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ABSTRACT
A disruption prediction system, based on neural networks, is presented in this paper. The system is
presently running in real-time on the JET tokamak.

A Multi Layer Perceptron predictor module has been trained on nine plasma diagnostic signals
extracted from 86 disruptive pulses, selected from four years of JET experiments in the pulse range
47830-57346 (from 1999 to 2002).

Thedisruption classof the disruptive pulsesisavailable. In particul ar, the selected pul sesbelong to
four classes (Density Limit/high Radiated Power, Internal Transport Barrier, Mode Lock, and H-
Mode/L-mode).

A Sdlf Organizing Map has been used to select the samples of the pulsesto train the Multi Layer
Perceptron predictor module, and to determine its target, increasing the prediction capability of the
system.

The prediction performance has been tested over 86 disruptive and 102 non-disruptive pulses. The
test has been performed presenting to the network all the samples of each pulse sampled every 20 ms.
The missed alarm rate and the false alarm rate of the predictor, up to 100 ms prior to the disruption
time, are 23% and 1% respectively.

Recent plasmaconfigurationsmight present features different from those observed in the experiments
used in thetraining set. This‘novelty’ can lead to incorrect behavior of the predictor. To improve the
robustnessand reliability of the system, aNovelty Detection module hasbeenintegrated inthe prediction
system, increasing the system performance, and resulting in amissed alarm rate reduced to 7%, and a
false alarm rate reduced to 0%.

1. INTRODUCTION

Disruptionsarecritica eventsinwhich the plasmaenergy islost within atime span of few milliseconds.
They present serious problemsfor the operation of atokamak. Firstly, they limit the accessible range
of operational parameters, and performance. Secondly, major disruptions, taking place at high plasma
current, expose the tokamak first wall components and vacuum vessdl to severe thermo-mechanical
and electro-mechanical stresses. Thisproblemiseven more seriousfor the new generation of tokamak
like ITER. Infact, to meet its objectives of producing significant fusion power, ITER will have much
higher stored magnetic and thermal energies, than JET. Therefore, avoiding plasma disruptions or
predicting aforthcoming disruptionin order to mitigateits effects, isamajor issuefor the operation of
next tokamak devices.

Disruptionshavedifferent physical causesmostly of which have beenidentified [1-7]. Nevertheless,
the understanding of the underlying mechanisms is not exhaustive for the implementation of a
deterministic disruption prediction system. Thus, ablack box approach that predictsdisruption directly
from a set of plasma parameters measured during a discharge seems to be suitable because it doesn’t
require to explicitly define the problem.



The following considerations have to be taken into account when designing a disruption prediction
system:

— the prediction success rate has to be greater than those of the existing alarm systems already
available on tokamak machines, generally based on thresholds applied on single signals,

— the prediction time hasto sufficiently anticipate the starting of the disruption, in order to alow
the mitigation and shut-down systemsto safely intervene;

— thefasedarm rate hasto be limited;

— a the sametime, an aslow as possible missed alarm rate should be obtained;

— the prediction system has to be able to forecast different types of disruptions, characterized by
different operationa scenarios and dynamics;

— the prediction system has to be able to operate in real-time.

Asin|[8], inthispaper the performance of the prediction system isevaluated in terms of Percentage of
False Alarms (PFA) and Percentage of Missed Alarms (PMA), where PFA is defined as the ratio
between the number of non disruptive pulses predicted by the system as disruptive pulses, and the
total number of non disruptive pulses, in per cent, while PMA is defined as the ratio between the
number of disruptive pulses predicted as non disruptive pulses, and the number of disruptive pulses,
in per cent. Furthermore, the prediction successrate is defined in the present paper asthe successrate
of the predictor in correctly predicting both disruptive and non disruptive pul ses. Note that adisruption
prediction is considered successful if the system is able to correctly predict the disruption up to tored
prior thedisruptiontime, wheret,, o, dependson the tokamak machine considered. At JET, the prediction
time t,¢q has been conventionally set equal to 100ms before tp, where ty, is the time of disruption.
According to JET disruptions experts, that choice has been done since this time interval should be
sufficient to undertake, in advance, an adequate mitigation strategy.

Inthispaper, aMulti Layer Perceptron (ML P) has been trained to forecast animpending disruption
from a set of nine plasma parameters measured during disruptive and non disruptive discharges. In
particular, 172 disruptive pulses and 102 non disruptive pulses in the pulse range 47830-57346 were
available from four years of JET experiments, from 1999 to 2002.

Thedisruption classisavailablefor 86 disruptive pulses. In particular, these pul ses belong to four
classes (Density Limit/high Radiated Power, Internal Transport Barrier, Mode Lock, and H-Mode/L -
mode) [9-10].

In a plasma pulse different disruption phases can be observed: pre-precursor phase; precursor
phase; fast phase, and quench phase [6]. At JET, the fast phase and the quench phase are supposed to
last less then 40 ms [11]. Since during these phases the diagnostic signals could not be completely
reliable, dueto the presence of high induced currents and magnetic field variations, the time window,
from tp—40msto ty, has not been monitored in the present work.

Defining t asthetime instant that discriminates between stable and unstable states of the plasma,
some disruption precursors are expected to appear in the time window from torec 1O tp—40ms. Thus,



two consecutive phases can be identified before and after t,.: non-disruptive phase and disruptive
phase. Unfortunately, t,, . does not have a prefixed value, and the identification of the two different
phases is often avery difficult task. Presently, indexes of the transition from a phase to the other are
not available.

Nevertheless, asM L Psare supervised neural networks, for each disruptive pulsewe haveto distinguish
between samples bel onging to the non disruptive phase and samples bel onging to the disruptive phase,
in order to associate them a different output of the neura network. In particular, the samples of a
disruptive pulse, which belong to the non disruptive phase, will be associated to a null value of the
network output, aswell asall the samples of non disruptive pul ses, whereasthe samples of adisruptive
pulse, which belong to the disruptive phase, will be associated to a network output equal to one. This
is one of the main issues in the design of a disruption prediction system, and, in particular, in the
training set generation (when the predictor isan MLP).

A second issue to be performed is the selection of alimited number of samples sufficient to train
the MLP predictor. In anon disruptive pulse, the number of samplesisindeed too largeto be used in
the training set. Moreover, the number of samplesin the non disruptive phase of adisruptive pulseis
much larger with respect to the number of samples available in the disruptive phase. A balance is
needed between the number of samples sel ected to describe the disruptive phase and those selected to
describe the non-disruptive phase.

In the proposed approach, only disruptive pul ses have been used to train the MLP predictor, while
both disruptive and non disruptive pulses have been used to test the predictor performance. This
approach belongs to the disruption proximity prediction methods, which has been investigated in the
literature for severa tokamaks[11-13].

In this paper a clustering procedure is used, based on Self Organising Maps (SOMs) [14-15],
which alows to automatically separate the samples belonging to the disruptive phase from those
belonging to the non disruptive phase. Moreover, the clustering procedure allows usto automatically
select a limited number of significant samples from the whole length of the pulse. The predicting
performance of the MLP predictor is quite good, with avery limited number of false darms.

The drawback of the approaches based on neura techniques is that the trained network could
deteriorate its performance once it is on-line. In fact, a network, which is trained to discriminate
between inputs coming from a set of distributions, could produce a not reliable output when input
comefroman entirely new distribution. Thiscould bethecasein JET, and it has been al so experienced
in other tokomaks, where new plasma configurations or improved operational boundaries can led to
not recognized discharges.

Animprovement can be made using Novelty Detection techniques[16]. Severa novelty detection
methods have been proposed in literature to determine the degree of novelty of a given input based
both on statistical and neural network approaches [17-19].

In this paper, a neural network approach based on SOMs s used to determine the ‘ novelty’ of an
input of the MLP predictor module. In the on-line application, the Novelty Detection should be used



to assesstherdiability of the network output, i.e., sampleshaving alow confidence haveto bediscarded
and used off line to update the disruption predictor.

The paper isorganized asfollows. In Section 2 asurvey on disruption prediction systems presented
inliteratureisreported, while Section 3 is dedicated to the database sel ection and to the description of
the diagnostic signals used asinput of the prediction system. Section 4 briefly introduces Multi Layer
Perceptron neural networks and Self Organizing Maps, used in the present paper. In Section 5 the
proposed disruption predictor ispresented and the results are discussed. In Section 6 novelty detection
methods are described and an implementation through SOMsisreported. Finaly, Section 7 summarizes
the conclusions.

2. RELATED STUDIES

In literature several papers described the operational limits of a tokamak and the theoretical
stability limits of the plasma: the Greenwald plasma density limit [1], the high-< limit [6], the |;-
q,, diagram [3], and the ratio of the radiated power to the input power [4]. Nevertheless none of
them have led to the development of areliable predictive model of disruptions. For thisreasonin
the last 15 years, there have been several studies for the prediction of disruptions using neural
networks. In particular some papers are focused on predicting the proximity of the plasma to
disruption by using an artificial output.

In [12] an on-line predictor of the time to disruption installed on the Asdex Upgrade tokamak is
presented. The prediction system uses aneural network trained on eight plasma parameters and some
of their time derivative extracted from 99 disruptive discharges. The non disruptive phase was defined
as the L-mode phase following the H-mode phase before the disruption, or the phase starting just
before a MARFE and ending with adisruption, for plasma which has been in L-mode for more than
0.8 s. The system wasimplemented and tested for real -time mitigation, showing satisfactory prediction
capability. However the authors highlight the deterioration of the network performance on on-line
tests, due to the dight difference between the real-time signal and the stored ones. Moreover, it has
been shown that new experiments, which belong to operational spaces different from those used for
training, are not well predicted in the on-line implementation, thus presenting the so-called ‘ ageing’
of the neura network.

Thework presented in [11] has been performed on flat-top JET scenarios characterized by asingle
null plasma. The authorstrained aMLPto forecast disruptive events at JET, up to 100 msin advance.
Pulse samples have been selected in atemporal window of 400 ms. For disruptive pulses, the window
Isconstituted by thelast 400 msof the discharge and the artificial output isasigmoid representing the
risk of disruption. In the paper a saliency analysisis aso presented to validate the suitability of the
selected input signals.

Themajor disruptions caused by the density limit, the plasmacurrent ramp-down with high internal
inductance, the low density locked mode, and the <-limit in JT-60U, have been investigated in [13].
The concept of T* stability level’, proposed in the paper is calculated from nine plasma parameters by



aMLP, and the occurence of a major disruption is predicted when the stability level decreasesto a
certainlevel, named thet* darmlevel’. In particul ar, the onset of the major disruption isdetermined as
the start of the positive current spike followed by the plasma current quench. The <-limit disruption
prediction performance has been improved in [8] with a cascade of specialized MLPs.

3. DIAGNOSTIC SIGNALSAND DATABASE SELECTION

The diagnostic signals for training and testing the neural predictor were selected in the pulse interval
47830 - 57346, produced at JET between March 1999 and October 2002. The different disruption
classesin the JET machine have been manually classified by ateam of expertstrying to identify the
following ones: Mode Lock (ML), Density Limit (DL), high Radiated Power (RP), H-mode/L-mode
trangition (HL), Interna Transport barrier (IT), and Vertical Displacement (VD). On the base of a
deeper analysis, some classes have been discarded or merged [9-10].

For example, it isworth noting that al but onethe VD disruptive pulses stored inthe available JET
database are provoked by the control system. For this reason, predicting VD disruptions is not an
interesting task at JET.

The discharges included in the network database satisfy the following requirements:

— Plasmacurrent Ip|a>1.5 MA;

— X-point configuration;

— Flat-top plasma current profile.

Dischargeswith i abelow 1.5 MA were discarded asthey generdly have little impact on subsequent
conditioning and operation of the device.

Nine diagnostic signals have been selected to describe the plasmaregime during the discharge flat-
top. These signals represent the input of the neural network prediction system. The choice of the
signals takes into account physical considerations and the availability of real-time data. Moreover,
previous experiences on disruption prediction confirm the appropriateness of the chosen input variables
[9, 11, 20].

Thesampling timeis20 ms. Thissampling time hasbeen chosen in order to allow the synchronization
among different acquisition systems. The neural predictor works indeed by gathering signals from
variousnot synchronized sources; therefore, it hasto wait for the dower system before the computation.
Table | shows the selected diagnostic signals.

The whole database consists of 172 disruptive pulses and 102 non disruptive pulses. The information
on the disruption classis available for 86 pulses.

4. NEURAL NETWORK ALGORITHMS
AnArtificia Neural Network (ANN) isa system composed of simple processing elements operating
inpardld. Theprocessing ability of the network isstored in theinter-unit connection strengths (weights),
obtained by a process of adaptation to a set of training patterns (learning).

Today, ANNsareapplied to anincreasing number of real world problemsof considerable complexity.



They offer ideal solutionsto avariety of classification problems such as pattern recognition, speech,
character, and signal recognition, aswell as functional prediction and system modelling. ANNs may
also be applied to control problems, where the input variables are measurements used to drive an
output actuator, and the network learns the control function.

There are many different types of ANNS. In this paper, atraditional Multi Layer Perceptron has been
trained to estimate the disruption risk from diagnostic data, whereas a Self Organising Map has been
used both for clustering and novelty detection tasks.

41THE MULTI LAYER PERCEPTRON

TheMulti Layer Perceptronisthe most widely used type of neural network. An MLPnetwork consists
of n, inputs, one or more hidden layers of neurons, and one output layer with n, neurons. The neurons
in each layer are connected with al the neurons of the previous layer. The output of the i heuron in
thel™ layer isanonlinear function of theweighted sum of the previouslayer outputs. Thenon linearity
is introduced by the non linear, usualy sigmoidal, activation function of the neurons [21]. Thus, a
MLP with one hidden layer basically performs a linear combination of sigmoidal functions of the
inputs. A linear combination of sigmoids is useful because:

— it can approximate any continuous function of one or more variables. Thisisuseful to obtain a
continuous function fitting afinite set of points when no underlying model isavailable [22];

— if the network is trained with a binary target, its outputs can be interpreted as posterior
probabilities. This is very useful for classification tasks, as it gives a certainty measure on
classification performance [21].

The connection weights are determined, during the so-called learning phase, by applying a set of
actual input—output values (thetraining set) to the network, and comparing, through the error function,
the network output to the desired output.

To ensure good out of sample generalization performance, a cross-validation technique can be
used during the training phase, based on monitoring the error on an independent set, called validation
set [21].

In this paper, the avail able data have been divided into three subsets:

— thetraining set: it is used to update the network weights and biases;

— thevalidation set: the error on the validation set is monitored during the learning process. The
validation error will normally decrease during the initial phase of learning, as the training set
error does. However, when the network beginsto over-fit the data, the error on the validation set
will typically beginto rise. When thevalidation error increasesfor aspecified number of iterations,
the learning is stopped, and the weights and biases at the minimum of the validation error are
returned;

— thetest set: astraining set and validation set play akey rolein selecting themodel, their reliability
as independent reference to evaluate the performance of the model is therefore compromised.
To correctly estimate the performance of the model, a third set (the test set) is used (at least



when available data alow it). The generalization capability of the neural model is tested with
the test set, to ensure that the results on the training and validation sets are reliable, and not
artefacts of the training process.

4.2 THE SELF ORGANISING MAP

A SOM isatype of ANN developed by Kohonen [14]. It projects high dimensional input space on a
low-dimensional regular grid that can be effectively utilized to visualize and explore properties of the
data

Let us consider an I-dimensiona input space X. The SOM defines a mapping from X onto aregular
(usually two-dimensional) array of neurons, preserving the topological properties of the input. A key
feature of SOMsisthat the nodesin the output grid are arranged such that neighbour nodes represent
similar patterns, and nodesthat are well separated represent different patterns. This meansthat points
close to each other in the input space are mapped on the same or neighbour neurons in the output
space. Every neuron of the map corresponds to an I-dimensiona weight vector that minimizes the
distance from every input .  associated to the neuron.

The map can be used as a convenient visualization surface for showing different features of the
data, e.g., the cluster structure. However, the visualization can only be used to obtain qualitative
information. To produce quantitative description of data properties other methods to give good
candidates for map unit clusters are required [15].

In the first step of the training procedure, the weights are randomly initialised. Then, for each
point , the closest neuron intermsof Euclidean distance (or another measure of similarity) isdetermined
and the winning neuron, and those within a certain neighbourhood around the winner, are updated.
Thisprocessisrepeated over several iterationsuntil astopping conditionisreached. Learning generaly
proceedsin two broad stages: ashorter initial training phasein which the map reflectsthe coarser and
more general patterns in the data, followed by a much longer fine tuning stage in which the local
details of the organisation arerefined. When training is compl eted, the weight vectors associated with
each neuron define the partitioning of the multidimensional data.

5. DISRUPTION PREDICTOR
In literature, the disruption prediction problem has been investigated for different tokamak machines
[11-13], and several methods have been proposed to solveit, most of which based on neural networks.
Evenif theresultsobtained areencouraging for the off-lineanays's, further investigations are necessary
to carry out an effective rea time implementation. For example, a straightforward extension of the
off-line predictor proposed in [11] to the real time implementation, where the complete sequence of
the samples of a pulse has to be presented to the predictor, considerably deteriorates the prediction
performances.

In this paper, a disruption prediction system is proposed, developed with the goal to optimize the
real time performances. Thereal time performances have been quantified in terms of maximizing the



predi ction successrate and minimizing thefalseaarm rate, when the entire pul ses, rather than samples
selected from limited time windows [11], are presented to the predictor.

Here, the disruption predictor isatraditional MLP. It takes as input the 9 values of the diagnostic
signals at the generic time instant t. Hence, the MLP has 9 input nodes, while it has a single output
node, with alogistic activation function.

Training and the validation set are composed of 69 and 17 disruptive pulsesrespectively. For these
pulses the corresponding disruption classis available.

During thetraining phase anull valueisassociated to the output nodefor all the samplesbelonging
to the non disruptive phase of adisruptive pulse. On the contrary, avalue equal to oneisassociated to
the network output for all the samples of the disruptive phase of a disruptive pulse. In the following,
details on MLP architecture and on the training procedures used to obtain the prediction system will
be reported.

During the on line running of the predictor, when the sequence of the samplesis presented to the
neural predictor, for each sample the MLP will return areal number between 0 and 1. This output
represents a measure of the probability of the sample at the generic time instant t to belong to the
disruptive phase, i.e., the probability of the timeinstant t to fall within the time windows [tprec +tp].
Hence, if the MLPreturnsavalue closeto zero, it meansthat the sample bel ongsto the non disruptive
phase of a disruptive pulse, or that it belongsto anon disruptive pulse.

For adisruptive pulse, if the MLPoutput isgreater than aprefixed Alarm Level (a) for at least two
consecutive samples up totpred seconds prior the disruption time, the predictor will correctly predict
the disruption, and it will trigger the alarm. At JET, the prediction ti metpred isset equal to 100 ms, in
order to allow amitigation system to intervene.

On the contrary, if the MLP output is less than a for al the samples of a disruptive pulse, the
predictor will missthe alarm.

For anon disruptive pulse, the predictor will trigger afalse alarm if the network output is greater
than the prefixed alarm level & for at least two consecutive samples of the pulse.

The choice of the alarm level d is performed by minimizing a prediction error expressed as:

e(al) = PFA(al) - s + PMA(al)

where

PFA (al) isthefalse alarm rate (or Percentage of False Alarms), PMA (@) isthe missed alarm rate
(or Percentage of Missed Alarms), and wi, isafase alarms weight factor.

The misclassification of non disruptive pulses has been penalized by aweight factor
Wep = 4, because in experimental machines, like JET tokamak, the minimization of the false alarm
rate is mandatory. It isworth noting that, in order to minimize the missed alarm rate, rather than the
false alarm rate, as it will be crucial in future fusion reactors, it will be sufficient to use a different
alarm threshold modifying wi,.



Aspreviously mentioned, the most critical phasein developing asupervised neura network predictor,
likethe ML P predictor here considered, isthelearning phase. During this phase asuitabl e set of input-
output couples (>_<i , f) (thetraining set) hasto be selected in order to set the connection weights of the
neural network. For each disruptive pulse, selected from the database for the training set, the i nput
sample >_<i , Is characterized by the 9 diagnostic signals (see Table I). Input data have been normalized
inthe[O; 1] interval using the following expression:

-mo.
,j=1,..9
Mj - my :

Xinorm =

whereM; and m} arethe maximum and themi nj mum absol utevalue of thej Mtraini ng signal respectively.
The corresponding output training pattern y' will assume a value equal to 0 or 1 depending on the
belonging of the sample to the non disruptive phase or to the disruptive phase respectively.

As previoudly cited, one of the main issues in the training set generation is the separation of the
samples belonging to the disruptive phase from those bel onging to the previous non disruptive phase.

A second issue to be considered in the training set generation is the selection, for each pulse, of a
limited number of samples sufficient to unambiguously describe the operational domain of the
experiments.

In thispaper, thesetwo issues have been approached using the information derived from aclustering
procedure.

The architecture of the predictor during the training phase consists of a cascade of a SOM and a
MLP, asshownin Fig. 1.

In order to build the training set for the MLP predictor, 86 SOMs have been constructed, one for
each pulsein the training set and in the validation set.

It isworth noting that non disruptive pulses have not been used during the training phase, assuming
that stable states could be extrapolated from the non disruptive phase of the disruptive pulses. Non
disruptive pulses will be used only during the test phase.

The SOM networks take as input all the samples of the disruptive pulses, and give as output a 2-
dimensional map of clusters. Asa SOM preserves the input topology, the map will be arranged such
that samples close in the 9-dimensional input space are mapped in the same or in adjacent clustersin
the 2-dimensional map. Note that, clusters that are well separated are supposed to contain samples
belonging to different states of the plasma.

Theidentification of samplesbel onging to the disruptive phase and those bel onging to the previous
non disruptive phase (first issue), and the selection of alimited number of samples belonging to the
non disruptive phase (second issue) have been performed using the following procedure.

All the samples belonging to the cluster that contains the sample at the time instant (tp-40ms),
which is surely a disrupted sample, are considered disrupted samples. All the disrupted samples are
included in the training set and the corresponding network target is set equal to 1.

For each pulse, aregion of the map, corresponding to the transition between the non disruptive



phase and the disruptive phase, is identified on the basis of empirical considerations on the map
topology. The sampleshbel onging to thisregion, are considered transition samplesand they are excluded
from the training phase since they cannot be classified with asufficient confidence either as disrupted
or non disrupted samples.

The samples bel onging to the remaining clusters are considered non disrupted samples. In order to
reducethe datadimensionality, only one samplefor each of these clustersisconsidered for thetraining
phase, and the corresponding network output has been set equal to 0.

In Fig.2, an exampleis reported for the Pulse No: 53041, composed by 270 samples. The cluster
that contains the 270" sample, corresponding to the time instant ty-40ms, is easily identified. This
cluster ischequered in Fig.2. Thiscluster contains other nine samples, which havebeenall includedin
thetraining set. The dotted clustersin Fig.2 are clusters bel onging to the transition phase. They have
been excluded from the training set. The white clusters do not contain any sample, while only one
samplefor each grey cluster, which contains samples supposed to be non disrupted samples, has been
selected for the training set.

Hence, for the pulse considered in Fig.2, only 72 samples have been selected for the training
phase: 63 samples are non disrupted samples; 9 samples are disrupted ones; 8 samples have been
discarded, asthey are transition samples.

Using the proposed procedure, the amount of training data has been considerably reduced with
respect to thewhol eflat top phase of the pul ses, without |osing any useful information for the network
training. In particular, after the clustering, the 86 selected disruptive pulses, which contain 36316
samples, resulted in 7070 samples.

Thetest set consists of 86 disruptive pulses (34407 samples) and 102 non disruptive pul ses (61185
samples). During the test phase, al the samples of the test pulses directly feed the ML P predictor, by-
passing the SOM, as shownin Fig.1.

The MLP network topology has been selected by atrial and error procedure. For this purpose,
several MLPs have been trained varying the number of hidden layers and the number of the hidden
layer neurons. In particular, the growing method has been adopted. It consists of training a network
having few neurons and then evaluating its performance. If such performance is satisfactory, the
procedure ends, otherwise a network having more hidden neurons is trained, and so on, until the
network reaches the desired performance, in terms of mean squared error. In this way the training
procedure avoids the over-fitting, which derives from the excessive number of degree of freedom.

51RESULTS
The best network configuration, chosen considering the best performance in the validation set, is
composed of 9 input neurons, 1 hidden layer with 15 neurons, and 1 output neuron, resulting in 166
network parameters.

Tablell showsthe performance of the ML P predictor fed by the pul ses selected for thetraining, the
validation, and test sets respectively. Note that, as for the test set, for each pulse of the training and
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validation sets, the errors have been cal culated considering the whol e sequences of the samplesrather
than the samples sel ected by the SOM during the training phase. This demonstrates the success of the
proposed samples selection and reduction procedure.

Ascan benoted, the network performanceisexcel lent interms of falseaarms, whilethe percentage
of missed alarmsis quite high. Thisis partialy due to the choice of a high value of the false darms
weight factor, and it is not an inherent property of the neural networks.

The performance of the MLP predictor in successfully predict both disruptive and non disruptive
pulses are quite good. In particular, the system is able to correctly predict 63 pulses over the 86
disruptive pulses of the test set, and it does not trigger any alarm for 101 over the 102 non disruptive
pulses of the test set. It has to be pointed out that 3 disruptive pulses have not been considered as
correctly predicted because the system triggers the alarm to much in advance with respect to the
disruption time tp,.

Notethat 40 test pulsesbel ong to experimental campaigns performed 15 months before the campaigns
considered for the training set. This choice has been done to verify the so called ageing of the neural
networks, which cause a deterioration of the performance of the predictor. In the next section, a
novelty detection procedure will be presented to limit the ageing effect.

In Fig.3 the network output for the disruptive Pulse No: 51519, belonging to the training set, is
reported. As can be noted, in this case the network is able to correctly predict al the samples of the
non disruptive phase, returning an output value close to zero. Moreover, concerning the samplesin
the trangition region (shaded region in Fig.3), the output of the network seemsto follow the dynamic
of the plasma, showing a growing trend from the non disruptive state to the disruptive state (output
closeto 1).

In Fig.4, the same behaviour can be observed for a disruptive pulse of the test set (Pulse
Number 50166).

5.2 PREDICTION SYSTEM VERSUS MODE LOCK INDICATOR
The prediction capability of the ML P predictor has been compared with the performance of the Mode
Lock Indicator. The Mode Lock Indicator (MLI) triggers a shut down procedure, used at JET in the
on-line disruption protection system.

Asdataon missed larmsare, obvioudy, theonly dataavailableat JET for the Mode L ock Indicator,
Table 111 shows a comparison between PMA for the MLP and for the MLI.

The MLI missed the dlarm for 44 pulses, while the ML P predictor missed the alarm for 20 pul ses.
It hasto be pointed out that these 20 pul ses are the same for the two systems. Moreover, acomparison
of the prediction time for the 41 disruptions correctly predicted by both systems showsthat the MLP
triggers the alarm before the ML for 28 disruptions.

6. NOVELTY DETECTION
Novelty Detection (ND) consists of identifying new or unknown data that a machine learning system
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isnot aware of during thetraining phase. Thus, novelty detection isoneof thefundamental requirements
of agood classification or prediction system. In fact, actual data may contain patterns belonging to
operational regions not explored when the learning system was devel oped. This could be the case of
thedisruption predictor presented in thispaper, where new plasmaconfigurations might present features
completely different from those observed in the experiments selected for thetraining set. This‘ novelty’

can lead to incorrect behaviour of the MLP predictor (ageing of the neural network) [12].

6.1 NOVELTY DETECTION TECHNIQUES

In the last ten years novelty detection acquired an increasing attention, and a number of techniques
have been proposed and investigated to addressit. In [18], the authors provide state-of -the-art review
in the area of novelty detection based on statistical approaches, whereas in [19] novelty detection
using neural networksis detailed.

In [18] and [19] the authors highlighted that it is not possible to a priori identify a single best
model, and the success of anovelty detection technique mainly dependson the statistical properties of
data handled. Both statistic and neural clustering methods can be used for novelty detection tasks.

In this paper, novelty detection has been performed using a SOM for data clustering.

All the samples of thetraining and validation sets are considered to obtain a unique 2-dimensional
SOM map. Each cluster i of thismapisrepresented by aprototypevector. Let D, ; bethemaximum
Euclidian distance of the samplesin the cluster i from its prototype vector.

Then, for each sample of thetest set, the values of the distancesfrom each prototype are eval uated.
The winning cluster, called Best Matching Unit (BMU) is the nearest cluster, and the test sampleis
associated to thisBMU.

During the test phase the answer of the MLP predictor is validated by the novelty detector using
the information provided by that SOM. In particular:

— whenthe output of the MLP predictor iscloseto zero, (i.e., MLP claimsthat the sampleisanon

disrupted sample), if the distance of the test sample fromitsBMU islower than D, 5, gvu- the
ML Panswer isconfirmed, and the sampleisdefinitively cons dered asnon disrupted. Conversely,
the test sampleislabelled as novel;

— when the output of the MLP predictor is close to one, (i.e., MLP claimsthat the sampleisa
disrupted sample), if the distance of the test sample from its BMU is lower than D, .gmus
the answer of the MLPis confirmed. On the contrary, if the distance of the test sample from
its BMU is greater than D, gpu» but BMU contains only training disrupted samples, the
novelty detector accepts the answer of the MLP, and the sample is definitively considered as
disrupted, whileif BMU does not contain only training disrupted samples, the test sampleis
labelled as novel.

In this paper, the proposed novelty detection technique is used to assess the network reliability. In
particular, samples becoming from unexplored operational spaces can be reliably rejected by the
SOM novelty detector, and used to update the training of the MLP neural predictor.
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Figure 5 shows the architecture of the disruption prediction system integrated with the novelty
detection block.

The presence of the ND block influences the predictor behaviour only in case of disruption aarm.
Inparticular, if the ML Ptriggerstheaarm for asample considered ‘novel’ by the novelty detector, the
alarm will be rejected.

6.2 RESULTS
The ND has been trained by means of the SOM Toolbox for Matlab, realised by the Helsinki
University [23].

The performance of the MLP predictor presented in the previous sections, integrated with the
ND block, is reported in terms of PMA and PFA calculated on areduced test set obtained by the
previous test set by discarding the pulses labelled as novel by the novelty detector.

Note that, to emphasize the ageing of the network, the testing as been performed on discharges
belonging to different campaigns.

The system returns a PM A equalsto 7.14%, and a PFA equals to 0.00%.

In particular, 16 of the 20 missed alarms triggered by the MLP predictor are now reported as
novel by the ND. The uniquefalse alarm predicted by the ML Pisreported asnovel by the ND, thus
the number of FAsin the on-line application is equal to zero. Furthermore, the 3 disruptive pul ses,
which have not been considered as correctly predicted, asthe system triggered the alarm to much in
advance with respect to the disruption timet,, are reported as novel too.

It is worth noting that, as expected, some disruptions (11), correctly predicted by the MLP, are
reported asnovel by the ND. Hence, although the number of FAsand of MAsconsiderably decreases,
the discrimination capability of the systeminthe on-line application dightly reduces, with aprediction
success rate, calculated on the entire test set, decreasing from 87.23% to 84.57%.

CONCLUSIONS
A Red time disruption prediction tool, based on a MLP Neura Network, has been successfully
implemented and tested over the whole flat top phase of JET discharges.

Therobustness of the tool has been quantified on atest set of pulsesat 100msbefore the disruption
occurrence with apercentage of False Alarmslessthan 1% whereas the percentage of Missed Alarms
islower than 24%.

The capability to predict the disruption 100 ms before the occurrence of the phenomenon is very
promising in order to apply mitigation procedures or soft landing.

The MLP predictor has been al so compared with the existing deterministic L ocked Modeindicator
based on athreshold applied on amagnetic signal. The ML P predictor isableto reduce the percentage
of Missed Alarms more than 50 % with respect to the L ocked Mode indicator.

Moreover, in 66% of the disruptions correctly predicted by both systems, the ML Ppredictor isable
to trigger the alarm before the Locked Mode indicator.
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Thetest set of pul seshasbeen created including disruptive pul ses bel onging to experimental campaigns
temporarily far from those used to train the network. This has been intentionally doneto highlight the
ageing effect of the proposed approach, as recorded aso in other similar tools applied to different
tokamaks.

Anintegrated system, based on aNovelty Detector tool, able to detect the ageing of the input data,
because belonging to an operational space different from those used to train the network, has been
implemented for the first time. Thisis able to reduce the Missed Alarm rate and the False Alarm rate
on ‘not novel’ pulses, whereas, as reasonably expected, the prediction success rate on the entire data
set decreases because the Novelty Detector reportsasnovel aso asubset of disruptive pulsescorrectly
predicted by the ML P predictor. Thisresult was a so partially expected due to the choice done on the
creation of the test set of pulses.
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Signal name Units

1. Plasmacurrent [A]

2. Locked Mode [T]

3.  Radiated power [W]

4.  PlasmaDensty [1/m31

5. Input Power [W]

6. Internal Inductance

7.  Sdafety factor

8. Poloidal Beta

9. Plasmacentroid vertica position  [m]

Table I: Diagnostic signals.
Training Set Validation Set Test Set

PMA 0.00% 17.65% 23.26%
PFA - - 0.98%
Prediction Success Rate 100% 82.35% 87.23%

Table Il: Network performance in terms of Percentage of False Alarms (PFA),
Percentage of Missed Alarms (PMA), and Prediction Success Rate.

MLP
PMA 23.26%

MLI
51.16%

Table I11: Comparison between MLP and SS
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Figure 1: Architecture of the prediction system. Continuous lines: training path; dashed line: test path
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Figure 2: SOM of the disruptive Pulse No: 53041: the chequered map unit contains the sample at ty; the dotted map
units contain transition samples; the white map unitsdo not contain any sample; the grey map units contain safe samples.
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Figure 3: Output of the MLP predictor for the disruptive
training pulse Pulse No: 51519.
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Figure 4: Output of the MLP predictor for the disruptive
test Pulse No: 50166.
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Figure 5: Architecture of the prediction system with the Novelty Detector.
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