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ABSTRACT.

First principles expressions are given for the parameters governing collisional diffusion and

parallel losses of mass, momentum and energy in tokamak Scrape-Off Layer (SOL) plasmas.

These transport coefficients are based on neoclassical perpendicular transport (Pfirsch-Schlüter

diffusion) and classical parallel transport (sub-sonic advection and Spitzer- Härm diffusion).

When numerical values derived from these expressions are used to compute damping coefficients

for the electrostatic edge-SOL (ESEL) turbulence code, simulations correctly reproduce the

radial profiles of particle density, n, and electron temperature, Te, as well as statistical distributions

and temporal correlations of particle density and flux density measured in Ohmic and L-mode

plasmas on the TCV tokamak. Similarly, preliminary calculations agree reasonably well with

radial profiles of n and Te measured in Ohmic and L-mode plasmas on JET, although the far-

SOL particle density e-folding length is broader by a factor of 3 than the measured value. The

overall agreement between simulation and experiment suggests that turbulent SOL transport is

driven by interchange motions, caused by unfavourable curvature and strong pressure gradients

in the edge region, with the level of turbulence being influenced by neoclassical diffusion and

parallel losses in the SOL region.Moreover, the curvature drive offers a viable mechanism for

the origin of the B × ∇B-independent part of the parallel SOL flow measured on many tokamaks,

including JET and TCV tokamaks, with ESEL simulation predicting a parallel Mach number of

≈0.2 in JET Ohmic and L-mode plasmas, in fair agreement with Mach probe measurements.
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1. Introduction

The exhaust of particles and power without undue damage to the vessel walls is one of the
critical issues for burning plasma tokamaks such as the planned ITER experiment. This
exhaust is determined by competition betweenparallel and perpendiculartransport in the
region of open field lines beyond the magnetic separatrix, known as the scrape-off layer
(SOL). Whereas parallel transport is largely classical and well understood, radial transport
in the SOL is generally turbulent, with relative fluctuations often exceeding unity [1, 2].
Moreover, isolated structures, variously known asblobsor filaments, which carry particles,
momentum and energy into the far-SOL are universally observed as intermittent bursts in
single-point recordings of plasma parameters and in two-dimensional imaging of the edge
and SOL plasmas [3–11].

Recently, dedicated experiments in Ohmic and L-mode plasmas on the TCV tokamak
[8,9] have shown that SOL intermittency, which can be quantified using statistical techniques,
increases with radial distance away from the separatrix, so that probability distribution
functions (PDFs) of the particle density become increasingly skewed. In a separate study,
the TCV-measured SOL turbulence statistics have been very well reproduced by curvature
driven interchange turbulence simulations based on three fields: particle density, electric
potential and electron temperature,(n,φ ,Te), in the two-dimensional plane perpendicular to
the magnetic field – the so-calleddrift plane [10]. In that work, the coefficients representing
collisional diffusion and parallel losses were treated as free parameters and were adjusted to
obtain a satisfactory match with the TCV data. Specifically, no attempt was made to justify
the values of these coefficients, nor to discuss their physical basis.

In this article, we derive first principles expressions for these coefficients and find them
to agree closely with the values used to match the TCV data in [10], with the exception of a
much lower predicted value of the particle diffusivity. Subsequent simulations, incorporating
the newly derived expressions, further improve the overall agreement between model and
experiment [11]. It is worth emphasizing that the obtained expressions are applicable to both
limiter and divertor configurations and are relevant to all edge–SOL turbulence simulations,
which should aim to describe neoclassical dissipation and parallel losses in a realistic
manner. Finally, first simulations of JET Ohmic and L-mode plasmas are presented, showing
fair agreement with radial SOL profiles of particle density, temperature and theB×∇B-
independent (ballooning) component of the parallel Mach number.

2. Electrostatic interchange turbulence model

2.1. Governing equations of the ESEL code

We begin the analysis by introducing the reduced fluid equations for low-frequency (drift
ordered) dynamics ofn, φ andTe as derived and discussed in [12–14],

dn′

dt ′
+n′C ′(φ ′)−C ′(n′T ′e) = Λ′

n, (1a)
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dT ′e
dt ′

+
2
3

T ′eC
′(φ ′)− 7

3
T ′eC

′(T ′e)−
2
3

T ′2e

n′
C ′(n′) = Λ′

Te
, (1b)

dΩ′

dt ′
−C ′(n′T ′e) = Λ′

Ω. (1c)

Here the vorticity,Ω′, of the electric drift, the advective derivative, d/dt ′ and the curvature
operator,C ′ due to the non-uniform magnetic field are respectively defined by

Ω′ = ∇′2
⊥φ

′, (2a)
d

dt ′
=

∂

∂ t ′
+v′E ·∇′

φ
′ =

∂

∂ t ′
+

1
B′

b×∇′
φ
′ ·∇′, (2b)

1
B′

= 1+
r0 +ρs,0x′

R0
, (2c)

C ′ =−
ρs,0

R0

∂

∂y′
. (2d)

All the quantities appearing in the above equations, with the exception of the minor and major
radii, r0 andR0, are dimensionless and expressed in theBohm normalizedform, in which the
characteristic temporal and spatial scales are chosen as the ion gyro-frequency,ωci,0 = eB0/mi

and the (hybrid) thermal gyro-radius,ρs,0 = cs,0/ωci,0. Herecs,0 = (Te,0/mi)1/2 is the cold
ion plasma sound speed,B0 is the magnitude of the local magnetic field strength and the
zero subscript indicates nominal (dimensional) values, typically chosen at the separatrix (or
last closed flux surface, LCFS) location on the outboard mid-plane of the tokamak. Bohm
normalization is made explicit in equations (1) and (2) by indicating every normalized quantity
with a prime,

n′ =
n
n0

, T ′e =
Te

Te,0
, φ

′ =
eφ

Te,0
, (3a)

B′ =
B
B0

, t ′ = tωci,0, x′ =
x

ρs,0
. (3b)

Neglecting the weak spatial variation of the magnetic field strength on the outboard mid-plane,
the non-dimensional scales may be approximated by

ω
′
ci =

ωci

ωci,0
≈ 1, c′s =

cs

cs,0
= T ′1/2

e , ρ
′
s =

ρs

ρs,0
≈ T ′1/2

e . (4)

TheΛ′
a terms (witha = n,Ω,Te) on the right-hand side of equations (1), represent dissipation

as a result of perpendicular diffusion due to collisions,D′
⊥a∇′2

⊥a′, and parallel losses to the
divertor targets,a′/τ ′‖a,

Λ′
n = D′

⊥n∇′2
⊥n′− n′

τ ′‖n
, (5a)

Λ′
Te

= D′
⊥Te

∇′2
⊥T ′e−

T ′e
τ ′‖Te

, (5b)

Λ′
Ω = D′

⊥Ω∇′2
⊥Ω′− Ω′

τ ′‖Ω
, (5c)

where D′
⊥a = D⊥a/(ρ2

s,0ωci,0) are the perpendicular diffusivities of particles, momentum
and electron heat, andτ ′‖a = τ‖aωci,0 are the corresponding parallel loss times. These six
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parameters are both necessary and sufficient to close the dynamical system (1), which is
then discretized in two spatial dimensions. The computational domain forms a box whose
sides have an extent of hundreds ofρs,0. In order to adopt a local slab approximation, the
simulation domain is limited to the neighbourhood of the outer mid-plane with the local radial
and poloidal coordinates denoted byx′ andy′ respectively. The resulting code has been named
ESEL to emphasize its treatment ofEdge-SOL Electrostaticturbulence [10–14].

2.2. Sub-sonic advection vs. sheath dissipation

The termΩ′/τ ′‖Ω, denoting parallel loss of vorticity, deserves a special mention. Elsewhere
in the literature [15–20], this term is often replaced by a so-calledsheath dissipationterm,
φ ′/τ ′‖Ω, which removes vorticity at a rate proportional to the local electrostatic potential
(an extended discussion of electrostatic sheaths may be found in [21] and their role in SOL
turbulence dissipation in [22]). The implication of this term is best illustrated by Fourier
transforming (1c). In the resulting spectral representation, the gradient operator,∇′

⊥, is
replaced by the perpendicular wave number,k′⊥, and the vorticity,Ω′ = ∇′2

⊥φ ′ by −k′2⊥φ ′k
whereφ ′k is the amplitude of thek-th mode. Neglecting curvature and collisional diffusion,
the linearized evolution equation then implies,

d lnφ ′k
dt ′

=− 1

k′2⊥τ ′‖Ω
=− 1

τ ′‖φ

(6)

As a result,φ ′k decays with a time constant,τ ′‖φ
which is proportional tok′2⊥. Consequently,

large perturbations decay faster than smaller ones at the rate proportional to the square of their
size.

Comparison of the two-dimensional images in [17–19], where the sheath dissipation term
is invoked, with those from ESEL simulations in [11–14], where it is not, demonstrate how
this preferential damping of large scales dramatically changes the morphology of turbulent
structures (with rounded, drop-likeblobs, in the absence of sheath dissipation, sharpened into
radially protrudingfingers, when it is present).

Before discussing the relative merits of the two momentum (vorticity) damping terms
described above to simulating SOL turbulence in a real tokamak, we define the SOL plasma
electron and ion collisionalities (or the inverseKnudsennumbers, Kn) as,

ν
∗
e ≡

1
Kne

≡
L‖
λee

=
L‖

vteτei
∝

L‖ne

T2
e

, ν
∗
i ≡

1
Kni

≡
L‖
λii

=
L‖

vtiτii
∝

L‖ni

T2
i

, (7)

whereL‖ is the outer mid-plane to target connection length,λe andλi are the electron and
ion collisional mean-free-paths, vte = (Te/me)1/2 and vti = (Ti/mi)1/2 are the electron and
ion thermal speeds, andτei and τii are the electron-ion and ion-ion collisional times, also
expressed in terms of collisional frequenciesνei ≡ τ

−1
ei andνii ≡ τ

−1
ii , [26–35],

νei/Z≡ (Zτei)−1 = νee≡ τ
−1
ee ≡

√
2nee4 lnΛ

12π3/2ε2
0m1/2

e T3/2
e

, (8a)

νii ≡ τ
−1
ii ≡

√
2niZ4e4 lnΛ

12π3/2ε2
0m1/2

i T3/2
i

= νei

(
me

mi

)1/2(Te

Ti

)3/2

Z2, (8b)
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Neglecting the effect of the magnetic shear in the vicinity of the X-point region,L‖ may
be estimated asπR0q95, whereq95 is the safety factor at the 95% poloidal magnetic flux
surface. However, in more complicated magnetic geometries, this simple expression may
introduce significant errors. For example, in the TCV plasmas discussed in [8–11], magnetic
equilibrium reconstruction yieldsL‖ ≈ 15m compared withπR0q95≈ 9 m. In addition,L‖ in
TCV can vary by up to 50% across the SOL region. In what follows,L‖ will therefore refer
to the equilibrium reconstructed value, with a known radial variation,L‖ = L‖(x′). Unless
otherwise stated,ν∗e will refer to the separatrix values ofne andTe, and to the near-SOL value
of L‖.

In the authors’ opinion, the sheath dissipative formulation, although potentially
appropriate tosheath-limited, collisionless (ν∗e < 10) conditions, significantly misrepresents
the actual damping mechanism underconduction-limited, collisional (ν∗e > 10) conditions.
The reasons, as outlined in [12–14,23,24], include:

• the neglect of parallel gradients,

• field line averaging of non-linear terms,

• inconsistency in the transition region between open and closed field lines.

Since the SOL plasma on TCV and indeed on most other tokamaks, is collisional (in the case
of TCV plasmas used for turbulence studies,ν∗e ≈ 50, see section 3), the advective damping
term (5c) used in the ESEL model is likely to be more accurate than its sheath dissipative
cousin.

It is instructive to reinforce the above arguments, with a more pragmatic assessment
of sheath dissipation. Roughly speaking, one would expect the sheath to influence filament
dynamics if, and only if, information has sufficient time to propagate between the outer mid-
plane of the torus and the nearest solid surface (i.e. one of the divertor targets), in the time it
takes the plasma filament to traverse a radial distance equal to its radial width. We anticipate
equation (23) in section 5.1 and approximate the former time asτ‖ ≈ L‖/ξcs and the latter as
τ⊥ ≈ ∆x/v⊥; hereξcs is the warm ion sound speed, also given later in equation (15). For the
case of the TCV simulations reported in section 6, these times can be evaluated asτ‖≈ 300µs
andτ⊥ ≈ 2cm/2kms−1 = 10µs, where we used the a posteriori observation that∆x < 2cm
and v⊥ < 2kms−1 in the TCV relevant ESEL simulations. It is now easy to see why sheath
dissipation is inappropriate: the plasma blob enters and leaves any given flux tube so quickly,
that the sheath ‘finds out’ about the pressure perturbation only after the filament has long left
the flux tube. Thus, for fundamental reasons of temporal causality, the sheath cannot influence
the dynamics of the turbulent filament, whenever

τ⊥
τ‖
∼ ∆xξcs

L‖v⊥
� 1 (9)

which defines theadvective dissipation criterion; in contrast, sheath dissipation requires
τ‖/τ⊥ ∼ 1. Since ∆x/L‖ ∼ λSOL/L‖ ∼ 10−3, v⊥ ∼ 1km/s and v⊥/ξcs < 0.03 on
most tokamaks (these results follow from measurements of radial SOL widths and radial
propagation velocities of disturbances in the SOL, respectively), we findτ‖/τ⊥ ∼ 30 such
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that equation (9) is indeed satisfied. Evidently, radial motion of turbulent structures is too fast
to allow sheath dissipation in the typical tokamak SOL plasma.

It is worth noting that in ITER conduction-limited and partially detached conditions
are required to prevent excessive erosion of the divertor target plates [25]. This means that
despite low upstream collisionality (ν∗e ≈ 10), strong parallel gradients are present in the
divertor plasma due to the neutral trapping and plasma compression. As a result, the upstream
plasma is effectively screened from the sheath by the dense plasma and neutral cloud in the
divertor region. On the basis of these considerations, one would likewise not expect the sheath
dissipative term to be dominant in the ITER SOL.

2.3. Boundary conditions and radial variation of damping terms

In the TCV study [10, 11] the following boundary conditions were imposed at the innermost
(core) and outermost (far-SOL) boundaries,

Ω′ = φ
′ = T ′e−1 = n′−1 = 0 atx = 0, (10a)

Ω′ =
∂φ ′

∂x′
=

∂T ′e
∂x′

=
∂n′

∂x′
= 0 atx = Lx, (10b)

with periodic boundary conditions being applied at the upper and lower poloidal limits of the
simulation grid. Thus, the turbulence was driven by a pressure gradient in the edge region
due to a prescribed particle density and temperature at the inner boundary, which explains the
absence of volumetric sources in equations (1a)–(1c).

In addition, the radial variations ofD′
⊥a andτ ′‖a were approximated by

D′
⊥a = const, (11)

1
τ ′‖a

=
σ ′

a,l

2

[
1+ tanh

(
x′−x′l

δ ′l

)]
+

σ ′
a,w−σ ′

a,l

2

[
1+ tanh

(
x′−x′w

δ ′w

)]
whereσ ′

a,l andσ ′
a,w are constants representing respectively the strength of parallel losses in

the main SOL and the wall shadow,x′l andx′w correspond to the radial positions of the LCFS
and the last main-SOL flux surface, andδ ′l andδ ′w are the radial widths over which the parallel
losses are activated (typicallyδ ′l = δ ′w = 1). Note that the same radial profile shape was used
for all three fields. The absence of parallel losses forx′ < x′l − 2δ ′l simulates the region of
closed field lines, whereas its presence forx′ > x′l + 2δ ′l , whereτ ′‖a = 1/σ ′

a represents the
SOL, i.e. the region of open field lines.

Additional information, beyond that contained in the reduced fluid model, is clearly
required to determine the magnitude and the functional form ofD′

⊥a andσ ′
a, which explains

the simple form ofD′
⊥a = const andσ ′

a = const used in early SOL turbulence studies [17–20]
and in ESEL simulations [10–14]. In the subsequent sections, we derive first principle forms
for the desired damping terms based on a judicious combination of neoclassical and classical
collisional transport coefficients in the perpendicular and parallel directions, respectively.
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3. Energy relaxation times

We begin with a few comments on equations (1)–(4), in whichTi � Te was assumed. The
cold ion approximation may at first sight seem inappropriate in the context of SOL plasmas,
in which the ions are not only warm (Ti ∼ Te), but typically hotter than the electrons,Ti/Te≈ 2
[21, 43]. Nonetheless, it can be readily argued, that this simplification is justified under
collisional conditions (ν∗e � 1), such as those reported in the TCV experiments [8–11],

n0 ≈ 1019m−3, Te,0 ≈ 20eV, A = 2Z = 2, (12)

R0 ≈ 0.9m, B0 ≈ 1.4T, q95≈ 3,

for which equation (7) yieldsν∗e ≈ 30. The argument is based on the ratios of the collisional
energy equipartition time,τie,ε , defined as a characteristic time in which ion and electron
temperatures relax to a common value, dTi/dt = (Te− Ti)/τie,ε , which is larger than the
electron-ion collision time, (8a), by twice the mass ratio,

νie,ε ≡ τ
−1
ie,ε = 2

(
me

mi

)(
ne

ni

)
νei =

neZ2e4m1/2
e lnΛ

3
√

2π3/2ε2
0miT

3/2
e

, (13)

(this expression can be found in most sources, in particular [26–34]; the reader should be
aware that reference [35] derivesνie,ε to be a factor of two larger), the parallel particle loss
time,τ‖n, equation (23), and the parallel electron cooling time,τ‖Te, equation (25) (in the last
two instances we again anticipate the results of section 5; the derivation of the ratios in terms
of dimensionless parameters can also be found in [22])

τ‖n
τ‖Te

=
2

3M‖

(
mi

me

)1/2 1
ν∗e

=
2

3M‖

(
mi

me

)1/2

Kne (14a)

τie,ε

τ‖n
≈ 1

M‖

(
mi

me

)1/2 1
ν∗e

≈ 1
M‖

(
mi

me

)1/2

Kne (14b)

τie,ε

τ‖Te
=
(

3.2
1.5

mi

me

)
1

ν∗e
2 =

(
3.2
1.5

mi

me

)
Kne

2 (14c)

whereM‖ is the parallel Mach number, defined as the ratio of the parallel flow velocity, v‖
and the warm ion sound speed,ξcs,

M‖ =
v‖
ξcs

, cs =
√

Te

mi
, ξ =

√
Z+

Ti

Te
. (15)

We note thatτie,ε/τ‖Te decreases quadratically with collisionality, such that forν∗e � 1
equipartition is sufficiently strong to ensure that the electron and ion energies are effectively
coupled,Ti ∼ Te. For ν∗e � 1 it plays no role in the energy balance and the ion and electron
channels become completely decoupled. The transition between weak and strong coupling
occurs at theequipartitioncollisionality,ν∗e,ε (or theequipartitionKnudsen number, Kne,ε ),

ν
∗
e,ε = Kn−1

e,ε =
(

3.2
1.5

mi

me

)1/2

≈ 88 (16)

which we evaluate for deuterium ions. We infer that forν∗e > ν∗e,ε the ion and electron
channels are sufficiently coupled for heat to be conveyed through the faster channel (that is,
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electron conduction parallel toB and ion conduction perpendicular toB) and then transferred
by collisions from the hotter to the colder species (that is, from ions to electrons). As a result,
the effective perpendicular electron heat diffusivity consists of a small electron contribution
and a much larger ion contribution multiplied by an equipartition factor,

D′
⊥Te

χ ′⊥i
≈

χ ′⊥e

χ ′⊥i
+Θie ≈ 2.3

(
me

mi

)1/2

+Θie ≈ 0.038+Θie (17)

where the last expression is evaluated forA = 2, Z = 1 andΘie is given by

Θie ≡

(
1+

τie,ε

τ‖Te

)−1

=
(

1+
ν∗e,ε
ν∗e

)−1

=
(

1+
Kne

Kne,ε

)−1

(18)

Note thatΘie ranges from zero forν∗e � ν∗e,ε to unity forν∗e � ν∗e,ε , passing throughΘie = 1/2
whenν∗e = ν∗e,ε . In other words,D′

⊥Te
is given byχ ′⊥e in the collisionless limit and byχ ′⊥i in

the collisional limit. In the TCV experiment, we findΘie ≈ (1+88/30)−1 ≈ 0.26� 0.038,
such that the ion contribution clearly dominates.

In closing we note that the thermal energy of the ions generates finite Larmor radius
corrections to drift fluid dynamics and modifies both perpendicular dissipation and parallel
losses. From this perspective, the cold-ion, reduced-fluid model which forms the basis of
the ESEL code, is only a crude approximation of actual plasma dynamics, irrespective of the
equipartition argument presented above.

4. Perpendicular transport coefficients

We henceforth restrict the discussion to collisional SOL turbulence (ν∗e > 10) and assume that
radial diffusion of momentum and energy is dominated by the ion channel, that is, by ion-ion
collisions. This calls for classical (denoted by lower case c) Bohm normalized expressions for
the particle (D′c

⊥), momentum (µ ′c⊥), ion heat (χ ′c⊥i) and electron heat (χ ′c⊥e) diffusivities [26],

D′c
⊥ =

(1+ϑ)ρ2
eνei

ρ2
s,0ωci,0

=
(1+ϑ)ρ2

eνei

ρ2
s ωci

ρ
′2
s ω

′
ci = (1+ϑ)T ′e

νei

ωce
∝

n′

T ′1/2
e

, (19a)

χ
′c
⊥i =

2ρ2
i νii

ρ2
s,0ωci,0

=
2ρ2

i νii

ρ2
s ωci

ρ
′2
s ω

′
ci = 2T ′i

νii

ωci
∝

n′

T ′1/2
i

, (19b)

χ
′c
⊥e =

4.66ρ2
eνee

ρ2
s,0ωci,0

=
4.66ρ2

eνee

ρ2
s ωci

ρ
′2
s ω

′
ci = 4.66T ′e

νee

ωce
∝

n′

T ′1/2
e

, (19c)

µ
′c
⊥ =

(
ηi

nimi

)′
≈
(

η1i +η2i

2nimi

)′
=

3
8

χ
′c
⊥i ∝

n′

T ′1/2
i

, (19d)

whereT ′i = Ti/Ti,0, ϑ ≡ Ti/Te, ωce andωci are the electron and ion gyro-frequencies, andη1i

andη2i are the dominant components of the viscosity tensor as defined by Braginskii [26].
Note thatD′c

⊥ represents theambipolarparticle diffusivity, which ensures charge conservation
and quasi-neutrality and which is a factor of(1 + ϑ) larger than the classical electron
diffusivity, ρ2

eνei.
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4.1. Classical perpendicular transport

In a classical, fully ionised plasma, the ion heat and momentum diffusivities are comparable
and much larger than the particle and electron heat diffusivities. This is best expressed in
terms of dimensionless fluid groups: the Schmidt (Sc), Lewis (Le) and Prandtl (Pr) numbers,
which are much larger than unity, with the exception of the ion Prandtl number, which is
less than but comparable to one, and the electron Lewis number, which is greater than but
comparable to one,

Scc
⊥ ≡

µc
⊥

Dc
⊥

=
3

4(1+ϑ)

(
mi

ϑme

)1/2

≈ 25, (20a)

Lec
⊥i ≡

χc
⊥i

Dc
⊥

=
2

1+ϑ

(
mi

ϑme

)1/2

≈ 60, Lec
⊥e≡

χc
⊥e

Dc
⊥
≈ 2.5, (20b)

Prc⊥i ≡
µc
⊥

χc
⊥i

=
3
8
, Prc⊥e≡

µc
⊥

χc
⊥e

= 0.161

(
mi

ϑme

)1/2

≈ 10. (20c)

As before all the above expressions have been evaluated forA = 2, Z = 1 andϑ = 1. In the
context of edge–SOL turbulence simulations, we are particularly interested in the classical
viscosity coefficient (ormomentumdiffusivity), µ⊥, which determines the damping of sheared
poloidal flows and hence the frequency of intermittent bursts [36–38]. Based on equations
(20a) and (20c), we see thatµc

⊥ greatly exceedsDc
⊥ and is comparable toχc

⊥i . It is worth
emphasizing that this comparatively strong viscous damping of poloidal (zonal) flows in the
edge–SOL region has not been fully appreciated in the past.

4.2. Neoclassical perpendicular transport

In toroidal plasmas under collisional conditions, the classical expressions (19a)-(19d) are
modified by neoclassical, Pfirsch-Schlüter (PS) corrections, which to first order can be
approximated as a multiplication by the square of the safety factor,q2

95 [39]. However, the
derivation of these corrections presupposes the existence ofclosedfield lines, or rather closed
flux surfaces, and employs flux-surface averaging to obtain the effective radial diffusivities.
In contrast, we are interested in the local values of these diffusivities near the outer mid-
plane, spanning both the closed and open field line regions. Since a rigorous treatment of
neoclassical transport on open field lines is not available in the literature, one is forced to
resort to an approximate treatment.

We begin by recalling the basic principles of Pfirsch-Schlüter diffusion, a clear exposition
of which may be found in [31], illustrating the key flows in figure 1. One of the hallmarks
of confined plasmas is the appearance of diamagnetic, or magnetisation, fluxes which are
driven by radial gradients of thermodynamic quantities, e.g.(n, pe, pi), and flow on nested
flux surfaces in the direction perpendicular to both the magnetic field lines and the flux surface
normal, e.g.b×∇p. In a cylindrical geometry, these fluxes have a vanishing divergence,
e.g. ∇ · (b×∇p) = 0, and thus do not affect the evolution of thermodynamic quantities.
This solenoidal behaviour is broken by the appearance of toroidicity, which leads to a non-
vanishing divergence , which can be related to the downward (upward) drift of guiding centres



Neoclassical dissipation and parallel losses in interchange driven SOL turbulence 10

Figure 1. Schematic representation of neoclassical, Pfirsch-Schlüter transport on closed and
open flux surfaces, forB×∇B direction towards the X-point (vertically down). The thin
arrows represent downward ion magnetic drifts, the thick arrows the parallel return flows and
the dashed arrows the resulting radial transport. The shaded region illustrates the area of strong
plasma-neutral interaction and thus increased recycling in the divertor plasma. The location of
the magnetic pre-sheath (not to scale) is indicated by the dashed lines adjacent to the divertor
targets. Finally, the dotted box represents the poloidal projection of the computational domain
(not to scale) used in ESEL simulations.

of the formB×∇B caused by a non-uniform magnetic field (thin arrows in figure 1). The
resulting build up of charge, density or pressure, drives parallel return flows within the flux
surface, which largely compensate for the non-solenoidal part of the diamagnetic flux (thick
arrows in figure 1). Under collisional conditions(ν∗e � 1), the parallel friction in these return
flows generates a radial flux towards the centre (inward) on the high field side and away
from the centre (outward) on the low field side of the torus (dashed arrows in figure 1). For
a high aspect ratio flux surface(R0/r � 1), these fluxes have an approximately sinusoidal
poloidal dependance, namelyqPS

r ∝ q2
95(1+(R0/r)cosθ), whereθ = 0 at the outer mid-plane.

Performing a flux surface average leaves a net outward flux which is smaller than the low and
high field side fluxes by roughly the small factorr/R0. This average radial flux, known as the
Pfirsch-Schl̈uter flux, is proportional to some average radial thermodynamic gradient and thus
acts to relax this gradient. The process is generally known as neoclassical Pfirsch-Schlüter
diffusion.

The extension of the above analysis to the problem of calculating local diffusivities in
the ESEL computational domain (dotted box in figure 1) poses two separate problems. First,
it makes the problem local to the outer mid-plane of the tokamak. The already mentioned
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poloidal dependance,qPS
r (θ) ∝ q2

95(1+(R0/r)cosθ), means that the local radial flux near the
outer mid-plane is larger than the flux surface average radial flux roughly by a factorR0/r ≈ 3.
Second, it introduces the effect of open field lines on either side of the X-point. These may be
viewed as volumetric sinks of particles, pressure or charge (in fact the sink occurs by parallel
loss to the nearby divertor plates), and will tend to counteract the build up of these quantities in
the neighbourhood of the X-point, as discussed in the previous paragraph. Since it is this build
up which drives parallel return flows in the upstream SOL, we may expect these upward flows
and the associated radial PS flux to be reduced by some unknown factor related to the parallel
profiles of the thermodynamic quantity in question. we approximate this factor as the ratio
of the parallel distance upstream of the X-point,LX−X

‖ , and the sum of the parallel distances

between the X-point and inner and outer targets,Li−X
‖ + Lo−X

‖ , which for large aspect ratio
tokamaks is comparable toR0/r. We thus find that the effects of locality tend to to increase,
and those of topology to reduce, the radial fluxes by comparable factors, such that the two
effects roughly compensate.

Bearing in mind the above remarks, we henceforth employ the actual PS expressions for
the particle and momentum diffusivities,D′

⊥n andD′
⊥Ω, and follow the approach laid out in

equations (17)–(18) to construct an effective heat diffusivity,D′
⊥Te

,

D′PS
⊥n = (1+1.3q2

95)D
′c
⊥, (21a)

D′PS
⊥Te

≈ χ
′PS
⊥e +Θieχ

′PS
⊥i , χ

′PS
⊥e = (1+1.6q2

95)χ
′c
⊥e, (21b)

D′PS
⊥Ω = µ

′PS
⊥i ≈

3
8

χ
′PS
⊥i , χ

′PS
⊥i = (1+1.6q2

95)χ
′c
⊥i . (21c)

The subscriptTe is retained to emphasize the use ofD′
⊥Te

in the electron energy equation
(1b). As previously mentioned, in the strongly collisional limit, the ion and electron
channels become thermally coupled (Θie→ 1) such that electron heat diffuses radially almost
exclusively due to diffusion of ion heat,D′PS

⊥Te
→ χ ′PS

⊥i . Note thatΘie does not enter into
the viscosity coefficient since plasma momentum is already dominated by the heavier ion
species. It is also absent from the particle diffusivity, where electron-ion collisions, which
alone lead to particle diffusion, enter through the electron dominated collision frequency.
In other words, the degree of collisional coupling between the electron and ion species has
little impact on perpendicular particle and momentum diffusion, but dominates the effective
diffusion of electron heat.

The dimensionless fluid groups associated with equations (21a)–(21c), now become

ScPS
⊥ ≡

DPS
⊥Ω

DPS
⊥n

≈ 5
4

Scc
⊥ ≈ 30, (22a)

LePS
⊥ ≡

DPS
⊥Te

DPS
⊥n

≈ 5
4
(Lec

⊥e+ΘieLec
⊥i)≈ 40, (22b)

PrPS
⊥ ≡

DPS
⊥Ω

DPS
⊥Te

=
ScPS

⊥
LePS

⊥
=

Scc
⊥

Lec
⊥e+ΘieLec

⊥i
≈ 0.75, (22c)

Once again all expressions are evaluated forA = 2, Z = 1, ϑ = 1, with the additional
assumption of moderate ion-electron coupling,Θie = 0.5. Comparison with equations
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(20a)–(20c) reveals that introduction of toroidicity has little effect on the dimensionless
fluid groups, i.e. the effective Prandtl number is once again comparable to unity, while the
Schmidt and Lewis numbers are much larger than one. As a result, we expect strong viscous
damping of poloidal flows in the edge–SOL region and thus reduction of the velocity shear
associated with these flows. Since such velocity shear acts to destroy large structures and
de-correlate local fluctuations (i.e. acts to suppress turbulent transport), viscous damping
of poloidal flows increases the rate at which turbulence can re-establish itself the edge–
SOL region. This manifests itself as intermittent (sporadic) enhancements of edge transport,
which are accompanied by profile relaxations and ejection of plasma filaments into the SOL
[12–14,36–38].

5. Parallel transport coefficients

We divide the discussion below into parallel transport under steady-state and transient
conditions. The former provides a useful starting point for investigating transient particle,
momentum and heat propagation, which is required in the context of the present study.

5.1. Steady-state parallel transport

Parallel loss times of particles and electron energy to the divertor have been derived on several
occasions under steady-state,quiescentSOL plasma conditions [21, 40]. The simplest case
is the so-calledsimpleSOL in which the net particle source comes not from recycling at
the divertor targets, but from net radial influx in the upstream region. Below we present the
parallel loss times for such a steady-state, upstream fuelled, simple SOL.

The parallel particle density loss time is easily found as

τ‖n =
L‖n
v‖

≈
L‖

M‖ξcs
, τ

′
‖n = τ‖nωci ∝

1

(ξT ′e)1/2
, (23)

whereL‖n ≡ 1/|∇‖ lnn| is the length scale of parallel particle density variation, which in
the simple SOL case is comparable to the connection length,L‖. Consequently, the Bohm
normalized parallel advection loss rate, 1/τ ′‖n ∝ (ξT ′e)

1/2, decreases as the plasma cools.
Determination of the Mach number in equation (23) deserves a comment. It is easily shown
that the steady-state balance of mass and momentum requires the flow velocity into the sheath
adjacent to the solid (divertor) target to be sonic or supersonic,M‖sheath≥ 1 [21]. This is
the fluid version of the celebratedBohm criterion. Momentum conservation also requires the
particle density at the entrance into the target sheath,nt, to be half the value of the upstream
particle density,nu. The particle density loss time can thus be calculated as the ratio of
the total flux tube particle content, which can be approximated asnuL‖, and the flow rate
into the sheath,ntξcs, with the resultτ‖n = L‖/(0.5ξcs), i.e. M‖ ≈ 0.5 [21]. Similar values
follow from more sophisticated calculations, including the analysis of the SOL-average Mach
number for different transport assumptions [21]. Invariably we findM‖ ≈ 0.5 under simple
SOL conditions. The associated loss mechanism of particles, and any other passive scalar
carried by the flow, can be labeled assub-sonic advection.
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Electron heat is lost to the divertor due to a combination of sub-sonic advection (or
convection) and electron heat diffusion (or conduction). The ratio of these loss mechanisms
is given by equation (14a), which predicts that heat diffusion dominates for low-to-moderate
collisionalities (ν∗e < 20 for A = 2 andM‖ = 0.5). This roughly corresponds to thesheath
limited regime (ν∗e < 10), in which the Spitzer-Ḧarm (SH) expression for the electron
heat diffusivity,χSH

‖e = 3.2v2
teτee [41] must be modified by appropriate long mean-free-path

corrections orheat flux limits(see [42] for a review of heat flux limits in SOL dynamics). In
plasma fluid codes, this is typically done by replacingχSH

‖e by a harmonic average form valid
under all SOL collisionality regimes,

χ‖e = χ
SH
‖e

(
1+

3.2
ν∗eαFS

e

)−1

(24)

The choice of the flux limiting factor,αe, merits a short comment. One possibility is
to evaluate this factor at the free streaming (FS) valueαFS

e ≈ 0.8 [42], which is clearly
appropriate to fluid codes, where the effect of the sheath is imposed as a boundary condition.
The resulting kinetic correction is typically small in the main SOL (e.g. in the TCV
experiments 4/ν∗e < 0.1), but might be required in the limiter, or wall, shadow region, where
L‖ is typically reduced by a factor of ten, such that 4/ν∗e ≈ 1. However, it could be argued
that for a loss time treatment of parallel losses, the sheath limited value of the flux limiting
factor,αsheath

e ≈ 0.07, is more appropriate (this value is obtained from kinetic calculation of
the sheath energy transmission coefficient,γe≡ (Qe/nv‖Te)sheath≈ 5, whereQe is the electron
energy flux into the sheath). The resulting kinetic correction is no longer negligible even in
the main SOL (e.g. in the TCV experiments 45/ν∗e ≈ 1). However, due to the arguments in
section 5.2, the appropriateness of this sheath expression might equally be questioned. Below,
we select the larger value as the default choice ofαe, and discuss the sheath limited value only
in the context of parametric variation.

In the collisional limit (ν∗e � 20), parallel conduction is sharply reduced, and sub-sonic
advection becomes dominant. In this limit, the Spitzer-Härm expression may be used without
long mean-free-path corrections. The resulting expression for the net energy loss time was
derived in [22]. In the present case, we need only consider the electron cooling timeτ‖Te,
since the interchange model equations (1) are written in terms of the electron temperature and
not pressure. This is easily found by assuming parallel diffusion of heat,

τ‖Te =
3
2

L2
‖Te

χ‖e
≈ 3

2

L2
‖

χSH
‖e

, τ
′
‖Te

= τ‖Teωci ∝
n′

T ′5/2
e

(25)

Here, as before, we assume 1/L‖Te ≡ |∇‖ lnTe| ≈ 1/L‖, which is appropriate for the upstream

fuelled, simple SOL. The conductive cooling rate, 1/τ ′‖Te
∝ T ′5/2

e /n′, is a strong function of the
electron temperature and is inversely proportional to the particle density. As the SOL plasma
cools, this rate decreases sharply, although the reduction is partly offset by the accompanying
effect of rarefication (reduction of particle density). Since both the particle and energy
removal times, equations (23) and (25), are positive definite, the governing equations (1a)-(1b)
and (5a)-(5b) imply that (time-averaged)n′ andT ′e decay exponentially with radial distance
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away from the separatrix. Moreover, based on (14a), T ′e decays faster thann′ provided,

ν
∗
e <

2
3M‖

(
mi

me

)1/2

≈ 80 (26)

where the expression has been evaluated forA = 2, Z = 1 andM‖ = 0.5. Sinceν∗e ≈ 30< 80
in the TCV experiment, we expectT ′e andn′ to decay with comparable e-folding lengths. The
above prediction has been verified by solving the evolution equations forn′, T ′e andT ′i directly,
assuming the profiles are generated by filaments propagating at constant radial velocities [43].

The simpleSOL expressions obtained above become inaccurate underhigh recycling
SOL conditions, when the dominant particle source is the recycling of neutrals in the divertor
rather than the perpendicular plasma transport in the upstream region. As a consequence,
L‖n becomes comparable to the ionisation mean-free-path of neutrals and the approximation
L‖ ≈ L‖n, used in formulating the parallel particle density loss time in equation (23), is
violated. In addition, significant near-target particle density gradients imply that the zero-
dimensional description of parallel dynamics, characterised by the parallel loss times, ceases
to be useful and a one-dimensional description of parallel dynamics (or a three dimensional
description of the whole problem) becomes necessary. On the other hand, the parallel loss
time description is well suited to a range of plasma transients in which both particles and
energy are ejected into the upstream SOL, as assumed in the simple SOL ansatz. In short, it
is just the tool we need for quantifying damping rates due to parallel losses in an edge–SOL
turbulence code such as ESEL.

5.2. Transient parallel transport

In the context of the present study, we require the damping rates of turbulent SOL quantities
(n′, T ′e and Ω′) due to parallel losses to the divertor targets. In this regard, the results
of the previous section appear of little relevance, as they pertain tosteady-state(time-
independent) conditions, rather than totransient(time-dependent) conditions characteristic
of SOL turbulence. Despite these differences, the steady-state, simple SOL and the time-
dependent, turbulent SOL have one important common feature: both are fuelled by radial
transport of particles, momentum and heat in the upstream region. In interchange turbulence,
this fuelling is only active on the side of unfavourable magnetic curvature,∇p ·b ·∇b > 0,
i.e. the outer mid-plane of the torus, giving rise to the well known ballooning character of
the outward fluxes. The resulting relative fluctuations in the turbulent SOL are so large (of
order unity) and the radial influx/outflux into any given flux tube so rapid (compared to sonic
transit time to divertor targets) as to dominate the transient parallel dynamics, reducing the
recycling pattern in the divertor, and the sheath at the target, to the order of secondary effects.
In other words, each turbulent eddy (or filament) transiently resembles the simple SOL in so
far as it is fueled entirely by radial influx in the upstream region. The difference lies in the
parallel gradient scale length applicable in the two case, which may be much smaller than the
connection length for the turbulent eddy,L‖n < L‖. Unfortunately, it is difficult to estimate
the relationship between the two lengths without recourse to three dimensional simulations,
although one might speculate thatL‖n/L‖ should scale linearly with the initial parallel extent
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of the eddy and inversely with the strength of the perturbation, ˜n/n, and with the local plasma
collisionality. In the absence of such simulations, we can only be guided by experimental
results, which indicate that parallel correlation lengths of SOL turbulence (on JET) are indeed
comparable toL‖, typically L‖n ∼ (r/R0)L‖, i.e. that SOL turbulence structures take the form
of field-aligned plasma filaments [45]. Consequently, we will tentatively apply equations
(23) and (25) to turbulent eddies, with the understanding that the resulting parallel loss times
(rates) could be overestimated (underestimated) by a factor of orderR0/r. This approach was
previously used in [22] to study the dissipative properties of SOL turbulence.

In addition to the uncertainty inL‖n, the determination of the Mach number in equation
(23) is also problematic. In the simple SOL,M‖ was derived from the steady-state balance of
SOL inventory and parallel outflux. This approach is clearly not relevant to the transient SOL,
i.e. to the turbulent eddy. Instead, we must examine the transient parallel flow in response to
the parallel pressure gradients in the filament. Such parallel gradients are a direct consequence
of the ballooning nature of the interchange motion, which in the electrostatic approximation
leads to radial outflow (due toE×B drifts) of hot plasma blobs on the low field side of the
torus which transiently increase the local particle density and temperature in any given flux
tube as they drift in and out of a succession of flux tubes. The resulting parallel response can
be found by solving the particle and parallel momentum conservation laws,

∂

∂ t
n+∇‖nv‖ ≈ Sn

∂

∂ t
(ρv‖)+∇‖(p+ρv2

‖)≈ Sp (27)

whereρ ≈ min is the mass density,p = pe+ pi = n(Te+Ti) is the total pressure andSn and
Sp are net sources of particles and parallel momentum (note that the effect of warm ions is
included explicitly). Rewriting (27) in Lagrangian form, with a parallel convective derivative
d/dt ≡ ∂/∂ t + v‖∇‖, and assuming the sources to be small, as appropriate to the transient,
simple SOL, we obtain

d
dt

n+n∇‖v‖ ≈ 0
d
dt

(ρv‖)+∇‖p≈ 0 (28)

The above equations representacoustic responseto pressure perturbations, in which these
propagate parallel toB with a group velocity equal to the (warm ion) plasma sound speed,
ξcs, equation (15), such thatM‖ ≈ 1. In the cold ion approximation,pi disappears from (28)
such thatξ = 1 andξcs reduces tocs. In reality, we expect the Mach number to be reduced
from the sonic value of unity due to several factors:

• the ambient SOL and divertor plasma pressures,pSOL, reduce∇‖p, which may be
estimated as∇‖p≈ |p− pSOL|/L‖.

• parallel gyro-viscosity, which should be included in equation (28), would reduce the
parallel acceleration,

• kinetic effects tend to reduce the expectedM‖; for instance one-directional kinetic
effusion forA = 2, Z = 1 andϑ = 1, predictsM‖ ≈ 0.28, [43,46].

In view of the above, we expect the transient response to take the form ofsub-sonic, rather
thansonic, advection. Below, we adoptM‖ ≈ 0.5 as the nominal Mach number to be used
in transient parallel loss expressions. The accuracy of this estimate is clearly the weakest
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link in our analysis chain, although the neglect of other effects (impurities, neutrals, finite
Larmor radius effects, etc.) should also be noted. A conservative error bar of±30% should
be associated with the suggestedM‖ value.

The expressions for transient losses of momentum and heat follow by analogy with the
previous section. Thus, the parallel cooling time of a filament is given by (25), in which
heat flux limits should in general be included. The parallel loss time of vorticity can be
approximated by neglecting parallel viscosity, such that perpendicular momentum is removed
only by sub-sonic advection. This assumption leads to the simple estimateτ ′‖Ω ≈ τ ′‖n in
which the vorticity is locally damped due to parallel losses. Below, we summarize the final
expressions in Bohm normalised form,

τ
′
‖Ω = τ

′
‖n ≈

L‖nωci,0

M‖ξcs
, τ

′
‖Te

=
3
2

L2
‖Te

ωci,0

χ‖e
(29a)

M‖ ≈ 0.5 L‖n ≈ L‖Te ≈ L‖ (29b)

To prevent discontinuities between the region of closed and open field lines, equations
(23) and (25) should be combined with the multiple tanh expressions in (11). In other
words, parallel losses are activated at the edge–SOL and SOL–wall shadow boundaries with a
characteristic radial length scale of one ion gyro-radius (δ ′l ≈ δ ′w ≈ 1). With this in mind, the
inverse removal times, 1/τ ′a, from equations (23) and (25) provide expressions forσ ′

a,l and
σ ′

a,w in equation (11).
As a final comment, we observe that parallel losses of both particles, equation (23), and

energy, equation (25), which scale asT ′1/2
e andT ′5/2

e /n′, respectively, become progressively
weaker as we move outwards away from the separatrix. This translates into longer e-folding
lengths in the far-SOL region, which might be interpreted as flattening of then′ and T ′e
profiles. According to the above expressions, the degree of profile broadening should increase
strongly with SOL collisionality. These features correlate quite well with the degree of profile
broadening and its relation to plasma collisionality observed on many tokamaks [47,49–52].

6. Comparison between ESEL simulations and experimental data from TCV and JET

6.1. Comparison with TCV probe data in Ohmic and L-mode plasmas

We are now ready to predict the required SOL damping coefficients appropriate to the TCV
experiments [11]. Evaluating the first principles expressions derived in the previous sections
at the nominal separatrix conditions given by equation (12), we find the following values of
the radial diffusivities, equations (21a)–(21c),

D′PS
⊥n ≈ 9×10−4, D′PS

⊥Te
≈ 1.0×10−2, D′PS

⊥Ω ≈ 2.5×10−2. (30)

and the parallel damping rates, equations (23)–(25),

σ
′
n = σ

′
Ω ≈ 3.1×10−5, σ

′
Te
≈ 6σ

′
n ≈ 1.8×10−4, (31)

Due to a relatively high collisionality of the TCV SOL plasma, the electron heat diffusivity
were evaluated without any recourse to a flux limiting factor. The above coefficients were
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taken to be uniform in the main SOL. In the wall shadow region, parallel connection length
are shorter than in the main SOL and the parallel damping rates were adjusted accordingly.

Using the values recommended in equations (30) and (31) (with the exception of larger
value of D′

⊥n ≈ 4.5× 10−3 imposed by numerical constraints) ESEL simulations produce
good overall agreement with experimental data [11]. Code and experiment are particularly
well matched in terms of the following observables:

• radial profiles of time-averaged particle density, relative particle density fluctuations and
their statistical skewness and kurtosis,

• radial profiles of time-averaged radial particle flux, relative particle flux fluctuations,
their statistical skewness and kurtosis,

• radial profile of the auto-correlation time and the conditionally averaged pulse waveform
shape in the far-SOL

• probability distribution functions of particle density and radial particle flux fluctuations
throughout the SOL.

This agreement deteriorates noticeably for factor of two-three departures of the damping rates
away from their predicted values, confirming the appropriateness of the reduced fluid, cold-
ion approximation with the damping expressions derived here.

At this point, one might raise a valid objection thatD′
⊥a andσ ′

a used in the simulations
were assumed to be constant across the SOL, whereasD′

⊥a and τ ′‖a derived in sections 4
and 5 depend on local values ofn′ andT ′e, and would thus clearly vary across the SOL. As
such, the observed agreement between code and experiment could be considered fortuitous
to some extent. This objection may be countered by two separate observations. First and
foremost, we note that the values ofD′

⊥a andσ ′
a used in the simulations are evaluated with

separatrix values ofn′ andT ′e, i.e. with n′(x′sep) andT ′e(x
′
sep), and that the strongly-sheared

near-SOL region largely determines the SOL turbulent dynamics. For example, the frequency
of intermittent events is linked to the damping of poloidal flow in the edge region and hence
to the value of the perpendicular viscosity at the separatrix.

Secondly, as already mentioned, we expectT ′e(x
′) to decay with an e-folding length equal

to (or shorter than) that forn′(x′) [55]. Thus, the productn′/T ′1/2
e which determines the

change of neoclassical diffusivities (21a)–(21c) decays slower than eithern′(x′) or T ′e(x
′) (it

remains constant whenT ′e(x
′) ∝ n′(x′)2). This prediction is confirmed by numerical solution

of the temporal decay ofn′, T ′e andT ′i due to parallel losses in the frame of reference moving

with the filament [43]. The results indicate thatn′/T ′1/2
e andn′/T ′1/2

i vary by less than 30%
for up to three particle density removal times, 0< t < τ‖n, which in the TCV experiments
are sufficient for the turbulent filament to cross the entire SOL region (excluding the wall
shadow). This result was also observed based on averaged values ofn′ and T ′e obtained
using ESEL simulations for both TCV and JET relevant conditions, where〈n′〉/〈T ′e〉1/2 was
found to remain roughly constant (within 20%) across the edge-SOL region, i.e. in the entire
the computational domain, excluding the wall shadow; here〈·〉 denotes a spatio-temporal
average. More refined simulations, including the spatial variation ofD′

⊥a andτ ′‖a are planned
to determine the validity of the above conclusions.
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It is also worth noting that the preliminary ESEL simulations, reported in [10], assumed
D′
⊥n = D′

⊥Te
. The particle diffusivity was reduced relative to the heat diffusivity in the

subsequent simulations, reported in [11], following the derivation of the neoclassical damping
terms described here. For reasons of numerical expediency (the required numerical resolution
becomes very demanding for realistic values of the particle diffusivity, preventing sufficiently
long integration times), only a factor of ten reduction could be implemented into ESEL.
However, this level of reduction is sufficient to improve the already good agreement between
simulated and TCV-measured turbulence statistics. We note that this agreement justifiesa
posterioriour simple SOL assumptions concerning the parallel flow velocity (M‖ ≈ 0.5) and
the parallel scale lengths (L‖n ≈ L‖Te ≈ L‖), as least under TCV conditions.

6.2. Comparison with JET probe data in Ohmic and L-mode plasmas

To examine the scaling of ESEL predictions with machine size and related parameters, such as
plasma collisionality, we next consider Ohmic and L-mode discharges on the JET tokamak,
whose major radius is roughly three times larger than that of TCV. The typical parameters
required for the ESEL simulations are taken from a study of SOL radial profiles under Ohmic
and L-mode conditions in JET [50]. These are

n0 ≈ 1019m−3, Te,0 ≈ 45eV, Ti,0 ≈ 80eV, (32)

R0 ≈ 3m, B0 ≈
3
4

Baxis≈ 1.5T, q95≈ 2.7,

for which ρs,0 = 0.645 mm, ωci,0 = 7.2× 10−7s−1 and ρ2
s,0ωci,0 = 30.0 m2/s. Applying

equations (21a)–(21c) one finds

D′PS
⊥n ≈ 2.3×10−4, D′PS

⊥Te
≈ 1.25×10−3, D′PS

⊥Ω ≈ 3.3×10−3 (33)

The above values include the correction due toΘie = 0.11, which indicates that the JET Ohmic
and L-mode plasmas are somewhat less collisional than those in TCV discharges discussed
earlier. Similarly, equations (23)–(25) withL‖ = πR0q95 ≈ 25.5 m, ν∗e ≈ 10 andM‖ = 0.5
yield

σ
′
n = σ

′
Ω ≈ 2.1×10−5, σ

′
Te
≈ 8.5σ

′
n ≈ 1.8×10−4, (34)

In the JET simulations, theσ ′s were allowed to vary in response to changes to local particle
density and temperature, and were thus functions of position (theD′s were held constant
everywhere in the computational domain).

To give an indication of the phenomenology of the turbulence emerging from the
ESEL simulation for typical JET Ohmic and L-mode conditions, as given by equation (32),
instantenous two dimensional mappings of particle density and temperature are shown in
figure 2, and should be compared with similar mappings shown in [11]. The computational
box, which measures 150ρs in radial extent and 75ρs in poloidal extent, is located on the
outer mid-plane; the magnetic field is perpendicular to the page. Note the clear breaks inn
andTe between the edge, SOL and wall (limiter) shadow regions. The near-SOL filaments
are visibly smaller than those observed in ESEL simulations of TCV plasmas [11], a result of
smaller damping coefficients, especially the transverse viscosity,D

′PS
⊥Ω.



Neoclassical dissipation and parallel losses in interchange driven SOL turbulence 19

Figure 2. Snapshots of two dimensional distribution of particle density and temperature
predicted by an ESEL simulation for typical JET Ohmic conditions as given by equation (32).
The computational domain is located near the outer mid-plane of the torus and encompasses
the edge, SOL and the wall (limiter) shadow regions. The edge region corresponds to 0-25
mm inboard of the separatrix, the SOL to 0-60 mm outboard of the separatrix, and the limiter
shadow to 60-100 mm.

To obtain steady-state radial profiles of particle density and electron temperature, the two
dimensional mappings of these quantities, figure 2, are averaged in time and in the poloidal
variabley′, with the resultingn(r) andTe(r) profiles plotted in the top two frames in figure 3.
Also shown in these frames are experimental values ofnandTe measured on JET using the fast
reciprocating probe and the Li-beam diagnostics for plasma conditions comparable to (32) at
two different upstream densities, see figures 3 and 9 of [50]. Considering the simplified nature
of the ESEL simulations, the predicted and measured profiles agree reasonably well, although
the agreement is visibly worse for the particle density profile, especially in the far-SOL where
the predicted profile is much flatter than observed in the experiment (possible causes of this
discrepancy are discussed at the end of the section). The exponential e-folding lengths ofn(r)
andTe(r) profiles are shown in the bottom frame of figure 3. Both profiles are steepest in
the edge and near-SOL regions, with minimum e-folding lengths ofλ near−SOL

n ≈ 20 mm and
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Figure 3. Radial profiles (averaged in time and poloidal direction) of particle density and
temperature (top frames), and their radial e-folding lengths (bottom frame), predicted by
ESEL for typical JET Ohmic conditions as given by equation (32). Also shown are two
sets of experimental profiles for low and high upstream densities, measured on JET using
the reciprocating probe and Li-beam diagnostics for Ohmic plasma conditions comparable to
(32), see figures 3 and 9 of [50]. The SOL region corresponds to 0-60 mm outboard of the
separatrix, and the limiter shadow to 60-100 mm.

λ
near−SOL
Te ≈ 10 mm, and become progressively broader as one moves further into the SOL,

λ far−SOL
n ≈ 80 mm andλ far−SOL

Te ≈ 60 mm; the averaged (radially across the SOL) e-folding
lengths are found asλ SOL

n ≈ 66 mm andλ SOL
Te ≈ 44 mm, respectively. The above values

compare reasonably well (with the exception ofλ far−SOL
n ) with measured e-folding lengths,

again see figures 3 and 9 of [50], which are found asλ near−SOL
n ≈ 20 mm,λ near−SOL

Te ≈ 10 mm
in the near-SOL, andλ far−SOL

n ≈ 25 mm,λ
far−SOL
Te ≈ 50 mm in the far-SOL. In particular,

both near-SOL lengths are reproduced quite well, whereas the far-SOL particle density length
is overestimated by roughly a factor of three.

It is worth noting that the appearance of the double exponential feature in then(r) and
Te(r) profiles is related to the size of the turbulent structures, as they protrude beyond the
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Figure 4. Radial profiles (averaged in time and poloidal direction) of turbulent and collisional
(Pfirsch-Schl̈uter) radial fluxes of particles and energy (top frames) and effective diffusivities
and velocities of particles and heat (bottom frames) predicted by ESEL for typical JET Ohmic
conditions as given by equation (32). The effective outer mid-plane diffusivity profile inferred
from EDGE2D modeling are indicated by solid points with vertical error bars (note that
Deff
⊥T = 2Deff

⊥n was assumed in EDGE2D).

separatrix, and to dependence ofσTe onn(r) andTe(r), apparent from (29b), i.e.σTe∼ τ‖Te ∝
χ‖e ∝ T5/2

e /n. In other words, as the plasma cools, parallel electron conduction becomes less
efficient at removing the electron heat, leading to a broadening of the near-SOLTe(r) profile.

In comparison, the reduction in advective losses is far less pronounced,σn∼ τ‖n ∝ cs ∝ T1/2
e ,

such that the broadening of the near-SOLn(r) profile is smaller by roughly a factor of two.
This largely explains the ratioλ near−SOL

n /λ
near−SOL
Te ≈ 2 observed during high power (low

collisionality) discharges on many machines, including JET.
The top frames in figure 4 show the radial profiles of turbulent and collisional radial

fluxes of particles and electron energy, normalised byn0cs0 andp0cs0 = nTe0cs0, respectively.
The turbulent fluxes of particles,Γturb

r , heat,qturb
r , and energy,Qturb

r , are defined as

Γturb
r ≡ 〈nvx〉, qturb

r ≡ 5
2
〈n〉〈Tevx〉, (35a)

Qturb
r ≡ 5

2
〈nTevx〉 ≈

5
2
〈Te〉Γturb

r +qturb
r , (35b)

where 〈·〉 corresponds to a poloidal-temporal average andQturb
r is broken down into the

convective and conductive contributions; the corresponding collisional (Pfirsch-Schlüter)
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fluxes are defined as

Γcoll
r ≡ DPS

⊥n〈∇xn〉, qcoll
r ≡ DPS

⊥Te〈n∇xTe〉 ≈ DPS
⊥Te〈n〉〈∇xTe〉, (36a)

Qcoll
r ≡ 5

2
〈Te〉Γcoll

r +qcoll
r . (36b)

Note that in (35b) and (36a) we neglect the poloidal-temporal averages of the cross terms
〈ñT̃evx〉 and〈ñ∇xT̃e〉, where ˜A = A −〈A 〉 denotes the fluctuating part of quantityA .

Since the turbulent fluxes, (35a)-(35b), are two orders of magnitude larger than the
collisional fluxes, (36a)-(36b), as is evident from figure 4, we may conclude that radial
transport of both particles and energy is entirely dominated by turbulent motions of plasma
filaments. Examination of the convective and conductive contributions to the turbulent
energy flux (the latter is shown separately in figure 4) reveals the two to be comparable
in both the edge and SOL regions. As a consequence of the excessively highλ far−SOL

n ,
the above ESEL simulations significantly overestimate the level of main chamber recycling
and energy deposition on outboard limiters in JET, i.e. they predict that roughly half the
particles, and one tenth of the energy, crossing the separatrix arrive at the outboard limiters,
Γturb

r (r lim)/Γturb
r (rsep)≈ 0.58 andQturb

r (r lim)/Qturb
r (rsep)≈ 0.13. Although the plasma fluxes

to the limiter at the outer mid-plane on JET are difficult to establish accurately, the above
values are certainly in excess of those inferred from measuredn(r) profiles, assuming a
constant effective velocity, see (37b) below, which suggestsΓturb

r (r lim)/Γturb
r (rsep) ≈ 0.06 at

the probe location. Similarly,jsat(r) profiles measured with fast reciprocating probe near the
top of the torus, see figures 2 and 5 in [50], which yieldj turb

sat (r lim)/ j turb
sat (rsep)≈ 0.02; similar

values were inferred previously in [57]. Possible causes of this discrepancy are discussed at
the end of the section.

The lower frames in figure 4 show the radial profiles of theeffective diffusivitiesof
particles and heat, andeffective radial flow velocitiesof particles and heat, defined as

Deff
⊥n =

Γturb
r

〈∇xn〉
, χ

eff
⊥ = Deff

⊥T =
qturb

r

〈n〉〈∇xTe〉
(37a)

veff
⊥n =

Γturb
r

〈n〉
, veff

⊥T =
2
5

qturb
r

〈n〉〈Te〉
, (37b)

With these definitions the turbulent energy flux (35b) can be written in two alternatives forms,

Qturb
r =

5
2
〈Te〉Deff

⊥n〈∇xn〉+Deff
⊥T〈n〉〈∇xTe〉=

5
2
〈Te〉〈n〉

(
veff
⊥n +veff

⊥T

)
(38)

The effective particle diffusivity (lower left frame in figure 4) is found to increase from≈ 3
m2/s on the separatrix to a plateau value of≈ 10 m2/s starting atr − rsep≈ 10 mm, which
persists into the far-SOL and even into the limiter shadow region. The effective heat diffusivity
follows a similar profile, but is a factor of 5/2 larger, such thatDeff

⊥T ≈
5
2Deff

⊥n. The effective
velocities (lower right frame in figure 4) are found to be roughly constant across the SOL, with
veff
⊥n≈ 130−180 m/s and veff

⊥T ≈ 200−230 m/s. It is instructive to compare these results with
effective velocities derived based on simple SOL assumptions and average e-folding lengths,

λn ≈ veff
⊥nτ‖n ≈ veff

⊥nL‖/cs, λT ≈ veff
⊥Tτ‖T ≈ veff

⊥TL2
‖/χ‖e (39)
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Inserting the values of the effective flow velocities, e-folding lengths and parallel loss times,
we find these simple SOL expressions to be well satisfied throughout most of the SOL, e.g.
veff
⊥nτ‖n ≈ 150 m/s×25 m/77 km/s≈ 50 mm≈ λ SOL

n .
There are two methods in which the above ESEL predictions can be compared to

experiment. The first method is to compare directly with the turbulentE×B radial flux
profiles in JET Ohmic discharges, inferred from fast reciprocating probe measurements of
particle density and potential fluctuations across the SOL [57]; such measurements indicate
particle diffusivities of 0.5− 2 m2/s and effective flow velocities of≈ 50− 200 m/s. The
second method consists in comparing with edge plasma fluid modeling (e.g. using the
EDGE2D code package), in which the radial profiles ofDeff

⊥a are chosen as to offer the best
match to the experimentally measuredn(r) andTe(r) profiles; such modeling indicates particle
diffusivities of 0.5−1.5 m2/s. Unfortunately, neither the first nor the second method offers a
measure of radial transport at the outer mid-plane (θ = 0, with θ being the poloidal angle),
where it is known to be largest due tounfavourablemagnetic curvature and where the ESEL
computational box is located; it is worth noting that if this box were moved to the inner mid-
plane (θ = π), where the magnetic field curvature isfavourableand the edge plasma is stable
against interchange instabilities, a similar computation would yieldDeff

⊥n = DPS′
⊥n, i.e. a value

smaller by roughly two orders of magnitude. Instead, the reciprocating probe measuresDeff
⊥n

and veff
⊥n near the top of the torus (θ ≈ π/2), while EDGE2D modeling estimates poloidally

averaged (θ ≈ 0− 2π) values of these quantities. Assuming that radial transport exhibits
strong ballooning character, i.e. thatDeff

⊥a(θ = 0) � Deff
⊥a(θ = π), as predicted theoretically

and observed in many experiments, thatDeff
⊥a(θ) has a maximum atθ = 0 and a poloidal full

width at half maximum,∆θ , smaller thanπ (this value was recently inferred as∆θ/2π ≈ 1/6
based on dedicated studies on the Tore Supra tokamak [58]), the poloidally-averaged and outer
mid-plane diffusivities may be related asDave

⊥ ≈ (∆θ/2π)Domp
⊥ ≈ Domp

⊥ /6. As a result, the
outer mid-plane diffusivity profile may be estimated asDomp

⊥ (r)≈ 3−9 m2/s by multiplying
the EDGE2D results by a factor of six. The resulting values, plotted in figure 4, are in fair
agreement with ESEL predictions, aside from the far-SOL region, where ESEL overestimates
the turbulent radial diffusivitities and/or fluxes by a factor of three.

To conclude the section, let us consider some possible causes of the discrepancy
between the predicted and measured SOL particle density profiles. These may be
linked to several crude approximations invoked in the ESEL simulations, namely two
dimensional geometry (inadequate treatment of parallel transport), finite poloidal box size,
cold ion approximation, constant (non-varying) collisional dissipative terms, the neglect of
electromagnetic fluctuations and the absence of neutrals and impurities. The first of these
items is particularly notable for two reasons:

• the estimateL‖n ≈ L‖Te ≈ L‖ and M‖ ≈ 0.5 invoked in (29a)-(29b) may substantially
underestimate the degree of parallel losses. Additional simulations indicate that
increasing the Mach number (or decreasingL‖n) by a factor of two does not substantially
alter the density e-folding length (reduced by≈ 10%), presumably because of the related
increase of viscous damping and radial transport, implied byτ‖n = τ‖Ω, leads to weaker
damping of poloidal flows and hence larger turbulent outflux. Relaxing this assumption,
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Figure 5. Radial profiles (averaged in time and poloidal direction) of the parallel Mach number
at the probe location on TCV calculated using (40) based on the ESEL simulation for TCV
relevant parameters. The flow originates at the outer mid-plane and is directed towards both
divertor targets. The SOL region corresponds to 0-30 mm outboard of the separatrix, and the
wall shadow to 30-60 mm.

one finds roughlyλn ∝ τ‖n ∝ L‖n, in line with (39), such that the observed discrepancy
can be largely removed by assumingL‖n/L‖ ≈ r/R0. Ideally, parallel transport should
be treated by including several grid points along the field line, leading to a fully three
dimensional solution,

• the absence of sheath dissipative effects in the ESEL governing equations, which have
been replaced by advective momentum loss, as discussed in section 2.2. Since the
inclusion of sheath dissipation in interchange dynamics of plasma filaments has been
recently shown to decelerate their radial motions [24], inclusion of these effects in the
ESEL model, alongside the advective momentum losses, could significantly decrease
the far-SOL particle density, and thus improve the agreement with experiment. The
inclusion of sheath dissipation is motivated by (i) the advective disspation criterion (9),
which while clearly satisfied for TCV,τ⊥/τ‖≈ 0.03, is only moderately satisfied for JET,
τ⊥/τ‖ ≈ 0.2, and (ii) the lower collisionality of JET plasmas compared to TCV, which is
reduced by roughly a factor of three,ν∗e ≈ 10 vs. 30.

6.3. Comparison withB×∇B-independent (ballooning) part of the parallel SOL flow in
Ohmic and L-mode plasmas

Having demonstrated that ESEL simulations offer a reasonable match to radial profiles of
upstream plasma quantities, we next turn to consider the implication of these results to
one of the outstanding problems of tokamak edge plasma physics, namely the origin of the
B×∇B-independent part of the parallel SOL flow. Such flows were first observed on the
DITE tokamak [48], and were since measured on several machines, e.g. at the top of the
JET poloidal cross-section (M‖ ≈ 0.2) [50] and at the inner mid-plane of Alcator C-Mod
(M‖ ≈ 0.5) [52]. Neither theB×∇B-dependent or independent parts of the parallel SOL
flow is presently understood, although the former is thought to be related to Pfirsch-Schlüter
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Figure 6. Parallel Mach number measured by a reciprocating Mach probe located near the top
of the JET vessel, in normal (B×∇B towards the X-point) and reverse (B×∇B away from
the X-point) field directions in JET Ohmic plasmas. The average value represents theB×∇B-
independent part of the flow, which shows a clear ballooning character (positive values indicate
flow towards the inner divertor). Reproduced from [50] (figure 6).
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Figure 7. Similar to figure 5 only for JET relevant conditions. The results should be compared
with figure 6. The flow originates at the outer mid-plane and is directed towards both divertor
targets. The SOL region corresponds to 0-60 mm outboard of the separatrix, and the limiter
shadow to 60-100 mm.

parallel return flow, see figure 1. A clear understanding of theB×∇B-independent part has
yet to emerge [50, 52, 53]. In fact, very little is known about this mechanism aside from its
strongballooningcharacter which is thought necessary to create the SOL recirculation from
the outer mid-plane to both divertor targets.

Interchange turbulence, being driven by unfavourable magnetic curvature, offers a
natural explanation for the observed ballooning character of the outward fluxes. Since
magnetic curvature,b ·∇b, is independent of theB×∇B direction, it would account for both
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the direction of the observedsub-sonicflow (from the outer mid-plane towards both divertor
targets) and the lack of dependence on the toroidal field direction; effectively, as a plasma
blob drifts across any given flux tube, it perturbs the local pressure and launches a sound wave
towards both divertor targets, in line with equations (28). In this physical picture, the time-
averaged magnitude of theB×∇B-independent flow (which is the experimentally available
quantity) represents the time-average of (i) the sub-sonic flow (withM‖ ≈ 0.5) during the
intermittent outward bursts of large plasma blobs, in which the local pressure exceeds the flux-
tube average value by some factorα and acoustic pulses are launched in response to the local
parallel pressure gradient∇‖p, and (ii) the largely stagnant SOL flow (withM‖� 0.5) during
the quiescent phase, in which the pressure is below the flux tube average value and roughly
along the flux tube in the upstream SOL. The two flow conditions correspond to the simple
SOL, in which sub-sonic flow is driven by upstream source of particles, and the recycling
SOL, in which the source of particles is restricted to target recycling (recall that the upstream
SOL flow velocity tends to vanish in the absence of radial sources and Pfirsch-Schlüter flows).

The above arguments rely on a global balance of particles and parallel momentum in
any given flux tube, (27), and therefore require appropriate sink terms for each acoustic pulse
launched by an outward drifting plasma filament. Such a pulse may terminate at the divertor
targets, which act as an effective sink for all plasma flows, or may drift inward/outward onto a
different flux tube (perhaps crossing the separatrix to return to the region of closed field lines)
which acts as a volumetric sink within that flux tube. The importance of such volumetric
sinks for the ballooning-like SOL flow was demonstrated by recourse to global plasma fluid
modeling of the edge plasma [56], using the EDGE2D/NIMBUS code. In the context of
turbulence (ESEL) simulations considered here, which are both two dimensional and local, the
specification of particle density and temperature at the inner boundary of the computational
box, implicitly assumes sufficient influx of plasma and neutrals (across the separatrix surface)
to balance the ballooning-like out flux as predicted by the ESEL code. In short, the simulations
do not address the global distribution of source and sinks and the associated flow patterns.

To estimate the effect of turbulence driven flows from ESEL simulations, we must
therefore resort to a simplifyingAnsatz, whose validity should later be tested by comparison
with a three dimensional calculation. We thus estimate the time-averaged Mach number as
the product of the sub-sonic value of 0.5 and the fraction of the time that a significant parallel
pressure gradient exists in the flux tube. In the absence of parallel profiles, we approximate
the latter by a time-averaged pressure, which we denote by〈p〉, and write

〈M‖〉 ≈ 0.5 fp>α〈p〉, fp>α〈p〉 ≡
t(p > α〈p〉)

∆t
(40)

Here 0.5 represents the sub-sonicM‖, ∆t is the total time of the simulation,t(p > α〈p〉)
is the total time during which the local pressure exceedsα times the time-averaged local
pressure, andfp>α〈p〉 is the fraction of the time that this conditions is satisfied. Based on (28),
which neglects viscous effects and momentum sources/sinks, we expectα to be a constant
approximately equal to unity,α ≈ 1.

The criterion of equation (40) has been applied to the ESEL simulations of TCV Ohmic
and L-mode plasmas discussed in section 6.1 (where the damping coefficients recommended
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by the analysis of this paper have been used) [11]. The radial profiles ofM‖, are calculated on
the basis of equation (40) applied to localn andTe, after which they are averaged poloidally
and in time. The results are plotted in figure 5 for three values ofα. One findsM‖≈ 0.2−0.05
across the SOL forα = 1− 2. This range of values has been found in parallel SOL flow
measurements on TCV [54], where aB×∇B-independent component ofM‖ ≈ 0.1 in the
ballooning direction (away from the outer mid-plane) has been recently found in toroidal field
reversal experiments.

Similar comparison can also be performed for JET Ohmic and L-mode discharges
discussed in section 6.2, for which radial profiles of the parallel Mach number have been
measured with a reciprocating Mach probe (see figure 6 in [50], which is reproduced here
as figure 6). TheB×∇B-independent contribution is estimated by taking the average of the
forward and reversed field directions, with the resultM‖ ≈ 0.2− 0.3. The parallel Mach
numberM‖ profile corresponding to figure 3 is calculated using (40) for three values ofα and
is plotted in figure 7. The Mach number is predicted asM‖≈ 0.2 for α ≈ 1, in good agreement
with the measured value, figure 6.

7. Conclusions

First principles expressions for the damping terms in collisional scrape-off layer turbulence
have been derived based on neoclassical perpendicular transport (Pfirsch-Schlüter diffusion)
and classical parallel transport (sub-sonic advection and Spitzer-Härm diffusion) of mass,
momentum and energy. The final set of coefficients, expressed in Bohm normalised form, is
given by equations (20) and (27).

Two notable differences with commonly used damping terms have been identified: (i)
momentum diffusivity, and the associated viscous dissipation, have been shown to be much
larger than the particle diffusivity, and (ii) it has been argued that the assumption of sheath-
dissipative damping of vorticity is inappropriate under collisional conditions, and that it
should be replaced by a sub-sonic, advective loss. The predicted expressions derived here
for the damping terms successfully predict the level of dissipation required to reproduce the
SOL turbulence statistics, temporal correlations and radial profiles measured on the TCV
tokamak [11]. They also reproduce, with reasonable accuracy, the radial SOL profiles of
particle density and temperature in JET Ohmic and L-mode discharges, although the far-
SOL particle density e-folding length is over-estimated by a factor of three. On the basis
of this agreement, we may conclude that turbulent SOL transport (at least in TCV and
JET Ohmic and L-mode plasmas) is driven by interchange motions (related to unfavourable
magnetic curvature and radial pressure gradients in the edge region) and is influenced by
neoclassical collisional diffusion and parallel conductive and convective losses in the SOL
region. The interchange model discussed here provides a first principles understanding of
SOL mass, momentum and energy transport and contains only few adjustable parameters,
e.g.M‖,L‖n,L‖Ω,L‖Te

and the size of the computational domain. Most importantly, it suggests
that SOL turbulence is dominated by electrostatic (drift-ordered) plasma dynamics, since good
agreement with experimental data (in fact an overestimate of radial transport!) is obtained
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without including the effect of fluctuating magnetic fields.
The above physical picture offers new insight into two important classes of observations

in tokamak experiments. First, it effectively reconciles any apparent inconsistencies between
the presence of upstream SOL fluctuations and the (neo)classical scaling of radial profiles of
deposited power on JET divertor targets [40] – this scaling simply reflects the neoclassical
dissipation of SOL turbulence. Although this conclusion was anticipated in [22] based on
analysis of the dissipative scale of SOL turbulence, the ESEL study increases the credibility
of this type of analysis. Second, transient, sub-sonicparallel advection in response to
curvature-drivenradial excursions of turbulent plasma blobs (or filaments) appears to offer
a viable mechanism for theB×∇B-independent (ballooning) part of the parallel SOL flow
that has now been measured in a number of tokamaks [50, 52, 54]. This flow is interpreted
as the temporal average of the largely stagnant (M ≈ 0) recycling dominated SOLduring the
quiescent phase between the bursts, and the sub-sonic (M‖ ≈ 0.5) transient pulse propagation
driven by parallel pressure gradients due to intermittent outward bursts of turbulent filaments
(or blobs). Comparison with TCV and JET measured parallel Mach numbers appears to
support the above hypothesis.
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