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ABSTRACT.

The assumption that the tokamak magnetic configuration at equilibrium is associated with the

stationary magnetic entropy and with minimum plasma thermal energy leads to the prediction of

definite profiles for the induced current density and for the pressure. These profiles should

characterize the states spontaneously assumed by the tokamak under normal conditions (to be defined

in the text).

The theoretical results are compared with the observations collected from different tokamaks,

plasma regimes and heating methods, taking into account the possible existence of non inductive

currents. The comparison allows the identification of the limits of validity of the model and confirms

the robustness, within these limits, of the magnetic entropy concept for the description of the

“privileged” tokamak states.

1. INTRODUCTION

The equilibrium of the plasma confined in a magnetic field is completely determined when the

distribution of the current density and of the pressure is known together with the external physical

and geometrical conditions. However the current density and the pressure are not fully fixed by the

equation describing the static magnetic equilibrium (e.g. the Grad-Shafranov equation) in view of

the arbitrary functions involved by this equation. Surely the macroscopic equilibrium is the result

of the complex dynamics of the underlying system of particles subject to individual as well as to

collective interactions. Notwithstanding this complication, one could ask whether these interactions

may result finally in a spontaneous selection among the infinite possibilities allowed by the

arbitrariness of the equation, a selection operated innerly by the plasma itself when it is not forced

artificially toward a specific configuration by external interventions. According to this point of

view one is led naturally to consider that to the equilibrium states of the plasma could correspond

suitably defined probabilities whose relative measure determines the selection among all possible

states of the fluctuating system. That is, one could introduce the possibility space of all current

density distributions (conveniently coarse-grained) and define the probability pi of each distribution

(labeled by i) under suitable constraints. We have adopted the point of view of information theory

where the constraints have a hypothetical meaning to be confirmed by the experimental test. The

collective (macroscopic) equilibrium state of the plasma is introduced through the constraints and

is characterized in the statistical model by the fact that it is independent of the effects at the individual

particle level, as is the case of collective systems described by Vlasov equation [1]. The entropy

defined by the classical relation of information theory S p pi i

i

= − ( )∑ ln  will then provide the

interpretative tool for inserting the state selection based on probability in the framework of a

generalized thermodynamics.

Following this line of thought one arrives at the concept of “magnetic entropy” [1], a functional

of the macroscopic current density j and of the vector potential A, whose variation properties

determine the “privileged” plasma equilibria:

→ →
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 (1.1)

where µ is a parameter (a Lagrange multiplier) whose role will be illustrated in the text.

The present paper is dedicated to the comparison with the experiment of the privileged states

predicted by the variation properties of (1.1) in the case of a stationary tokamak. The tokamak is an

open system in interaction with the external world through the Ohmic transformer and the auxiliary

power. Since the system is not isolated, the entropy is not required to be maximum, but it can be

assumed to be stationary even locally, expressing the local balance between the entropy injected

externally and the entropy produced in the plasma. This assumption leads to an equation for the

inductive current density [1,2] whose aspects in cylindrical circular geometry will be discussed in

section 2. In section 3 we discuss the thermodynamic relation that holds under stationary conditions

between this equation and the electron transport in the domain of validity of the theory. In section

4 we present the form of the pressure profiles derived, according to refs.[2,3], from the requirement

that the total plasma thermal energy is stationary (in general minimum) for fixed magnetic entropy

(1.1) and for fixed plasma induced current. One obtains a one-parameter family of suitably normalized

pressure profiles, each profile (in general concave) being fixed by the value of the total thermal

energy of the plasma.

In section 5 the theoretical results for the current density and for the pressure are compared with

the observations in a number of discharges in different tokamaks, with different plasma regimes

and heating methods (see Table I). The domain of validity of the theory is clearly illustrated

considering situations with strong non inductive currents or when the current profile is artificially

modified by external interventions (e.g. for generating an internal transport barrier). Finally, section

6 contains the conclusion and the Appendix gives information about the correction that is applied

for taking into account the noncircular geometry.

2. STATIONARY MAGNETIC ENTROPY (SME) AND THE EQUATION FOR THE

CURRENT DENSITY

The SME equation for the current density in a tokamak, whose predictions will be compared with

the observations, has the form [1]

(2.1)

where E = Eeφ is the externally induced electric field. We shall discuss later in this section the role,

connected with the loop voltage, of the parameter µ. In section 3 it will be shown, on the ground of

the consistency of eq.(2.1) with the electron power balance, that the quantity pE is the net power

density (auxiliary power minus non diffusive losses) deposited on electrons in addition to the term

E • j, under the thermodynamic conditions consistent with the stationary entropy.

→ →

→ →

S {j, A} ∝ -   j 
2dV +            j    AdV

µ2c

4π

    ∇ j + E    j + pE = 0
E

µ2
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The current density in eq.(2.1) is the inductive current driven by the electric field E. In general the

total current density will be the sum of inductive and non inductive parts (neglecting a possible

interaction between the two parts)

(2.2)

The form of jnind (r) depends on the specific mechanism that creates it (the mechanism of bootstrap

and that of the current drive by electromagnetic fields or neutral injection) and it is taken from

experiment, that is, it is calculated from their generation mechanism consistently with the

experimental data. Eq.(2.1) is expected to hold when the plasma settles in an asymptotical relaxed

situation in the absence of a strong non inductive drive and outside the region where macroscopic

dynamical processes (e.g. sawteeth) are present. In general the zone of relaxation is a bounded

region, the so called “confinement region”. This excludes the central region of the discharge

dominated by sawteeth up to the value q(r1) ≈ 1 of the safety factor and the edge region with r > sa

where s is a fraction of the minor radius a and sa corresponds to some value of r outside the surface

with q = 2.

Eq.(2.1) is solved in cylindrical circular geometry. A correction for noncircular geometry is

applied to the calculation of integral quantities like the total current, the poloidal magnetic field and

the safety factor (see Appendix).

The boundary value of j(r) at r = sa is taken from experiment as well as the loop voltage U and

the electric field  E = U/2πR. The value at the inner boundary r = r1 depends on the physical

situation in the central region r < r and will be discussed in section 5. The parameter µ is then used

to fit the solution to the given boundary conditions and the given U. This is achieved in general for

a value of µsa lower than one (see Table II). The profiles become rather insensitive to changes of µsa

(and of U) below this value. Also they are rather insensitive to the intensity and the detailed form of

the power deposition pE (profile consistency). Indeed pE enters eq.(2.1) through the term  µ2 pE / E

which tends to be essentially invariant with respect to changes of the factors [3], while pE (r) determines

the current density profile through a double integration (see eq.(4.3)) which smoothes out the detailed

form of the power deposition.

When the relaxed region reaches the minor axis (e.g. in the case q(0) > 1 the solution is fixed by

requiring the vanishing of the derivative of j(r) at r = 0 and the value of j(r) at r = sa. However in

the cases considered here the relaxation region of the current does no include the axis and the

solution is obtained by taking from the experiment the values of the current density at the inner and

outer boundaries of this region.

3. THERMODYNAMIC RELATION BETWEEN THE SME EQUATION AND THE

ELECTRON THERMAL TRANSPORT

Let us compare the integral of the SME equation (2.1) with the power balance of the electrons

→

→

jtot (r) = j (r) + jnind (r)
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carrying the induced current

(3.1)

where qh is the thermal flux of the electrons and S is the surface enclosing the plasma volume Vp. It

follows that in the SME states the thermal flux is related to the derivative of the current density

(3.2)

provided that pE is the net non Ohmic power density deposited on electrons. In this way the stationary

entropy condition expressed by the first equation (3.1) implies the power balance expressed by the

second equation (3.1).

Assuming for simplicity cylindrical circular geometry, one can easily express the heat flux across

the outer surface S = 4π2 rR in terms of the ratio sh(r)/q(r) between the magnetic shear sh and the

safety factor. Indeed combining the relation

(3.3)

with the expression (3.2) one obtains

(3.4)

where the constant is fixed by the boundary condition at the inner border of the confinement region.

The heat flux is then expressed in terms of the magnetic configuration, which in turn depends on

the power deposited on electrons through the SME equation. In order to determine the temperature

one needs a constitutive relation, for instance

(3.5)

The electron temperature Te, calculated from eq.(3.5), is therefore the result of the combined effect

of the magnetic configuration at hand and of the thermal transport described by the specific form of
χeff.

4. PRESSURE PROFILE OF THE SME STATES

The pressure profile will be expressed in terms of the poloidal flux ψ, which is determined in the

cylindrical limit by the D’Alembert equation

→

-               ∇
2jdV =    j    EdV +   pE dV 

E

µ2

Vp Vp Vp

-    qh    dS =   j     EdV +   pE dV 
S Vp Vp

E

µ2

1
µ2qh   dS = -           ∇2 jdV = -      (E∇j - j∇E)    dS 

S SVp

j (r) = (rBθ) =
c

4πt

d

dr

cB

4πRr

r2

R(r)
d

dr

qhS = + + const
cBU

µ2R

sh

q

sh

q

1
2

d

dr

-ne χeff           = qh
dTe
dr
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(4.1)

where ψ = -RAφ (Aφ is the axial component of the vector potential). One has a simple relation

between ψ  and the solution j  of eq.(2.1). Taking into account (2.2) and (4.1), eq.(2.1) becomes

(4.2)

After a double integration one obtains

(4.3)

Here x = r/sa where sa is the outer border of the integration zone (the confinement zone), D0 and D1

are integration constants to be fixed by the boundary conditions on the current density and

(4.5)

The pressure profile is determined applying the variation procedure previously introduced in refs.

[2,3], namely we assume that the plasma thermal energy in the confinement zone

(4.6)

is stationary (it turns out to be minimum in the practical cases) with respect to variations δψ such

that the total induced current Iind = ∫ 2πjrdr and the magnetic entropy (defined by (1.1) with the

induced current density (4.3)) are fixed

(4.7)

where δj = -(µ2/4πR)δψ (consistently with (4.3)) and η1 and η2 are Lagrange multipliers. This

requirement leads to the following equation for the pressure [2,3]

(4.8)

The integration of this equation gives p(x) once ψ(x) is known (ψ(x) is calculated from (4.1) after

solving (2.1) for j). There are three constants to be determined, namely η1, η2 and the integration

constant of (4.8) (the constants D0 and D1 are fixed by the boundary conditions on the current

density, see next section). The values of p at the two boundaries of the integration zone (to be taken

from the experiment) leave us with one constant free. This constant can be expressed in terms of the

∇2ψ = jtot
4πR

c

∇2   j +          ψ  = -   (pE - Ejnind)
cµ2

4πR

µ2

E

0

x

0

x

j = -      - (µsa)2 πE (x) xdx + D01g x + D1
cµ2ψ
4πR

dx

x

πE (x) =
pE(x) - Ejnind (x)

E

W =            p (ψ) dV
3
2

δ(W + η1S + η2Iind) = 0

= η1 
dp

dψ
1

x

0

x

πE (x) xdx -              1g(x) - + η2
cµ4(sa)2

6πR

cµ2 D0
6πR

cµ2 D1
6πR

cµ2

12π2R2
dx

x
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plasma thermal energy in the integration zone (this is related to the width and to the concavity of

the pressure profile). We refer for the details to [2,3]. We are then restricted by the variation procedure

above to a one-parameter family of pressure profiles. In order to fix a specific profile of the family

one should solve the equations of transport. Here we take from the experiment the value of the total

plasma thermal energy of the discharge at hand.

The treatment above holds in the large aspect ratio limit of the toroidal equilibrium described by

the Grad-Shafranov equation. For the treatment of the SME model in toroidal geometry see refs.[2,3].

The consistency of the SME equation (2.1) and of the principle of minimum plasma energy with

the Grad-Shafranov equation imposes strong constraints on the arbitrary functions entering into

this equation. This leads naturally to the calculation of the effect of poloidal currents on the toroidal

field. Here the toroidal field is assumed as purely external and uniform.

5. SME STATES AND EXPERIMENTAL OBSERVATIONS

The first step of the analysis consists in a standard interpretative transport simulation performed

with a transport code (JETTO, ASTRA, CRONOS, EVITA), using for the input profiles the

experimental data, including, for part of the JET shots, the safety factor calculated taking into

account the Motional Stark Effect. This process produces the radial profile of the inductive

current density and of the pressure to be compared with that predicted by the SME equations

(2.1) and (4.8).

The natural field of application of the SME model concerns relaxed states in which the

dissipation processes are counterbalanced by external sources (Ohmic or auxiliary) such that the

magnetic entropy and the plasma state are constant in time. On the basis of the data collected

from different machines [4], we are able to analyze with our method different heating scenarios,

from highly localized EC heated plasmas of FTU and TS to broader electron heating obtained in

JET using the Mode Conversion ICRF. The effects of high magnetic field (7.2T) and high electron

density are studied in a set of Ohmic shots of FTU. The results on quasi- circular plasmas of FTU

and TS can be compared with those on the elongated plasma of JET. Different confinement

regimes are explored as well, comparing L-modes of FTU, TS, and JET with H-mode, ITB and

Hybrid Mode cases of JET.

Table I shows the characteristic parameters of the discharges analyzed in this paper (for the

definition of the geometrical parameters ke0 and ke1 see the appendix). We concentrated mainly on

auxiliarly heated discharges, as the case of purely Ohmic discharges has been already studied in

TCV [2,5]. The SME equations are solved in a relaxed zone saλ ≤ r ≤ sa using for E the experimental

value obtained from the loop voltage and taking from experiment the values of j and p at the

boundaries. The input pE to (2.1), which gives the net non Ohmic power on electrons, is supplied by

the interpretative transport codes. Table II shows the parameters involved in the solution of (2.1)

and (4.8) and the quantities
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(5.1)

which are a measure of the adherence of the theoretical current density and pressure profiles to the

experimental ones in the region saλ ≤ r ≤ sa. The loop voltage U(V) is not critical for the determination

of the profiles because a change of U can be compensated to some extent by a change of µ as is

clear by inspecting equation (2.1). The value of s gives the upper limit of the confinement region

and a good fit is generally obtained for 0.75 < s < 0.95 with a mean square deviation (5.1) lower

(often much lower, see Table II) than 10%.

In the discussion of the data of the Tables we distinguish two cases depending whether the safety

factor q0 on axis is lower or larger than one.

5.1. SHOTS WITH q0 1< :

In the presence of sawteeth the inner boundary saλ should fixed in the neighborhood of the surface

q = 1. It is instructive to check the sensitivity of the results to the choice of the inner boundary

surface. In fig.1 the mean square deviation is calculated from (5.1) with the theoretical current

density normalized at the experimental value on the inner boundary surface q = 1 and with the

experimental current density normalized to its value at a displaced surface q = 1 + ∆q. The mean

square deviation is plotted as function of the position of this surface, labeled by ∆q, and one sees

that it remains significantly below 10%, and practically insensitive to q for q > 1. At the contrary,

in many cases, the deviation increases rapidly when q decreases below one, denoting a worsening

of the adherence between the theoretical and the experimental current density profiles in the region

dominated by the sawteeth.

It is worthwhile to point out a difference in the dependence of the current density on the poloidal

flux in the L and H discharges, which fact could be useful for the understanding of the L-H transition.

As shown by some examples in fig.2 the j(ψ) curve (where the entire dependence of j on r is

expressed through ψ (r)) is concave in the case of the L shots (fig.2a) and is linear in the case of the

H shots (fig.2b) up to r ≈ 0.85a. It has been shown [1] that the linear dependence of j on ψ  is

associated with a state of absolute maximum of the magnetic entropy. Therefore one should expect

that the plasma is evolving spontaneously towards this state from the L-state provided that the

transition is sufficiently rapid for considering the system as isolated from the external world during

the transition time. From the thermodynamic point of view the situation is the same as that of the

states described by the Taylor’s model of the reversed field pinch. The force free states correspond

as well to the absolute maximum of the entropy [1] with j ˜ A (A, vector potential). Consequently

they should be reached spontaneously in a pinch configuration provided that the plasma could be

considered as isolated from the external world (e.g. enclosed in a perfectly conductive shell and not

→

→

→

→ →

erj = ,
(jSME (ri) - jexp(ri))

2Σ
(jexp(ri))

2Σ
i

i

erp = ,
(pSME (ri) - pexp(ri))

2Σ
(pexp(ri))

2Σ
i

i
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subject to auxiliary heating). This condition is verified only approximately in practical devices.

In the following figures typical situations extracted from the list of Table I are illustrated in detail

by plotting the experimental and theoretical current density and pressure profiles, as well as the

experimental non Ohmic net power deposition pE on electrons, which is a mark of the discharge.

In figs. 3 to 9 the value of q on the minor axis is lower than one, while in figs.10 to 11 it is larger.  In

the former case the theoretical profiles are calculated in the region q ≥ 1. The experimental profiles

were measured at a time (specified in the plots) when the discharge can be considered as stationary.

In fig.3 we present an example of the ECRH discharge in FTU (shot 18290). In this shot the EC power

(0.85MW) is deposited in a single location (in shot FTU 18281, also listed in the Tables, the same EC

power is distributed in two different locations) For further details on these shots see ref.[3]. Figs.4 and

5 present examples of Ohmic and EC discharges in TS (shots 31165oh and 31165ec respectively),

while fig.6 (JET 44013) gives an example of the NBI heated H-state, where the geometrical effects of

the elongation have been taken into account in the theoretical calculations (see Appendix).

Figures 7 and 8 are examples of JET L-discharges in which the total current density profile includes

non inductive currents (bootstrap+current due to NBI) (shots 55805 and 55809).

Figure 9 is an example (JET 50630) of a H-discharge with significant non inductive current (0.22MA)

in a high density plasma (ne0 = 0.71•1020 m-3).

Shots with q0 1> :  In order to compare the theory with not relaxed situations and to gain a

comprehensive view of its limits of validity, we have considered a variety of current density profiles.

The list of table I includes cases where the current profile has been controlled at the centre by external

interventions such as ramps-up and non inductive current drive in order to modify the q profile and

generate an internal transport barrier (shots JET 53298, 58148, 59397, 59211, 53506). As we shall

see, the region of validity of the SME profiles is restricted to those values of λsa which exclude the

region where strong external modification of the current has taken place.

Figure 10 gives an example (JET 53298) of a current density with a small hole on axis (figure 7(b)

circles) associated with a value of the safety factor larger than one (qmin ≈ 1.3). Figure 7(b) (line)

shows the solution of the SME equation with derivative vanishing on axis and with the boundary

value at sa = 0.75m taken from the experiment. The solution disagrees with the experiment in the

central region but agreement, both for the current density and particularly for the pressure, is recovered

when the SME equations are solved outside this region, taking the experimental values at the borders

(figs.7(c) and 7(d).

Figure 11 presents the interesting case with an intense non inductive current (bootstrap+current

due to NBI) near the central axis (JET 58148, qmin ≈ 1.5). Figure 11(a) shows the additional net power

deposition on electrons and fig.11(b) shows the plot of the total experimental (circles) and theoretical

(line) current density as well as the non inductive part (dots). The theoretical curve is the sum of the

non inductive part and the induced part obtained by solving the SME equation (2.1) assuming a

derivative vanishing on the minor axis and taking the experimental value for the inductive current
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density at the border sa = 0.90m. One sees from fig. 11(b) that the theoretical profile disagrees strongly

in the central region, as expected, but it rejoins the experimental profile outside the region of large non

inductive current. We then solve the SME equation in this region i.e. 0.36 < r(m) < 0.90, taking the

experimental values of j  and p at the inner and outer borders. With this additional information the

theoretical and experimental profiles of the current density and of the pressure agree in the region

above, as shown in the figs.11(c) and 11(d).

The same situation occurs in the case of the discharge 59397 with the net electron power deposition

shown in fig.12(a). In this case a deep central hole in the current profile is created by the combined

effects of the ramp-up of the current, of the bootstrap current and of the Lower Hybrid-NBI+ICRH

heating, in order to generate an internal transport barrier. Figure 12(b) shows how the theoretical

profile, which deviates strongly in the centre from the experimental one, rejoins the experimental

behavior outside the region where the central hole was artificially created. Figures 12(c) and 12(d)

show the satisfactory adherence of the theoretical and experimental profiles in the outside region 0.42

< r(m) < 0.95 where the SME equations are solved.

The other shots with qmin > 1 listed in Table II are treated with the same procedure as above: first

one solves the SME equation in the whole interval from r = 0  to r = sa in order to determine the region

of adherence between theory and experiment. Then the SME equation is solved again in this region

with the appropriate boundary conditions.

Recently two papers appeared [6], [7], in which the experimental indications on the profile

consistency, collected from different machines, are discussed. In ref.[7] the experiments are compared

with the assumption that the “canonical” current density and pressure profiles are proportional, i.e. j ̃

p. It is also stated that “in the SME theory an unambiguous connection between canonical current and

pressure profiles is not established”. In fact the relation j p~  assumed in ref.[7], has been derived

from the SME model in the Ohmic case (see ref.[8], eqs.(14) and (16)). In the presence of auxiliary

heating the simple relation above is not valid and the profiles of j  and p are described by the more

flexible SME equations (2.1) and (4.8). The insensitivity of the SME equilibrium to the intensity and

the form of the deposited power profile is contained in the properties of invariance of these equations.

CONCLUSIONS

In the absence of strong external artificial interventions such as intense non inductive drive, the

current density and pressure profiles assumed spontaneously by the plasma at equilibrium in the

tokamak can be derived from general variation principles. These principles follow from an extension

of the thermodynamic formalism to high temperature (collisionless) magnetic plasma equilibria,

based on probability and information [1], which leads to the magnetic entropy functional (1.1). The

induced current density is described by eq. (2.1), which is derived from the condition that the

magnetic entropy of the tokamak, considered as an open system, is stationary locally (the SME

condition). The pressure profile is described by eq.(4.8), which follows from SME, combined with

the requirement that the plasma thermal energy is minimum.
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Within its limits of validity, the description based on the equations above is of surprising precision

and simplicity. These results are of theoretical as well of practical interest. They are of theoretical

interest because they establish the reliability of the thermodynamic point of view, which allows,

under certain conditions, the description of the plasma equilibrium without resorting to the

complicated mathematics of the dynamical treatment for eliminating the arbitrariness implicit in

the Grad-Shafranov equation. They are of practical interest because they imply that the transport

coefficients are so constrained as to adapt the transport to the equilibrium determined by the general

variation principles. The global point of view offered by thermodynamics, though independent of

the detailed dynamical mechanisms, allows the unraveling of those phenomenological parameters,

which are at the heart of the physical process and which are therefore worthy of the more specific

dynamical analysis. One example is the observation on the H-states indicated in fig.2, which points

to a specific thermodynamic distinction between the L- and H-states, worthy of a more detailed

inspection susceptible of fruitful results. Thus, once the soundness of the variation principles is

established, one can proceed to analysing the experimental data on transport in the light of the new

point of view.

The electron temperature is described by the transport equation (3.5) in which the right hand

side can be expressed in terms of the magnetic configuration, while the left hand side contains the

transport effects embodied by the thermal electron diffusivity. Through this equation the electron

transport adapts flexibly to the magnetic equilibrium imposed by the variation properties of the

magnetic entropy and of the plasma energy.

Last but not least, the extension of the functional (1.1) to the case of electric charge or mass

distributions and the associated potentials, opens new perspectives for the treatment of the

macroscopic collisionless electrostatic and self-gravitating equilibria.

APPENDIX:

CORRECTION FOR A CYLINDRICAL GEOMETRY WITH ELONGATION

A geometrical correction for noncircular geometry, even though approximate, is applied to the

calculation of all integral quantities (total current, total power, magnetic poloidal flux and so on) by

expressing the volume element with the cylindrical coordinates x r y rk re= = ( )cos , sinθ θ , where

the elongation is given by the expression ke (r) = (ke1 - ke0)/r/a + ke0. One obtains (after averaging

over the angle).

    dxdy = 2πJ(r)rdr with J(r) = ke(r) + (r/2)dke/dr (A1)

One then defines an effective current density jeff (r) = jtot (r)J(r), and an effective poloidal magnetic

field given by the equation

                                                                               (A2)

d

dr

1
r

4π�
c

(rBθ)  = jeff (r)
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The safety factor is obtained from the expression

                                                                              (A3)

where I(r) = 2π ∫ jeff (r) rdr.

The expression (4.8) for the pressure is also corrected by introducing the Jacobian J(x) in the

integral involving the power density (the effective power being pE(x)J(x)) and expressing the poloidal

flux ψ with the effective magnetic field given by (A2).

Clearly the correction above holds only for a large aspect ratio and is defective when toroidal

geometrical effects become important.
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TABLE I

MacR/a Shot Regime Main Heating I(MA) ne010-20 B0(T) ke0 ke1 Pααααα(MW)

FTU0.97/0.30 18290 L ECRH  0.40   1.13 5.70 1.03 1.02     0.85

FTU 18281 L ECRH  0.40   1.28 5.80 1.03 1.02     0.85

FTU 23053 L OHMIC  1.10   1.35 7.20 1.03 1.02     0.0

FTU 23179 L OHMIC  1.40   2.60 7.20 1.03 1.02     0.0

TS2.42/0.75 31165oh L OHMIC  1.00   0.30 3.865 1.0 1.05     0.0

TS 31165ec L ECRH  1.00   0.30 3.85 1.0 1.05     0.80

JET3/1 44013 H   NBI  2.60   0.68 2.70 1.40 1.75     15

JET 55805 L  NBI +ICRH  1.60   0.23 3.36 1.25 1.60     6.1

JET 55809 L  NBI +ICRH  1.60   0.26 3.25 1.30 1.60     12

JET 53298 H   NBI  2.20   0.56 2.60 1.35 1.73     15

JET 50630 H  NBI +ICRH  2.80   0.71 2.76 1.40 1.70     12.5

JET 58148 H  NBI +ICRH  1.80   0.29 3.40 1.40 1.75     18

JET 59397    ITB  NBI +ICRH  2.80   0.33 3.45 1.63 1.75     17

JET 56083 H  NBI +ICRH  2.50   1.15 2.70 1.34 1.85     15

JET 62789   Hyb  NBI +ICRH  2.60   0.32 3.20 1.30 1.63     20

JET 59211 H   NBI  1.80   0.53 2.80 1.25 1.50     12

JET 53506   e-ITB  NBI +ICRH  2.40   0.16 3.40 1.35 1.63     6.0

JET 53822 L   ICRH  1.90   0.35 3.40 1.30 1.60     6.0

JET 55802 L  NBI +ICRH  1.60   0.29 3.25 1.27 1.60     6.0

JET 53299 H   NBI  2.50   0.12 2.70 1.35 1.73     15.5

JET 50628 H  NBI +ICRH+  2.80   0.60 2.77 1.37 1.70     12.6
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TABLE II

Mac Shot µsa U(V) s λ   ∆q   erj  erp

FTU 18290 0.20 1.0 0.73 0.17 1-3.94 0.042 0.022

FTU 18281 0.03 1.0 0.75 0.15 1-3.93 0.071 0.035

FTU 23053 0.15 1.73 0.80 0.55 1-2.15 0.086 0.023

FTU 23179 0.03 2.60 0.80 0.62 1-1.72 0.033 0.034

TS 31165oh 0.01 0.80 0.93 0.20 1-4.13 0.068 0.011

TS 31165ec 0.10 0.55 0.93 0.22 1-4.09 0.070 0.043

JET 44013 0.30 0.20 0.75 0.44 1-2.15 0.031 0.027

JET 55805 0.05 0.33 0.90 0.12 1-5.88 0.039 0.086

JET 55809 0.01 0.40 0.75 0.13 1-3.92 0.076 0.063

JET 53298 0.30 0.15 0.75 0.26   1.41-3.22 0.042 0.022

JET 50630 1.70 0.35 0.90 0.16   1.03-2.78 0.079 0.040

JET 58148 0.10 0.20 0.90 0.40   2.17-5.36 0.035 0.040

JET 59397 0.65 0.60 0.95 0.44   1.71-4.33 0.042 0.026

JET 56083 0.25 0.25 0.80 0.51 1-2.11 0.022 0.036

JET 62789 0.25 0.70 0.70 0.35   1.02-2.60 0.075 0.036

JET 59211 0.10 0.20 0.80 0.19   1.25-3.93 0.026 0.024

JET 53506 0.10 0.20 0.90 0.44   1.76-4.20 0.043 0.043

JET 53822 0.05 0.40 0.70 0.23 1-3.48 0.077 0.039

JET 55802 0.40 0.30 0.75 0.15 1-3.55 0.030 0.060

JET 53299 0.05 0.20 0.80 0.45 1-2.21 0.042 0.044

JET 50628 0.10 0.35 0.95 0.20   1.03-3.24 0.115 0.025
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Figure 1: The mean square deviation of the theoretical current density profile with respect to the experimental profile
when jSME and jEXP are normalized on inner boundary surfaces displaced by ∆q.

Figure 2: Dependence of the normalized current density on Ψ = ψ / (sa)2  (where ψ is the poloidal flux in Tesla • m2

divided by 2π) in the range from q = 1 to r = 0.85a, according to experimental equilibrium reconstruction: (a) L-
states; (b) H-states.
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Figure 3: FTU 18290 with EC heating; (a) radial profile of the non Ohmic power density on electrons; (b) theoretical
(line) and experimental (circles) profiles of the current density in the range 1<q<3.94 of the safety factor; (c) theoretical
(line) and experimental (circles) pressure profiles in the same range, normalized on the surface q=1.
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Figure 4: TS 31165oh; (a) radial profile of the non Ohmic power density on electrons; (b) theoretical (line) and
experimental (circles) current density profiles in the range 1<q<4.13 (including 0.14MA of non inductive current)
and (c) the corresponding normalized pressure in the same range.
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Figure 5: TS 31165ec with EC heating; (a) radial profile of the non Ohmic power density; radial theoretical (line)
and experimental (circles) profiles of the current density (b) (including 0.14MA of non inductive current) and of the
normalized pressure (c) in the range 1<q<4.09.

0.2

0

0.6

0.4

0.8

-0.2

1.0

0.60.40.20

(M
W

/m
3 )

R (m)

Power density on electrons

Pulse No: 31165
Time = 6.5s

Pe

JG
06

.4
89

-5
a

0

3.0

2.5

2.0

1.5

1.0

0.5

3.5

(M
A

/m
2 )

Current density

Pulse No: 31165
Time = 6.5s

exp
SME

JG
06

.4
89

-5
b

0.60.40.20
R (m)

0.2

0.4

0.6

0.8

1.0

0

1.2

1.4

(a
.u

.)

R (m)

Pressure

Pulse No: 31165
Time = 6.5s

exp
SME

JG
06

.4
89

-5
c

0.60.40.20

(a)       (b)

(c)



18

Figure 6: JET Pulse No: 44013  NBI heated H state; (a) radial profile of the non Ohmic power density on electrons;
radial theoretical (line) and experimental (circles) profiles of the current density (b) and of the normalized pressure
(c) in the range 1<q<2.15.
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Figure 7: JET Pulse No: 55805  NBI+ICR heated L-state; (a) radial profile of the power density on electrons; radial
theoretical (line) and experimental (circles) profiles of the total current density (b),(including 0.20MA of non inductive
current) and of the normalized pressure (c) in the range 1<q<5.88.

(a)       (b)

(c)

0.10

0.05

0.15

0

0.20

0.6 0.8 1.00.40.20

(M
W

/m
3 )

R (m)

Power density on electrons

Pulse No: 55805
Time = 9s

Pe

JG
06

.4
89

-7
ac

0

-0.5

2.5

2.0

1.5

1.0

0.5

(M
A

/m
2 )

Current density

exp
SME

JG
06

.4
89

-7
b

R (m)
0.6 0.8 1.00.40.20

Pulse No: 55805
Time = 9s

0.2

0.4

0.6

1.0

0.8

0

1.2

(a
.u

.)

Pressure

Pulse No: 55805
Time = 9s

exp
SME

JG
06

.4
89

-7
c

0.6 0.8 1.00.40.20
R (m)



20

Figure 8: JET Pulse No: 55809  NBI+ICR heated L-state; (a) radial profile of the non Ohmic power density on
electrons; radial theoretical (line) and experimental (circles) profiles of the total current density (b) (including 0.27MA
of non inductive current) and of the normalized pressure (c) in the range 1<q<3.92.
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Figure 9: JET Pulse No: 50630  NBI+ICR heated H state with high density (n(0)•10-20 = 0.70); (a) radial profile of
the non Ohmic power density on electrons; radial theoretical (line) and experimental (circles) profiles of the total
current density (b) (including 0.22MA of non inductive current) and of the normalized pressure (c) in the range
1.03<q<2.78.
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Figure 10: JET Pulse No: 53298  NBI heated H state; (a) radial profile of the non Ohmic power density on electrons;
(b) solution of the SME equation with zero derivative on axis (line) and experimental profile (circles) with hole on
axis (qmin ≈ 1.3); theoretical (line) and experimental (circles) profiles of the current density (c) and of the normalized
pressure (d) in the outside zone 1.41<q<3.22 with r(m)>0.20.
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Figure 11: JET Pulse No: 58148  NBI+ICR heated H state with intense non inductive current in the central region
(qmin ≈ 1.5);(a) radial profile of the non Ohmic power density on electrons; (b) total theoretical (line) and experimental
(circles) current density and the non inductive part (dots); (c) theoretical (line) and experimental (circles) profiles of
the current density and of the non inductive part (dots) in the outside zone 2.17<q<5.36 with r(m)>0.36; (d) theoretical
(line) and experimental (circles) normalized pressure in the same zone.
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Figure 12: JET Pulse No: 59397  NBI+ICR heated with internal transport barrier(qmin ≈ 1.6) and 0.38MA of non
inductive current. (a) radial profile of the non Ohmic power density on electrons; (b) total current density, including
the non inductive part (dots), obtained from the solution of the SME equation with zero derivative on axis (line) and
experimental profile (circles) with deep hole on axis. Theoretical (line) and experimental (circles) profiles of the
current density (c) and of the normalized pressure (d) in the outside zone 1.71<q<4.33 with r(m)>0.42.
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