, producing sufficiently high effective supra-
thermal electron tail temperatures, Th, for the fast particle precession frequency to be of the order
of the thermal ion transit frequency. For the above FTU parameters, this would require Th

>∼ 200

keV, to be compared with the usual values Th ' 30 keV, as well as Te À Ti for consistency (see
Section 2.2). Obviously, at such high energies of the supra-thermal electron tail, relativistic effects
can be important and should be included in the expression of δŴk [13].

The existence condition of gap modes in the BAE frequency gap just below the continuum ac-
cumulation point is given by IRe

(
δŴf + δŴk

)
< 0 [20, 21], as discussed in Section 2.2. Note

that these fishbones, possibly excited below the BAE frequency, could be equally excited by ICRH
induced fast ions but, in that case, they would propagate in the ion diamagnetic direction. The
observation of high frequency precessional fishbones with ICRH in JET [54, 55] can be possibly
interpreted as evidence of fishbone excitation below the BAE frequency, as predicted by theory.
One striking evidence that Eqs. (4) and (18) describe these physics is Fig. 11 of [55]. In fact, as
the diamagnetic fishbone get excited and less free energy is available for the excitation of the pre-
cessional fishbone (modes are less strongly driven), theory predicts that frequency chirping should
decrease and the mode frequency should get closer to the accumulation point. However, this is
evidently not the usual accumulation point at ω∗pi, but rather the accumulation point described by
Eq. (18). In fact, Fig. 11 of [55] shows the frequency accumulation at about 70 kHz. To test this
conjecture, we have computed the BAE accumulation point in two ways: (a) via the simplified
expression ωBAE = qωti(7/4 + Te/Ti)

1/2; and (b) via numerical solution of Λ = 0, with Λ given
by Ref. [19], i.e. including both thermal ion transit resonances (for the ion Landau damping eval-
uation) as well as diamagnetic effects (finite ω∗pi). For the JET discharge # 54300 (D plasma with
ICRH H-minority heating), we have taken Te = 6 keV, R0 = 3 m and ηi = ∂ ln Ti/∂ ln n = 2,
obtaining the results reported in Table 1. Values of Landau damping are typically small. Mean-
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ωΛ=0/ωti γ/ωti ω∗ni/ωti Ti ωΛ=0/2π ω∗pi/2π ωBAE/2π

.24100E+01 -.07500E-01 .10000E+00 3 keV 68 kHz 8.5 kHz 55 kHz

.22900E+01 -.06700E-01 .15000E+00 3 keV 65 kHz 13 kHz 55 kHz

.21700E+01 -.03200E-01 .20000E+00 3 keV 62 kHz 17 kHz 55 kHz

.22900E+01 -.10700E-01 .10000E+00 4 keV 75 kHz 9.9 kHz 59 kHz

.21900E+01 -.09700E-01 .15000E+00 4 keV 72 kHz 15 kHz 59 kHz

.20700E+01 -.06300E-01 .20000E+00 4 keV 68 kHz 20 kHz 59 kHz

Table 1: Theoretical values of the BAE accumulation point, ωΛ=0 from Λ = 0 [19], as a function of Ti and ω∗ni = ω∗pi/(1 + ηi).
Fixed parameters are Te = 6 keV, R0 = 3 m and ηi = 2. Values of ion Landau damping, γ, are also reported.

while, comparisons of theoretical frequencies with the experimental value of ' 70 kHz suggest
that a realistic estimate for Ti at the q = 1 surface is Ti ' 4 keV with 15 kHz <∼ ω∗pi

<∼ 20 kHz,
in agreement with experimental observations [55]. The crystal spectrometer for this case gives
Ti = 2.2 keV, which is a lower bound of the ion temperature at the q = 1 surface and approxi-
mately 60% of its value, as suggested by normal experience. The good agreement of theoretical
predictions with experimental observations confirms the sound basis of the proposed interpreta-
tion of high frequency precessional fishbones observed in JET [54, 55] with ICRH as evidence of
fishbone excitation below the BAE frequency [27]. The scaling of the BAE accumulation point
frequency with Te/Ti can be used for diagnostics purposes, similar to the approach proposed in
Ref. [56] for Alfvén Cascades. Actually, the results presented here (see Table 1) and their depen-
dence on diamagnetic effects show that a better evaluation of the accumulation point frequency can
be obtained by solving Λ = 0 [19] rather than using ω = ωBAE [56], with the additional advantage
of computing ion Landau damping. In the case of Alvén Cascades, of course, the accumulation
point at s = 0 should be evaluated using Λ2 = k2

‖sq
2
sR

2
0 [19], as predicted by Eq. (19). Note that

magnetic shear never enters in the accumulation point expression, as expected for local oscillations
of the shear Alfvén continuum and explicitly shown by Eqs. (11) and (12).

4. NONLINEAR AMPLITUDE EQUATION

We can generalize Eqs. (4) and (12) to include supra-thermal electron tail nonlinear dynamics
by closely following the procedure of Ref. [57]. In the present treatment, we choose to neglect
fishbone nonlinear dynamics associated with mode-mode couplings. For the case of continuum
resonant fishbones [10], this approximation allows us to retain the fundamental dynamics [21, 58]
and to make significant analytic progress, as shown below.

Under the action of the fishbone mode, the toroidally and poloidally symmetric (zonal [21, 41])
nonlinear modification of the fast electron distribution function, Eq. (7), is given by

∂

∂t
δHNL,z = −2

r
ωcω

2 ∂

∂r


ei(1−q)θ

(
1− k‖v‖

ω

)
IIm

(
eiqθωde−iθ

ω̄d − ω

) (
QF0

ω

)
r2r2

s |δξ0|2

 . (26)
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Here, v‖ exp i(1− q)θ = 0 for trapped particles and δξ0 = δξr0/rs is the normalized radial
displacement of the mode, which is assumed to be the usual step function. The presence of
the imaginary part of the particle response on the RHS of Eq. (26) indicates the crucial roles
played by resonant particles [59]. Meanwhile, by definition of the QF0 operator (QF0/ω '
∂EF0 + kθ/(ωωc)∂rF0), the RHS contains both ∝ ∂rF0 and ∂2

rF0 terms [59]. Thus, Eq. (26)
can be easily put in the form of a diffusion equation describing the relaxation of the fast particle
profile within the q = 1 surface:

∂

∂t
nh = Ṅh − 2

r
ωcω

2 ∂

∂r

[
r2r2

s |δξ0|2 feff,h

(
Qresnh

ω

)]
. (27)

Here, Ṅh indicates the fast electron source term due to additional power input, we have defined the
effective fraction of fast electrons feff,h and

feff,h

(
Qresnh

ω

)
= 〈F0〉−1

〈
ei(1−q)θ

(
1− k‖v‖

ω

)
IIm

(
eiqθωde−iθ

ω̄d − ω

) (
QF0

ω

)〉
, (28)

having indicated velocity space integration by angular brackets. From Eqs. (27) and (28) we rec-
ognize that the nonlinear diffusion coefficient due to the fishbone within the q = 1 surface is given
by DNL ' 2ωr2

sfeff,h |δξ0|2.
One obvious consequence of Eq. (26) is the time evolution of the supra-thermal electron tail

contribution to δŴf via their convective responses. In fact, nonlinearly [57]

QF0 → QF0 +
kθ

ωc

∂

∂r
δHNL,z . (29)

Thus, the expression of ∂tδŴf,NL is readily obtained from that of δŴf by direct substitution of the
supra-thermal electron tail distribution, ∂rF0, with the expression of ∂t∂rδHNL,z from Eq. (26).
For this reason, in the present work we will simply assume it as given, without providing further
detailed discussions. The other effect of Eq. (26) is to introduce a nonlinear modification to Eq. (8)
in the form

δKNL = δKNLei(ζ−q(r)θ) =
c

B0

eiq(r)θωde−iθ

ω̄d − ω

kθ

ω

∂δHNL,z

∂r
δφ0(r)e

i(ζ−q(r)θ) . (30)

Using Eq. (26), meanwhile, the nonlinear modification for the resonant contribution (imaginary
part) of δŴk is obtained in the form:

|δξ0|−2 ∂

∂t

[(
∂

∂t
δŴk,NL

)
|δξ0|2

]
' −8i

π2

B2
0

mω2
cω

R0

r2
s

∫ rs

0

r2

q
dr

∫
EdEdλ

× ∑

v‖/|v‖|=±1

τbeiq(r)θωde−iθ eiθωde−iq(r)θ
∂

∂r



kθ

∂

∂r


ei(1−q)θ

(
1− k‖v‖

ω

)

× eiq(r)θωde−iθIIm
(

QF0

ω̄d − ω

)
r2r2

s |δξ0|2
]}

. (31)

An intuitive derivation of Eq. (31) can be obtained from Eqs. (6), (8) and (30), noting that, for
resonant particles involved in the δHNL,z dynamics

(ω̄d − ω) δKNL ' − i

|δξ0|
∂

∂t

(
δKNL |δξ0|

)
. (32)
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Recalling the definition of ∂rβh,res, given below Eq. (24), i.e.

∂βh,res

∂r
= 4

π2

B2
0

mω2
c

r2

q

∫
EdEdλ

∑

v‖/|v‖|=±1

eiq(r)θωde−iθ eiθωde−iq(r)θIIm
(

τb QF0

ω̄d − ω

)
, (33)

Eq. (31) can be approximated as

∂

∂t

[(
∂

∂t
IImδŴk,NL

)
|δξ0|2

]
' 2Cω2R0 |δξ0|4

∫ rs

0
dr

∂

∂r

[
1

r

∂

∂r

(
r2 ∂

∂r
βh,res

)]
. (34)

Here, for simplicity, we have assumed that the radial variation of ωd is essentially ∝ (1/r) within
the q = 1 (or minimum-q) surface; meanwhile, C is a constant which may be computed exactly,
given Eq. (31) and the definition of βh,res, Eq. (33). Using these results, the amplitude evolution
equation can be formally written as Eq. (24),

(d/dt) |δξ0|2 = 2Γ
[∫ rs

0
(r/rs) (∂βh,res/∂r) dr − βh,c

]
|δξ0|2 , (35)

where the nonlinear evolution equation for the resonant fast particle pressure gradient becomes

∂

∂t

[
|δξ0|2

(
∂

∂t
− νext

)
∂

∂r
βh,res

]
= 2Cω2 rs

r
|δξ0|4 ∂

∂r

[
rs

r

∂

∂r

(
r2 ∂

∂r
βh,res

)]
. (36)

Here, νext is the reconstruction rate of βh,res, i.e.,

νext = 4
π2

B2
0

mωc

∂rβh,res

r2kθ

q

∫
EdEdλ

∑

v‖/|v‖|=±1

τbeiq(r)θωde−iθ

×IIm

(
eiθωde−iq(r)θ

ω̄d − ω

) (
∂

∂r
+

ωωc

kθ

∂

∂E

)
∂

∂t
F0,ext , (37)

where ∂tF0,ext is the rate of change of the fast particle distribution function due to external sources
(inclusive of Coulomb collisions).

Following the same formal steps adopted for the derivation of Eq. (31), we can obtain the
expression of IReδŴk,NL at the next order in the asymptotic expansion in |γ/ω| ≈ 1/|ωτNL|,
where τNL is the nonlinear time scale:

∂

∂t
IReδŴk,NL ' −2

π2

B2
0

mω2
cω

R0

r2
s

∫ rs

0

r2

q
dr

∫
dEdλ

∑

v‖/|v‖|=±1

τb

ω̄d

eiθωde−iq(r)θ

×eiq(r)θωde−iθ
∂

∂r



kθ

∂

∂r


 1

E1/2

∂

∂E


E5/2ei(1−q)θ

(
1− k‖v‖

ω

)

× eiq(r)θωde−iθ

)
IIm

(
QF0

ω̄d − ω

)
r2r2

s |δξ0|2
]}

. (38)

The real frequency of the fishbone mode in the nonlinear regime is still given by an equation in the
form of Eq. (23): i.e., the mode frequency is expected to chirp downward as the fast particles relax,
according to Eq. (27). More specifically, the nonlinear evolution equation for the real frequency is

δŴf + δŴf,NL + IReδŴk + IReδŴk,NL = (S/
√

2)Λ3/2 ' 0 . (39)
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That δŴk,NL is predominantly imaginary, as it emerges from comparisons of Eqs. (31) and (38),
suggests that the nonlinear fishbone cycle is essentially determined by the fast particle scattering
out of the resonant region. Given the fluctuation level of the mode, the nonlinear time scale, τNL, as
derived from Eq. (36), scales as (2C)1/2ωτNL ≈ |δξ0|−1, consistent with the predator-prey model
for the fishbone cycle proposed in [10] and in contrast with the time scale ∝ |δξ0|−2 of Eq. (38).
Meanwhile, the ∝ |δξ0|−2 scaling of characteristic times [11] is consistent with the time behavior
of Eqs. (27) and (39), describing, respectively, the fast particle relaxation and the time-dependent
nonlinear frequency shift of the mode. This picture of the fishbone nonlinear dynamics agrees well
with the mode-particle pumping process, originally proposed in Ref. [60].

Equations (35) to (39) fully describe the nonlinear fishbone cycle due to quasilinear wave-
particle resonances. This formal analysis, thus, is equivalent in spirit to the approach of [61] and the
numerical analysis of [62], but has the advantage of treating explicitly the energetic particle nonlin-
ear dynamics. They can be analyzed with different levels of complexity and their detailed analyses
will be reported elsewhere, along with comparisons with FTU experimental observations. Here, we
want to emphasize that Eqs. (35) and (36) are already a simple yet relevant model which describes
the fishbone cycle when the dynamics due to nonlinear frequency shifts is neglected [10, 11]. In
B, we show that these equations can be reduced to a predator-prey system, similar to the ad-hoc
model introduced in Ref. [10]. The main results of that analysis are that the nonlinear system is
characterized by small oscillation about a fixed point. For increasing LH power input, the system
approaches a limit cycle of period tfb ∼ 2π/ (2Γβh,cνext)

1/2, with δβh/βh,c ≈ ν
1/2
ext /(2Γβh,c)

1/2

estimating the loss of fast particle in one fishbone burst. Given these results, the present estimate
of tfb is consistent with that of Ref. [10], tfb ≈ (δβh/βh,c)ν

−1
ext. With the parameters corresponding

to the high power phase, PLH = 1.69 MW, of FTU shot # 20865, we obtain tfb ∼ 5 ÷ 10 ms.
The good agreement we obtain on the estimate of the fishbone period (no measurements are avail-
able of the losses in the perpendicular supra-thermal electron tail) motivates further experimental
investigations for more detailed comparisons with theoretical model predictions.

As in Section 3, we may discuss our conjecture of the relevance of electron fishbone experi-
mental studies for gaining insights into linear and nonlinear burning plasma dynamics. As stated
already, the symmetry breaking between fast electron and fast ion bounce averaged dynamics is
caused by finite orbit width effects (linear dynamics). In this respect, the typically small dimen-
sionless orbits of fast electrons may generate behaviors analogous to those of well confined fast
ions in thermonuclear plasmas. When analyzing nonlinear fast particle behaviors, another source
of symmetry breaking between bounce-averaged fast electron and ion dynamics emerges from
Eqs. (26), (31) and (38): the term ∝ v‖ exp i(1− q)θ (v‖ exp i(1− q)θ = 0 for trapped particles),
is responsible for the barely circulating fast particle radial transport due to the magnetic component
of the fluctuations and clearly depends on the particle mass. For particle distribution functions that
are symmetric in v‖, this term is unimportant. Clearly it is not so for the LH driven fast electron
distribution, producing a perpendicular fast particle tail, which is moderately slanted towards the
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counter-current direction. This physics is embedded in the C factor, introduced in Eq. (34): exper-
imentally varying the power mix of LH and ECRH can, thus, control both the excitation condition
of electron fishbones as well as the amount of radial transport due to the magnetic component of
the fluctuation.

5. DISCUSSIONS AND CONCLUSIONS

In this work, we have analyzed the excitation of electron fishbones by both trapped as well as barely
circulating supra-thermal electrons, providing a unified explanation of the various experimental
observation of these modes. In particular, we have analyzed the peculiarities of electron fishbone
excitation on FTU by LH power only, explaining the different roles of trapped and circulating
supra-thermal electron tails. The possibility of exciting fishbone modes at frequencies just below
the BAE accumulation point by both fast electrons and ions is also discussed and conjectured as
interpretation of the experimental evidence of ICRH driven fishbone modes in JET, accumulating
at finite frequency above the diamagnetic gap as the mode drive is weakened.

We have derived nonlinear amplitude equations, which fully describe the nonlinear fishbone cy-
cle due to quasilinear wave-particle resonances when mode-mode couplings are neglected. These
equations are qualitatively equivalent to a predator-prey system, whose predictions are consistent
with the corresponding ad-hoc model, originally proposed for explaining the ion fishbone cycle.

The most interesting feature of electron fishbones is their relevance to burning plasmas. In fact,
unlike fast ions in present day experiments, fast electrons are characterized by small orbits, which
do not introduce additional complications in the physics due to nonlocal behaviors, similarly to
alpha particles in reactor relevant conditions. Meanwhile, the bounce averaged dynamics of both
trapped as well as barely circulating electrons depends on energy (not mass): thus, their effect
on low frequency MHD modes can be used to simulate/analyze the analogous effect of charged
fusion products. Symmetry breaking between fast electron and ion bounce averaged dynamics is
caused by finite orbit width effects (linear dynamics) and by radial transports due to the magnetic
component of the fluctuations (nonlinear dynamics of the barely circulating particles). In this
respect, the combined use of ECRH and LH provide extremely flexible tools to investigate various
nonlinear behaviors, of which FTU experimental results provide a nice and clear example (see
Figure 1).
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A. GENERALIZED INERTIA AND THE PECULIAR ROLES OF TRAPPED AND CIR-
CULATING PARTICLES

Here, we further discuss the peculiar roles of trapped and circulating particles in determining
the generalized plasma inertia, continuing the analyses of Section 2.2. For this scope, we use
the analogy between ZF polarizability and shear Alfvén wave inertia enhancement in the banana
regime, as in Eq. (17). Closely following Refs. [39, 40], we can identify the different roles of
trapped and barely circulating particles in determining the 1.6(R0/r)

1/2q2 factor in Eq. (17) [26].
It is easily shown that the inertia enhancement can be written in compact form as:

ω2

ω2
A

(
1− ω∗pi

ω

)
∂2

r δφ →
[
ω2

ω2
A

(
1− ω∗pi

ω

)
+ ∆I

]
∂2

r δφ , (40)

where

∆I∂2
r δφ = −

∮ dθ

2π

〈
4π

c2
eq2R2

0ωωdδK
〉

=

−4π

c
iq2R2

0

ω

r

m

B0

∫
EdEdλ

∑

v‖/|v‖|=±1

∮
dθ|v‖| ∂

∂θ

∂

∂r
δK , (41)

where, in the layer, we have used ωd ' (v‖B0)/(rωc)∂θ(v‖/B)(−i∂r). Meanwhile, at the leading
order for |ω/ωb| ¿ 1:

∑

v‖/|v‖|=±1

∮
dθ|v‖| ∂

∂θ

∂

∂r
δK ' qR0

∑

v‖/|v‖|=±1

∮
dθ

v‖
|v‖| iω

∂

∂r
δK(0) . (42)

Here, the lowest order solution δK(0) in the |ω/ωb| asymptotic expansion is [26]:

δK(0) =
c

B0

q
R0

r
ṽ‖

QF0

ω

∂

∂r
δφ , (43)

with ṽ‖ the fluctuating component of the parallel velocity, defined such ṽ‖ = 0. Using Eqs. (41)
to (43), we readily obtain [26]

∆I = q2 ω2

ω2
A

(
1− ω∗pi

ω

) (
R0

r

)1/2

f
(

r

R0

)
, (44)

where, at the lowest order in (r/R0),

f
(

r

R0

)
' 1.6 ' 6

√
2

π

∫ 1

δ

dκ2

κ5

[
IE (κ)− π2

4IK (κ)

]
+

3

8
√

2
δ1/2
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+
6
√

2

π

∫ ∞

1

dκ2

κ6

[
(1− κ2)IK (1/κ) + κ2IE (1/κ)

]
. (45)

Here, δ = O[(r/R0)
1/2]; thus, the first two terms on the right hand side (RHS) represent the

contribution of barely circulating particles (' 0.43), while the last term on the RHS (' 1.20)
comes from trapped particles. Note that the structure of Eq. (45) is the same as that involved in the
ZF polarizability [39, 40], as expected.

At low frequency, |ω| <∼ ωbi ≈ (r/R0)
1/2ωti, ion Landau damping is strongly decreased due

to particle trapping [37]; meanwhile, the inertia enhancement due to (well) circulating particles
reduces to the 0.5q2 factor in Eq. (17). Note that, as pointed out in Section 2.2, the origin of this
factor is crucially related to the anisotropic pressure response due to geodesic curvature couplings.
In fact, neglecting diamagnetic frequency for simplicity, the usual inertia term ∝ k2

r(ω
2/ω2

A)δφ(r)

is changed into (see Eq. (41))

k2
r

ω2

ω2
A

δφ(r) + k2
r

ωωti

ω2
A

q2
(
δP̂‖i + δP̂⊥i

)
, (46)

where δP̂‖i and δP̂⊥i are the normalized amplitudes of the∝ sin θ thermal ion parallel and perpen-
dicular pressure perturbations due to geodesic curvature. For |ω| ¿ ωti one easily finds [19]

δP̂‖i =
ω

ωti

δφ(r) ,

δP̂⊥i = − ω

2ωti

δφ(r) . (47)

Thus, the 0.5q2 factor is obtained because δP̂⊥i 6= δP̂⊥i, while assuming
(
δP̂‖i + δP̂⊥i

)
= 2δP̂‖i =

2δP̂i would give the usual 2q2 factor [34].

B. A PREDATOR-PREY MODEL FOR THE FISHBONE CYCLE

Predator-prey models for the fishbone cycle are known since the original works on the resonant
continuum [10] and discrete gap [11] fishbone modes. Here, we demonstrate that the nonlinear
model equations for the fishbone cycle, Eqs. (35) to (39), can be reduced to a predator-prey model
with stable limit-cycle behavior. This gives us a qualitative picture of the fishbone dynamics, which
agrees with experimental observations on FTU and with earlier work in Ref. [10].

For the sake of simplicity, we neglect the dynamics due to time-dependent frequency shifts,
contained in Eq. (39), and we also assume that βh,res can be described by a characteristic spatial
scale ∆ <∼ rs, so that the first radial derivative ∂rβh,res ' B/∆ and the second radial derivative
∂2

rβh,res ' −B/∆2, with B a characteristic value of βh,res. Note that the second radial derivative is
set negative in order to guarantee the stability of the LH profile. We take as granted that the main
contribution to the integral in Eq. (35) comes from a shell between rs−∆ and rs. As an illustration,
the profile in Figure 3 suggests that rs/a−∆/a ≈ 0.2 with a negative second derivative onwards.
Integrating in Eq. (35) from rs −∆ to rs we find

∂A
∂t

= −2Γ(β − B)A , (48)
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where we preferred simpler notations β = βh,c and A = |δξ0|2. Note that the time derivative in
Eq. (48) changes sign when B crosses the β value. If we now turn to Eq. (36) and approximate the
radial derivatives of the profile function βh,res by their characteristic values through the distance
∆, we get

∂

∂t
A

(
∂

∂t
− νext

)
B = − q

τNL

A2B , (49)

with q = 2Cω2τNL(rs/∆)2. Differentiating on the left of Eq. (49) we find

∂A
∂t

(
∂

∂t
− νext

)
B +A ∂

∂t

(
∂

∂t
− νext

)
B = − q

τNL

A2B . (50)

Keeping first time-derivatives and suppressing higher-order differential terms we rewrite Eq. (50)
as

∂A
∂t

(
1

τNL

− νext

)
B +

A
τNL

(
∂

∂t
− νext

)
B = − q

τNL

A2B , (51)

where 1/τNL stands for ∂/∂t where appropriate to constitute the right ordering. In writing Eq. (51),
we considered that the dynamical time scale is of the same order of the nonlinear time; thus,
Eq. (51) does not admit the linear limit as particular case. We also took into account that the time
derivative ∂A/∂t is such as to satisfy the dynamic Eq. (48). Substituting ∂A/∂t from Eq. (48),
after simple algebra one obtains

∂B
∂t

= νB −ΘB2 − qAB , (52)

with ν = νext + βΘ and Θ = 2Γ(1 − νextτNL). Equations (48) and (52) form a predator-prey
system of equations. If we change the notations in Eqs. (48) and (52) such that A is x and B is y

and introduce the parameters µ = 2βΓ and k = 2Γ, we can represent our predator-prey model in
the canonical form

ẋ = −µx + kxy , (53)

ẏ = νy −Θy2 − qxy , (54)

where the dot denotes time differentiation. Equations (53) and (54) define a dynamical system with
an unstable hyperbolic point at the origin and an equilibrium (i.e., fixed point) at x0 = ν/q−Θµ/qk

and y0 = µ/k. The term with y2 in Eq. (54) is important as it guarantees the structural stability
of the model, in the topological sense. If Θ > 0, the system shows a stable limit cycle behavior.
A transition to the limit-cycle dynamics occurs when the nonlinear time τNL is comparable to or
shorter than ν−1

ext. If one wishes to obtain a marginal estimate, then the procedure is to let τNL be
of the order of ν−1

ext and neglect the term with Θ in Eq. (54), yielding

ẋ = −µx + kxy , (55)

ẏ = νy − qxy , (56)

with the fixed point at x0 = ν/q and y0 = µ/k. A perturbation analysis of the reduced Eqs. (55)
and (56) shows that the dynamics are periodic, with frequency Ω = (µν)1/2 = (2Γβh,cνext)

1/2.
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The trajectories of the system in the (x, y) phase space are defined through

x1/µy1/ν exp

(
−qx + ky

µν

)
= const (57)

and are plotted numerically in Figures 6 to 8 for different values of the ratio α = µ/ν = (2Γβh,c/νext)

and with normalized axis scales (x/x0, y/y0): in this way the fixed point is always (1,1). Given δx

and δy the excursions about the fixed point with frequency Ω we typically have δy/y0 ∼ νextΩ
−1

for δx/x0 ∼ 1. This means that the characteristic excursion of βh about the fixed-point value is
δβh/βh,c ∼ (νext/2Γβh,c)

1/2. With these estimates, the period of fishbone burst is tfb ∼ 2π/Ω ∼
2π(δβh/βh,c)ν

−1
ext, in agreement with the estimate given in Ref. [10]. Note that the wider the oscil-

lation amplitude around the fixed point is, the more important the non-harmonic behavior becomes
in the periodic motion of the system, as it is clearly visible in Figures 6 to 8, consistently with
the electron fishbone burst signature of Figure 1. The nonlinear excursions of the system about
the fixed point have an amplitude which is dictated by the external power density input into the
wave-particle resonance region, i.e., ceteris paribus, by νext, which is experimentally controlled
via the additional power level.
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1

Figure 1: Time evolution (from top to bottom) of thermal electron temperature, plasma line density, LH coupled power,
fast electron temperature fluctuations and central radiation temperature in FTU Pulse No: 20865. It is clear that the
nonlinear behavior of fast electron temperature fluctuations (electron fishbone) reflects the level of LH power input.

Figure 2: Absorbed LH power density (broken line) and
q profile (solid line) at t = 220ms, as predicted from
transport simulations of FTU Pulse No: 20865. The total
absorbed LH power is PLH = 0.76MW.

Figure 3: Absorbed LH power density (broken line) and
q profile (solid line) at t = 280ms, as predicted from
transport simulations of FTU Pulse No: 20865. The total
absorbed LH power is PLH = 1.69 MW.
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2

Figure 5: Contour plot of the supra-thermal electron tail at t = 280ms, as predicted from Fokker-Planck computations
of FTU Pulse No: 20865. The total absorbed LH power is PLH = 1.69MW. Velocities are normalized to the core
electron thermal speed. The radial position is r/a = 0.35 and dashed lines indicate the trapped particle region.

Figure 4: Contour plot of the supra-thermal electron tail at t = 220ms, as predicted from Fokker-Planck computations
of FTU Pulse No: 20865. The total absorbed LH power is PLH = 0.76MW. Velocities are normalized to the core
electron thermal speed. The radial position is r/a = 0.17 and dashed lines indicate the trapped particle region.
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3

Figure 6: Contour plot of Eq. (57) trajectories in the
(x/x0, y/y0) phase space. Here, α = 2Γβh,c/νext = 10.

Figure 7: Contour plot of Eq. (57) trajectories in the
(x/x0, y/y0) phase space. Here, α = 2Γβh,c/νext = 3.

Figure 8: Contour plot of Eq. (57) trajectories in the (x/x0, y/y0) phase space. Here, α = 2Γβh,c/νext = 1.
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