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ABSTRACT.

The assumption that the tokamak magnetic configuration at equilibrium is associated with the
stationary magnetic entropy and with minimum plasma thermal energy leads to the prediction of
definite profiles for the induced current density and for the pressure. These profiles should
characterize the states spontaneoudy assumed by the tokamak under normal conditions (to be defined
in the text).

The theoretical results are compared with the observations collected from different tokamaks,
plasma regimes and heating methods, taking into account the possible existence of non inductive
currents. The comparison allowstheidentification of thelimitsof validity of themodel and confirms
the robustness, within these limits, of the magnetic entropy concept for the description of the
“privileged” tokamak states.

1. INTRODUCTION
The equilibrium of the plasma confined in a magnetic field is completely determined when the
distribution of the current density and of the pressure is known together with the external physical
and geometrical conditions. However the current density and the pressure are not fully fixed by the
equation describing the static magnetic equilibrium (e.g. the Grad-Shafranov equation) in view of
the arbitrary functions involved by this equation. Surely the macroscopic equilibrium is the result
of the complex dynamics of the underlying system of particles subject to individual as well asto
collectiveinteractions. Notwithstanding this complication, one could ask whether theseinteractions
may result finally in a spontaneous selection among the infinite possibilities allowed by the
arbitrariness of the equation, a selection operated innerly by the plasmaitself whenit isnot forced
artificially toward a specific configuration by external interventions. According to this point of
view oneisled naturally to consider that to the equilibrium states of the plasma could correspond
suitably defined probabilities whose rel ative measure determines the selection among all possible
states of the fluctuating system. That is, one could introduce the possibility space of all current
density distributions (conveniently coarse-grained) and define the probability p, of each distribution
(labeled by i) under suitable constraints. We have adopted the point of view of information theory
where the constraints have a hypothetical meaning to be confirmed by the experimental test. The
collective (macroscopic) equilibrium state of the plasmaisintroduced through the constraints and
ischaracterized in the statistical model by thefact that it isindependent of the effectsat theindividual
particle level, asis the case of collective systems described by Vlasov equation [1]. The entropy
defined by the classical relation of information theory S= —E p.In(p,) will then provide the
interpretative tool for inserting the state selection based on probability in the framework of a
generalized thermodynamics.

Following thisline of thought one arrives at the concept of “magnetic entropy” [1], afunctional
of the macroscopic current density j and of the vector potential A, whose variation properties
determine the “privileged” plasma equilibria
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where u isaparameter (a Lagrange multiplier) whose role will beillustrated in the text.

The present paper is dedicated to the comparison with the experiment of the privileged states
predicted by the variation properties of (1.1) in the case of a stationary tokamak. The tokamak isan
open system in interaction with the external world through the Ohmic transformer and the auxiliary
power. Since the system is not isolated, the entropy is not required to be maximum, but it can be
assumed to be stationary even locally, expressing the local balance between the entropy injected
externally and the entropy produced in the plasma. This assumption leads to an equation for the
inductive current density [1,2] whose aspectsin cylindrical circular geometry will be discussed in
section 2. In section 3 we discuss the thermodynamic rel ation that holds under stationary conditions
between this equation and the electron transport in the domain of validity of the theory. In section
4 we present the form of the pressure profiles derived, according to refs.[2,3], from the requirement
that the total plasmathermal energy is stationary (in general minimum) for fixed magnetic entropy
(1.1) andfor fixed plasmainduced current. One obtainsaone-parameter family of suitably normalized
pressure profiles, each profile (in general concave) being fixed by the value of the total thermal
energy of the plasma.

In section 5 the theoretical resultsfor the current density and for the pressure are compared with
the observations in a number of discharges in different tokamaks, with different plasma regimes
and heating methods (see Table I). The domain of validity of the theory is clearly illustrated
considering situations with strong non inductive currents or when the current profileis artificialy
modified by external interventions (e.g. for generating an internal transport barrier). Finally, section
6 contains the conclusion and the Appendix gives information about the correction that is applied
for taking into account the noncircular geometry.

2. STATIONARY MAGNETIC ENTROPY (SME) AND THE EQUATION FOR THE
CURRENT DENSITY

The SME equation for the current density in atokamak, whose predictions will be compared with

the observations, has the form [1]
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whereE = Ee, isthe externally induced electric field. We shall discusslater in this section therole,
connected with the loop voltage, of the parameter u. In section 3 it will be shown, on the ground of
the consistency of eq.(2.1) with the electron power balance, that the quantity pg is the net power
density (auxiliary power minus non diffusive losses) deposited on electronsin addition to the term
E.j, under the thermodynamic conditions consistent with the stationary entropy.



The current density in eg.(2.1) isthe inductive current driven by the electric field E.In general the
total current density will be the sum of inductive and non inductive parts (neglecting a possible
interaction between the two parts)

ot (N = 1 (1) + g ) 2.2)

The form of ;4 (r) depends on the specific mechanism that createsit (the mechanism of bootstrap
and that of the current drive by electromagnetic fields or neutral injection) and it is taken from
experiment, that is, it is calculated from their generation mechanism consistently with the
experimental data. Eq.(2.1) is expected to hold when the plasma settlesin an asymptotical relaxed
situation in the absence of a strong non inductive drive and outside the region where macroscopic
dynamical processes (e.g. sawteeth) are present. In general the zone of relaxation is a bounded
region, the so called “confinement region”. This excludes the central region of the discharge
dominated by sawteeth up to the value g(r,) = 1 of the safety factor and the edge region withr > sa
where sisafraction of the minor radius a and sa corresponds to some value of r outside the surface
withq= 2.

Eqg.(2.1) is solved in cylindrical circular geometry. A correction for noncircular geometry is
applied to the calculation of integral quantitieslikethetotal current, the poloidal magnetic field and
the safety factor (see Appendix).

The boundary value of j(r) at r = sa istaken from experiment as well as the loop voltage U and
the electric field E = U/2aR. The value at the inner boundary r = r; depends on the physical
situation in the central regionr < r and will be discussed in section 5. The parameter u isthen used
to fit the solution to the given boundary conditions and the given U. Thisis achieved in general for
avaue of usalower than one (see Tablell). The profiles becomerather insensitive to changes of usa
(and of U) below this value. Also they are rather insengitive to the intensity and the detailed form of
the power deposition pg (profile consistency). Indeed pg enters eg.(2.1) through the term /f pE/E
which tendsto be essentially invariant with respect to changes of thefactors[3], whilepg (r) determines
the current density profilethrough adoubleintegration (see eg.(4.3)) which smoothes out the detailed
form of the power deposition.

When the relaxed region reaches the minor axis (e.g. in the case q(0) > 1 the solution isfixed by
reguiring the vanishing of the derivative of j(r) at r = 0 and the value of j(r) at r = sa. However in
the cases considered here the relaxation region of the current does no include the axis and the
solution is obtained by taking from the experiment the values of the current density at the inner and
outer boundaries of this region.

3. THERMODYNAMIC RELATION BETWEEN THE SME EQUATION AND THE
ELECTRON THERMAL TRANSPORT
Let us compare the integral of the SME equation (2.1) with the power balance of the electrons
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where ¢, isthe thermal flux of the electrons and Sis the surface enclosing the plasmavolume V- It
followsthat in the SME states the thermal flux isrelated to the derivative of the current density
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provided that pg isthe net non Ohmic power density deposited on electrons. In thisway the stationary
entropy condition expressed by the first equation (3.1) implies the power balance expressed by the
second equation (3.1).

Assuming for smplicity cylindrical circular geometry, one can easily expressthe heat flux across
the outer surface S= 4x° rRin terms of the ratio S,(r)/q(r) between the magnetic shear s, and the
safety factor. Indeed combining the relation
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with the expression (3.2) one obtains
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wherethe constant isfixed by the boundary condition at theinner border of the confinement region.
The heat flux is then expressed in terms of the magnetic configuration, which in turn depends on
the power deposited on electrons through the SME equation. In order to determine the temperature
one needs a constitutive relation, for instance

dT,
—Ng Xt dire =0y (35)

The electron temperature T, calculated from eq.(3.5), istherefore the result of the combined effect
of the magnetic configuration at hand and of the thermal transport described by the specific form of
X

4. PRESSURE PROFILE OF THE SME STATES
The pressure profile will be expressed in terms of the poloidal flux vy, which is determined in the
cylindrical limit by the D’ Alembert equation
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where y = —RA; (A, is the axial component of the vector potential). One has a simple relation
between v and the solution j of eg.(2.1). Taking into account (2.2) and (4.1), eq.(2.1) becomes

2 2
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After adouble integration one obtains

X X
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Herex = r/sawhere saisthe outer border of the integration zone (the confinement zone), D, and D,
are integration constants to be fixed by the boundary conditions on the current density and

J_[E (X) - pE(X) B EJ nind (X) (45)

The pressure profile is determined applying the variation procedure previously introduced in refs.
[2,3], namely we assume that the plasmathermal energy in the confinement zone

w= > [p@)av (4.6)

is stationary (it turns out to be minimum in the practical cases) with respect to variations dy such
that the total induced current 1,4 = J 2xjrdr and the magnetic entropy (defined by (1.1) with the
induced current density (4.3)) are fixed

6(W+ 1’]18+ nZIII’]d) =0 (47)

where ] = —(M2/4nR)6w (consistently with (4.3)) and n; and ), are Lagrange multipliers. This
requirement leads to the following equation for the pressure [2,3]
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The integration of this equation gives p(x) once y(x) is known (y(X) is calculated from (4.1) after
solving (2.1) for j). There are three constants to be determined, namely n,, 1, and the integration
constant of (4.8) (the constants D, and D, are fixed by the boundary conditions on the current
density, see next section). The values of p at the two boundaries of the integration zone (to be taken
from the experiment) leave uswith one constant free. This constant can be expressed in termsof the



plasmathermal energy in the integration zone (thisis related to the width and to the concavity of
the pressureprofile). Werefer for thedetailsto [2,3]. We arethen restricted by the variation procedure
aboveto aone-parameter family of pressure profiles. In order to fix aspecific profile of the family
one should solve the equations of transport. Here we take from the experiment the value of the total
plasmathermal energy of the discharge at hand.

Thetreatment above holdsin the large aspect ratio limit of the toroidal equilibrium described by
the Grad-Shafranov equation. For the treatment of the SME model in toroidal geometry seerefs[2,3].
The consistency of the SME equation (2.1) and of the principle of minimum plasma energy with
the Grad-Shafranov equation imposes strong constraints on the arbitrary functions entering into
thisequation. Thisleads naturally to the calculation of the effect of poloidal currents on the toroidal
field. Here the toroidal field is assumed as purely external and uniform.

5. SME STATESAND EXPERIMENTAL OBSERVATIONS

Thefirst step of the analysis consistsin astandard interpretative transport simulation performed
with a transport code (JETTO, ASTRA, CRONOS, EVITA), using for the input profiles the
experimental data, including, for part of the JET shots, the safety factor calculated taking into
account the Motional Stark Effect. This process produces the radial profile of the inductive
current density and of the pressure to be compared with that predicted by the SME equations
(2.1) and (4.8).

The natural field of application of the SME model concerns relaxed states in which the
dissipation processes are counterbalanced by external sources (Ohmic or auxiliary) such that the
magnetic entropy and the plasma state are constant in time. On the basis of the data collected
from different machines [4], we are able to analyze with our method different heating scenarios,
from highly localized EC heated plasmas of FTU and TS to broader electron heating obtained in
JET using the Mode Conversion |CRF. The effects of high magneticfield (7.2T) and high electron
density are studied in aset of Ohmic shotsof FTU. Theresults on quasi- circular plasmas of FTU
and TS can be compared with those on the elongated plasma of JET. Different confinement
regimes are explored as well, comparing L-modes of FTU, TS, and JET with H-mode, ITB and
Hybrid Mode cases of JET.

Table | shows the characteristic parameters of the discharges analyzed in this paper (for the
definition of the geometrical parameters ky, and k., see the appendix). We concentrated mainly on
auxiliarly heated discharges, as the case of purely Ohmic discharges has been already studied in
TCV [2,5]. The SME equationsare solvedin arelaxed zonesal <r < sausing for E the experimental
value obtained from the loop voltage and taking from experiment the values of j and p at the
boundaries. Theinput pg to (2.1), which givesthe net non Ohmic power on electrons, is supplied by
the interpretative transport codes. Table |1 shows the parameters involved in the solution of (2.1)
and (4.8) and the quantities
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which are ameasure of the adherence of the theoretical current density and pressure profilesto the
experimental onesintheregionsal <r <sa. Theloop voltage U(V) isnot critical for the determination
of the profiles because a change of U can be compensated to some extent by a change of u asis
clear by inspecting equation (2.1). The value of s gives the upper limit of the confinement region
and a good fit is generally obtained for 0.75 < s< 0.95 with a mean square deviation (5.1) lower
(often much lower, see Table I1) than 10%.

In the discussion of the data of the Tableswe distinguish two cases depending whether the saf ety
factor g,on axisislower or larger than one.

5.1. SHOTSWITH ¢, <1:

In the presence of sawteeth the inner boundary saA should fixed in the neighborhood of the surface
g = 1. Itisinstructive to check the sensitivity of the results to the choice of the inner boundary
surface. In fig.1 the mean sgquare deviation is calculated from (5.1) with the theoretical current
density normalized at the experimental value on the inner boundary surface q = 1 and with the
experimental current density normalized to its value at a displaced surface q = 1 + Ag. The mean
sguare deviation is plotted as function of the position of this surface, labeled by Ag, and one sees
that it remains significantly below 10%, and practically insensitive to g for g > 1. At the contrary,
in many cases, the deviation increases rapidly when q decreases below one, denoting aworsening
of the adherence between the theoretical and the experimental current density profilesin theregion
dominated by the sawteeth.

It isworthwhileto point out adifferencein the dependence of the current density on the poloidal
flux intheL and H discharges, which fact could be useful for the understanding of the L-H transition.
As shown by some examples in fig.2 the j(y) curve (where the entire dependence of fon ris
expressed through  (r)) isconcavein the case of the L shots (fig.2a) and islinear in the case of the
H shots (fig.2b) up to r = 0.85a. It has been shown [1] that the linear dependence of j on v is
associated with a state of absolute maximum of the magnetic entropy. Therefore one should expect
that the plasma is evolving spontaneously towards this state from the L-state provided that the
transition is sufficiently rapid for considering the system asisolated from the external world during
the transition time. From the thermodynamic point of view the situation is the same as that of the
states described by the Taylor’s model of the reversed field pinch. The force free states correspond
as well to the absolute maximum of the entropy [1] with T~ A (,5:, vector potential). Consequently
they should be reached spontaneously in a pinch configuration provided that the plasma could be
considered asisolated from the external world (e.g. enclosed in aperfectly conductive shell and not



subject to auxiliary heating). This condition is verified only approximately in practical devices.

In the following figures typical situations extracted from the list of Table | areillustrated in detail
by plotting the experimental and theoretical current density and pressure profiles, as well as the
experimental non Ohmic net power deposition pg on electrons, which isamark of the discharge.
Infigs. 3to 9 the value of g on the minor axisislower than one, whileinfigs.10to 11itislarger. In
the former case the theoretical profiles are calculated in the region g = 1. The experimental profiles
were measured at atime (specified in the plots) when the discharge can be considered as stationary.
Infig.3 we present an example of the ECRH dischargein FTU (shot 18290). In this shot the EC power
(0.85MW) isdeposited in asinglelocation (in shot FTU 18281, also listed in the Tables, the same EC
power isdistributed in two different locations) For further details on these shots seeref.[3]. Figs.4 and
5 present examples of Ohmic and EC discharges in TS (shots 311650h and 31165ec respectively),
whilefig.6 (JET 44013) gives an example of the NBI heated H-state, where the geometrical effects of
the elongation have been taken into account in the theoretical calculations (see Appendix).

Figures 7 and 8 areexamplesof JET L-dischargesinwhichthetota current density profileincludes
non inductive currents (bootstrap+current due to NBI) (shots 55805 and 55809).

Figure9isan example (JET 50630) of aH-dischargewith significant noninductive current (0.22MA)
in a high density plasma (n = 0.71:10° m™).

Shots with g, >1: In order to compare the theory with not relaxed situations and to gain a
comprehensive view of itslimits of validity, we have considered avariety of current density profiles.
Thelist of table includes caseswherethe current profile has been controlled at the centre by external
interventions such as ramps-up and non inductive current drive in order to modify the q profile and
generate an internal transport barrier (shots JET 53298, 58148, 59397, 59211, 53506). As we shall
see, theregion of validity of the SME profilesisrestricted to those values of )sq Which exclude the
region where strong external modification of the current has taken place.

Figure 10 gives an example (JET 53298) of acurrent density with asmall hole on axis (figure 7(b)
circles) associated with a value of the safety factor larger than one (¢, = 1.3). Figure 7(b) (line)
shows the solution of the SME equation with derivative vanishing on axis and with the boundary
value at sa = 0.75m taken from the experiment. The solution disagrees with the experiment in the
central region but agreement, both for the current density and particularly for the pressure, isrecovered
when the SME equations are solved outside this region, taking the experimental values at the borders
(figs.7(c) and 7(d).

Figure 11 presents the interesting case with an intense non inductive current (bootstrap+current
dueto NBI) near the central axis (JET 58148, q,,,;,,~ 1.5). Figure 11(a) showsthe additional net power
deposition on el ectrons and fig.11(b) showsthe plot of the total experimental (circles) and theoretical
(line) current density as well as the non inductive part (dots). The theoretical curve isthe sum of the
non inductive part and the induced part obtained by solving the SME equation (2.1) assuming a
derivative vanishing on the minor axis and taking the experimental value for the inductive current



density at the border sa= 0.90m. One seesfromfig. 11(b) that thetheoretical profiledisagreesstrongly
inthe central region, asexpected, but it rejoinsthe experimental profile outsidetheregion of largenon
inductive current. We then solve the SME equation in this region i.e. 0.36 < r(m) < 0.90, taking the
experimental valuesof j and p at the inner and outer borders. With this additional information the
theoretical and experimental profiles of the current density and of the pressure agree in the region
above, as shown in thefigs.11(c) and 11(d).

The same situation occursin the case of the discharge 59397 with the net €l ectron power deposition
shown in fig.12(a). In this case a deep central hole in the current profileis created by the combined
effects of the ramp-up of the current, of the bootstrap current and of the Lower Hybrid-NBI+ICRH
heating, in order to generate an internal transport barrier. Figure 12(b) shows how the theoretical
profile, which deviates strongly in the centre from the experimenta one, regjoins the experimental
behavior outside the region where the central hole was artificially created. Figures 12(c) and 12(d)
show the satisfactory adherence of the theoretical and experimental profilesin the outsideregion 0.42
< r(m) < 0.95 where the SME equations are solved.

The other shots with q,,;,> 1 listed in Table |1 are treated with the same procedure as above: first
onesolvesthe SME equationin thewholeinterval fromr =0 tor =sain order to determinetheregion
of adherence between theory and experiment. Then the SME equation is solved again in this region
with the appropriate boundary conditions.

Recently two papers appeared [6], [7], in which the experimental indications on the profile
consistency, collected from different machines, are discussed. Inref.[ 7] the experiments are compared
with the assumption that the canonical” current density and pressure profilesare proportional, i.e. j ~
p. Itisaso stated that “in the SME theory an unambiguous connection between canonical current and
pressure profilesis not established”. In fact the relation j ~ p assumed in ref.[7], has been derived
from the SME model in the Ohmic case (seeref.[8], egs.(14) and (16)). In the presence of auxiliary
heating the simple relation above is not valid and the profilesof j and p are described by the more
flexible SME equations (2.1) and (4.8). Theinsensitivity of the SME equilibrium to the intensity and
theform of the deposited power profileis contained in the properties of invariance of these equations.

CONCLUSIONS

In the absence of strong external artificia interventions such as intense non inductive drive, the
current density and pressure profiles assumed spontaneously by the plasma at equilibrium in the
tokamak can be derived from general variation principles. These principlesfollow from an extension
of the thermodynamic formalism to high temperature (collisionless) magnetic plasma equilibria,
based on probability and information [1], which leads to the magnetic entropy functional (1.1). The
induced current density is described by eg. (2.1), which is derived from the condition that the
magnetic entropy of the tokamak, considered as an open system, is stationary locally (the SME
condition). The pressure profileis described by eg.(4.8), which follows from SME, combined with
the requirement that the plasma thermal energy is minimum.



Withinitslimits of validity, the description based on the equations above is of surprising precision
and simplicity. These results are of theoretical aswell of practical interest. They are of theoretical
interest because they establish the reliability of the thermodynamic point of view, which alows,
under certain conditions, the description of the plasma equilibrium without resorting to the
complicated mathematics of the dynamical treatment for eliminating the arbitrariness implicit in
the Grad-Shafranov equation. They are of practical interest because they imply that the transport
coefficients are so constrained asto adapt the transport to the equilibrium determined by the general
variation principles. The global point of view offered by thermodynamics, though independent of
the detailed dynamical mechanisms, alowsthe unraveling of those phenomenological parameters,
which are at the heart of the physical process and which are therefore worthy of the more specific
dynamical analysis. One exampleisthe observation on the H-statesindicated in fig.2, which points
to a specific thermodynamic distinction between the L- and H-states, worthy of a more detailed
inspection susceptible of fruitful results. Thus, once the soundness of the variation principlesis
established, one can proceed to analysing the experimental dataon transport in the light of the new
point of view.

The electron temperature is described by the transport equation (3.5) in which the right hand
side can be expressed in terms of the magnetic configuration, while the left hand side contains the
transport effects embodied by the thermal electron diffusivity. Through this equation the electron
transport adapts flexibly to the magnetic equilibrium imposed by the variation properties of the
magnetic entropy and of the plasma energy.

Last but not least, the extension of the functional (1.1) to the case of electric charge or mass
distributions and the associated potentials, opens new perspectives for the treatment of the
macroscopic collisionless electrostatic and self-gravitating equilibria.

APPENDI X:

CORRECTION FORA CYLINDRICAL GEOMETRY WITH ELONGATION

A geometrical correction for noncircular geometry, even though approximate, is applied to the
calculation of all integral quantities (total current, total power, magnetic poloidal flux and so on) by
expressing the volume element with the cylindrical coordinates x = r cos,y = rk,(r)sing, where
the elongation is given by the expression k. (r) = (kg — Kyg)/r/a+ K. One obtains (after averaging
over the angle).

dxdy = 273(r)rdr with J(r) = k(r) + (r/2)dk/dr (A1)

One then defines an effective current density j« (1) = j,: (r)J(r), and an effective poloidal magnetic

field given by the equation
1d _ Al
?a(ng) . Jest (1)

(A2)

10



The safety factor is obtained from the expression

2By 1+Kka(r)
2RI 2

q(r)= (A3)

where I(r) = 2t [ j (r) rdr.
0

The expression (4.8) for the pressure is also corrected by introducing the Jacobian J(X) in the
integral involving the power density (the effective power being pe(x)J(x)) and expressing the pol oi dal
flux y with the effective magnetic field given by (A2).

Clearly the correction above holds only for a large aspect ratio and is defective when toroidal
geometrical effects become important.
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TABLE |

MacR/a Shot Regime MainHeating [(MA) ngl0® By(T) kg kg Py (MW)
FTU0.97/0.30 18290 L ECRH 040 113 570 103 1.02 085
FTU 18281 L ECRH 040 128 580 103 1.02 085
FTU 23053 L OHMIC 110 135 720 103 102 00
FTU 23179 L OHMIC 140 260 720 103 1.02 00
TS242/0.75  311650h L OHMIC 100 030 385 10 105 00
TS 31165ec L ECRH 100 030 38 10 105 0.80
JET3/1 44013  H NBI 260 068 270 140 1.75 15
JET 55805 L NBI+ICRH 160 023 336 125160 6.1
JET 55809 L NBI+ICRH 160 026 325 130 1.60 12
JET 53298  H NBI 220 056 260 135173 15
JET 50630  H NBI+ICRH 280 071 276 140 170 125
JET 58148  H NBI+ICRH 180 029 340 140 175 18
JET 59397 ITB NBI+ICRH 280 033 345 163 175 17
JET 56083  H NBI+ICRH 250 115 270 134 185 15
JET 62789 Hyb NBI+ICRH 260 032 320 130 163 20
JET 59211  H NBI 180 053 280 125 150 12
JET 53506 eITB  NBI+ICRH 240 016 340 135 163 6.0
JET 53822 L ICRH 190 035 340 130 1.60 6.0
JET 55802 L NBI+ICRH 160 029 325 127 160 6.0
JET 53299  H NBI 250 012 270 135173 155
JET 50628  H NBI +ICRH+ 280 060 277 137 170 126
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Mac
FTU
FTU
FTU
FTU
TS
TS
JET
JET
JET
JET
JET
JET
JET
JET
JET
JET
JET
JET
JET
JET
JET

Shot
18290
18281
23053
23179
311650h
31165ec
44013
55805
55809
53298
50630
58148
59397
56083
62789
59211
53506
53822
55802
53299
50628

usa
0.20
0.03
0.15
0.03
0.01
0.10
0.30
0.05
0.01
0.30
1.70
0.10
0.65
0.25
0.25
0.10
0.10
0.05
0.40
0.05
0.10

u(v)
1.0
1.0
1.73
2.60
0.80
0.55
0.20
0.33
0.40
0.15
0.35
0.20
0.60
0.25
0.70
0.20
0.20
0.40
0.30
0.20
0.35

TABLE II

S

0.73
0.75
0.80
0.80
0.93
0.93
0.75
0.90
0.75
0.75
0.90
0.90
0.95
0.80
0.70
0.80
0.90
0.70
0.75
0.80
0.95

A
0.17

0.15
0.55
0.62
0.20
0.22
0.44
0.12
0.13
0.26
0.16
0.40
0.44
0.51
0.35
0.19
0.44
0.23
0.15
0.45
0.20

Aq
1-3.94
1-3.93
1-2.15
1-1.72
1-4.13
1-4.09
1-2.15
1-5.88
1-3.92

1.41-3.22
1.03-2.78
2.17-5.36
1.71-4.33
1-2.11
1.02-2.60
1.25-3.93
1.76-4.20
1-3.48
1-3.55
1-2.21
1.03-3.24

er]
0.042
0.071
0.086
0.033
0.068
0.070
0.031
0.039
0.076
0.042
0.079
0.035
0.042
0.022
0.075
0.026
0.043
0.077
0.030
0.042
0.115

ep
0.022
0.035
0.023
0.034
0.011
0.043
0.027
0.086
0.063
0.022
0.040
0.040
0.026
0.036
0.036
0.024
0.043
0.039
0.060
0.044
0.025
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Figure 1: The mean square deviation of the theoretical current density profile with respect to the experimental profile
when jq,e and jexp are normalized on inner boundary surfaces displaced by Ag.

@ (b)
1.0 1.0
0.8~ 0.8~
L i)
© - © -
= 0.6 = 0.6
— —
£ £
g =
04 Fru 18290 04 FrU 18290
— TS311650h — TS311650h
— JET Pulse No: 53822 — JET Pulse No: 53822
— JET Pulse No: 55802 — JET Pulse No: 55802
0.2~ — JET Pulse No: 55805 g 0.2~ — JET Pulse No: 55805 g
— JET Pulse No: 55809 z — JET Pulse No: 55809 g
| | | | 3 | | | | S
-25 -2.0 -1.5 -1.0 -0.5 0 -2.5 -2.0 -1.5 -1.0 -0.5 0
Polidal flux for r < 0.85a Polidal flux for r < 0.85a

Figure 2: Dependence of the normalized current density on ¥ =/ (sa)2 (where v isthe poloidal fluxin Tesla m’

divided by 27) in the range fromq = 1 tor = 0.85a, according to experimental equilibrium reconstruction: (a) L-
states; (b) H-states.
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Figure 3: FTU 18290 with EC heating; (a) radial profile of the non Ohmic power density on electrons; (b) theoretical
(line) and experimental (circles) profiles of the current density in the range 1< < 3.94 of the safety factor; (c) theoretical
(line) and experimental (circles) pressure profilesin the same range, normalized on the surface g=1.
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Figure 4: TS 311650h; (a) radial profile of the non Ohmic power density on electrons; (b) theoretical (line) and
experimental (circles) current density profiles in the range 1<q<4.13 (including 0.14MA of non inductive current)
and (c) the corresponding normalized pressure in the same range.
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Figure 5: TS 31165ec with EC heating; (a) radial profile of the non Ohmic power density; radial theoretical (line)
and experimental (circles) profiles of the current density (b) (including 0.14MA of non inductive current) and of the

normalized pressure (c) in the range 1<q<4.09.
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Figure 6: JET Pulse No: 44013 NBI heated H state; (a) radial profile of the non Ohmic power density on electrons;
radial theoretical (line) and experimental (circles) profiles of the current density (b) and of the normalized pressure

(c) intherange 1<g<2.15.
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Figure 7: JET Pulse No: 55805 NBI+ICR heated L-state; (a) radial profile of the power density on electrons; radial
theoretical (line) and experimental (circles) profilesof thetotal current density (b),(including 0.20MA of non inductive
current) and of the normalized pressure (c) in the range 1<g<5.88.
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Figure 8: JET Pulse No: 55809 NBI+ICR heated L-state; (a) radial profile of the non Ohmic power density on
electrons; radial theoretical (line) and experimental (circles) profilesof thetotal current density (b) (including 0.27MA
of non inductive current) and of the normalized pressure (c) in the range 1<q<3.92.

20



@ (b)
0.05 Power density on electrons 0 Current density
Pulse No: 50630 Pulse No: 50630
Time = 10s Time = 10s
o
15- ©
’ ©]
O o
E 1o
=3
o
0.5 ©
’ o
g o exp ¢
e Pe 2 —— SME Of
-0.15 | | | | S 0 | | | | S
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
R (m) R (m)
(©
1'Z(I;ressure
Pulse No: 50630
0] Time = 10s
o
1o~ ©
0.8 o
S 0.6
s
0.4+
0.2
o exp 3
— SME ols
0 \ \ \ \ 9
0 0.2 0.4 0.6 0.8 1.0
R (m)

Figure 9: JET Pulse No: 50630 NBI+ICR heated H state with high density (n(0)-10"%° = 0.70); (a) radial profile of
the non Ohmic power density on electrons; radial theoretical (line) and experimental (circles) profiles of the total
current density (b) (including 0.22MA of non inductive current) and of the normalized pressure (c) in the range

1.03<q<2.78.
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Figure 10: JET Pulse No: 53298 NBI heated H state; (a) radial profile of the non Ohmic power density on electrons;
(b) solution of the SVIE equation with zero derivative on axis (line) and experimental profile (circles) with hole on
axis (0, = 1.3); theoretical (line) and experimental (circles) profiles of the current density (c) and of the normalized

pressure (d) in the outside zone 1.41<g<3.22 with r(m)>0.20.
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Figure 11: JET Pulse No: 58148 NBI+ICR heated H state with intense non inductive current in the central region
(Orin=1.5);(a) radial profile of the non Ohmic power density on electrons; (b) total theoretical (line) and experimental
(circles) current density and the non inductive part (dots); (c) theoretical (line) and experimental (circles) profiles of
the current density and of the non inductive part (dots) in the outside zone 2.17< < 5.36 with r (m)>0.36; (d) theoretical
(line) and experimental (circles) normalized pressure in the same zone.
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Figure 12: JET Pulse No: 59397 NBI+ICR heated with internal transport barrier(q,,, =1.6) and 0.38MA of non
inductive current. (a) radial profile of the non Ohmic power density on electrons; (b) total current density, including
the non inductive part (dots), obtained from the solution of the SME equation with zero derivative on axis (line) and
experimental profile (circles) with deep hole on axis. Theoretical (line) and experimental (circles) profiles of the
current density (c) and of the normalized pressure (d) in the outside zone 1.71<q<4.33 with r(m)>0.42.
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