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ABSTRACT

Tokamak plasmas with reversed magnetic shear are prone to the excitation of Alfvén Cascade (AC)

eigenmodes by energetic particles. These modes exhibit a quasi-periodic pattern of predominantly

upward frequency sweeping. Observations also reveal that the AC spectral lines sometimes bend at

low frequencies, which is a significant deviation from the shear Alfvén wave dispersion relation.

This paper shows that the underlying reasons for such bending are finite pressure of the plasma and

geodesic curvature that precludes shear Alfvén perturbations from being strictly incompressible. In

addition to the geodesic effect, there are two other pressure effects on shear Alfvén waves, which

are convection in presence of an equilibrium pressure gradient and the toroidicity induced coupling

between shear Alfvén waves and acoustic modes. Analytical treatment of the problem enables

parametric comparison of all three mechanisms. The key distinction between the geodesic

compressibility and acoustic coupling is that geodesic compression occurs without plasma

displacement along the magnetic field lines. As a result, the mode phase velocity is greater than the

ion thermal velocity even in isothermal plasma, which allows the mode to avoid strong ion Landau

damping. Plasma temperature diagnostics via magnetohydrodynamic (MHD) spectroscopy

employing the low-frequency part of the ACs is suggested.

I. INTRODUCTION

The term Alfvén Cascades (ACs) was introduced in Refs. [1-4] for tagging a special set of Alfvén

modes observed in experiments on the Joint European Torus (JET) tokamak with non-monotonic

safety factor profile and population of energetic ions generated by ion cyclotron resonance frequency

(ICRF) heating. These modes were first found in JT-60U and they are also known as reversed shear

Alfvén eigenmodes [5].  Most recently, Alfvén cascades have received considerable attention in the

Alcator C-Mod experiment [6]. ACs have also been observed in deuterium-tritium (DT) experiments

on TFTR [7] and in neutral beam injection (NBI) experiments on JET and DIII-D [8].

Alfvén cascade modes are known to be associated with a minimum in the radial profile of the

safety factor q . The AC frequency ( )tACω  usually tracks the local dispersion relation for shear

Alfvén waves in low-pressure plasmas:

 (1)

where n  and m  are the toroidal and poloidal mode numbers, respectively,n R  is the major radius, q0

is the minimum value of the safety factor, and   VA    is the AlfvÈn velocity at q q= 0. At large mode

numbers, the time dependence of VA  is less important than that of q0 . The underlying reason  is  that

q t0
1− ( )  is multiplied by a large number  m  whereas the quantity mq n0

1− −  in  front of V tA ( )  does not

exceed 1 2 0/ ( )q , the value at which the AC frequency reaches the toroidal Alfvén eigenmode (TAE)

frequency. As the value of q t0( ) changes during the discharge the mode frequency changes at a rate

ωAC
At

m

q t
n

V

R
( )

( )
≈ − ⋅

0



2

(2)

which is an important distinctive feature of Alfvén cascades. The robust relation between the mode

frequency and q t0( ) makes ACs a very convenient diagnostic tool for measuring temporal evolution

of the safety factor [9, 10]. This technique is routinely used in JET advanced scenarios to facilitate

the creation of internal transport barriers.

In agreement with Eq. (2), the observed rate of frequency sweeping is faster for higher mode

numbers.  It is common that q0  decreases in time, which makes the modes with m nq> 0  sweep

upward in frequency and the modes with m<nq0  sweep downward. The experiments usually exhibit

upward rather than downward sweeping, giving a strong preference to modes with m>nq0 . This

feature results from a specific linear response of energetic particles with large orbits [2]. For large

mode numbers, a small decrease in q0  from m/ n to qTAE …2m−1( )/ 2n( )  increases the frequency

from zero to the characteristic TAE frequency, ωTAE ∪VA / 2qTAE R( ) . The quantity 1/ q0  can be treated

as a linear function of time over the small interval δq0 =1/ (2n) . As a result, the mode frequency is

also a linear function of time over most of the sweeping interval as Figure 1 shows.

Except for value of q0  close to the vicinity of qTAE, each AC mode consists of predominantly one

poloidal Fourier component.  As  q0  approaches 2m−1( ) / 2n( ) , toroidicity-induced coupling

changes the mode structure to a sum of two comparable harmonics (m and m−1).  Toroidal coupling

also modifies the dispersion relation (1) near the TAE gap. This transition is seen as spectral line

bending in Fig.1 near the TAE gap.  The corresponding theory has been developed in Ref. [4].

Another significant modification of Eq. (1) occurs at low frequencies (when q0  is close to m/ n).

Observations reveal that the cascade modes never reach zero frequency at q0 = m/ n  as one would

expect from Eq.(1). The spectral lines either terminate at low frequencies as seen in Fig.1 or they

become bowl-shaped around a common minimum frequency for several modes as seen in Fig.2.

Continuum damping together with other damping mechanisms can readily account for the mode

suppression [11], but not for the spectral line bending. The latter requires a different underlying

mechanism.

Unlike in the TAE frequency range, toroidal coupling between shear Alfvén waves is insignificant

at low frequencies.  Instead, pressure perturbation becomes the key factor. Toroidal geometry

precludes shear Alfveen perturbations from being strictly incompressible. It produces a geodesic

pressure perturbation given by

(3)

where c t∂ ∂Φ /  is the electrostatic potential associated with a shear Alfvén perturbation, γ  is the

effective ratio of specific heats (resulting from kinetic calculations), 0P  and 0B   are the unperturbed

pressure and magnetic field, respectively, and c  is the speed of light. The impact of this geodesic

perturbation on Alfvén cascades is the main subject of this paper.  This effect is closely related to

so-called geodesic acoustic modes [12].
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Significant modification of the Alfvén continuum due to plasma pressure was found numerically in

Ref. [13] long before the discovery of Alfvén cascades. This finding is apparently relevant to what is

seen in Fig.2 because the cascade frequency tends to be close to the continuum, except when the mode

reaches the TAE gap. However, Ref. [13] does not reveal the precise physics reason for the strong

pressure effect on the AlfvÈn continuum.  Given that, we opt to treat the problem analytically, which

enables us to compare the underlying mechanisms and to identify the dominant one.

In addition to the geodesic effect, there are two other causes for plasma pressure perturbations in

shear AlfvÈn waves. The first is convection. The perturbed pressure then arises from an

incompressible displacement along the equilibrium pressure gradient,

(4)

The second cause is toroidicity induced coupling between shear Alfvén waves and acoustic modes,

that causes a perturbed pressure

(5)

where ξ  is the plasma displacement (along 0B ) in the acoustic perturbations. The coupling between

shear Alfvén and acoustic modes occurs when the local shear Alfveen frequency (1) matches the

local acoustic frequency for a neighboring poloidal mode number,

(6)

In low-beta plasma, the coupling condition requires q0  to be very close to m n/ , which immediately

determines the corresponding value of the mode frequency:

(7)

It is noteworthy that the geodesic effect can be clearly separated from the other two mechanisms in

both its technical description and its physics consequences. In contrast to the convective mechanism,

the geodesic effect involves plasma compression, and the resulting characteristic frequency scales

as β1 2/ , rather than β , with plasma pressure, which makes the convective mechanism insignificant

at sufficiently low pressure. Ironically, plasma compressibility can be difficult to treat in MHD

codes, which recently led to an artificial exclusion of this effect from the simulations of cascade

modes in low-beta plasma in favor of a less relevant but more convenient convective effect [14].

The key distinction between the geodesic compressibility and acoustic coupling is that geodesic

compression occurs without plasma displacement along the magnetic field lines, and the

corresponding characteristic frequency is 2 0
2q  times greater than that given by Eq. (7). As a result,
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the mode phase velocity is greater than the ion thermal velocity even in isothermal plasma, which

allows the mode to avoid strong ion Landau damping.

It will be shown in this paper that all the pressure effects discussed above, together with the hot-

ion effects [2], modify the expression (1) for the Alfvén cascades as follows:

(8)

where Te and Ti  are electron and ion temperatures, Mi is the ion mass, and the numerical coefficient

7/4 arises from kinetic calculations of specific heat ratios for electrons and ions (see, e.g. Ref. [15]

and a more recent Ref. [16] discussing in detail the kinetic theory of low frequency Alfvén modes

in tokamaks). The temperature-dependent term in Eq.(8) describes the deformation of Alfvén

continuum, produced by plasma pressure. This deformation is most pronounced at low frequencies

when q0 is close to m n/  so that the term 
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⋅  in a low-beta plasma. The  quantity δω  determines a small deviation of the AC

eigenfrequency from the deformed continuum due to effects of toroidal geometry [4], hot ions [2],

and plasma pressure gradient.

2. BASIC EQUATIONS

We start with a linear ideal MHD description. Let δr  be the displacement of a plasma element

from its equilibrium position. We then have the following set of equations for the displacement δr ,

the perturbed pressure δP and the perturbed magnetic field δB  (see, e.g. Ref. [17]):

(9)

(10)

.
(11)

The quantities ρ0 , P0  and B0  are the unperturbed density, pressure and magnetic field, respectively.

The unperturbed pressure and magnetic field satisfy the condition of plasma equilibrium,

.
(12)
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ξ  , Φ , and Ψ  are associated with the three types of weakly coupled linear perturbations  in low-

pressure large-aspect-ratio plasma  (ξ  refers to acoustic perturbations, Φ  to shear Alfvén

perturbations, and Ψ  to compressional Alfvén perturbations).

In order to derive a set of coupled equations for ξ , Φ , and Ψ  we take three independent

“projections” of Eq. (9) as follows:

(14)

(15)

(16)

where subscript ⊥  marks transverse components of a vector with respect to the unperturbed magnetic

field 0B .

In what follows we reduce Eqs. (14)-(16) to a single equation for the shear Alfvén variable Φ  in

the limit of large n  and m . This reduction involves two small dimensionless parameters:
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2P B/  andε ≡ <<a R/ 1 , where a  is the minor radius and R is the major radius of the

plasma torus. We will consider mode frequencies ω  in the range of C RS / , where CS  is the sound
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preliminary ordering, we assume that the characteristic scale-lengths for ξ , Φ , and Ψ  in the radial

and toroidal directions are a m/  and R n/ , respectively. We also assume that the value of β  meets

the following constraint

(17)

which is consistent with typical experimental conditions.

A. Compressional Alfvén mode equation

We note that the inertial term and the δP - term in Eq. (16) can be estimated as

(18)

(19)

B r B B B0

0

2

2
0

0 0

0

4

1

4B t B
P⋅

∂

∂
= − ⋅∇ +

⋅( )⎡

⎣
⎢

⎤

⎦
⎥ +

δ
ρ

δ
δ

π ππρ
δ

πρ
δ

0

0

0
0

0

0

0
0

1

4

B
B B

B
B B

B B
⋅ ⋅∇( ) + ⋅ ⋅∇( )

div
B t

div
B

P
4

40

0
2 0

2

2
0

0
2

πρ δ
πδB

r B
×
∂

∂

⎡

⎣
⎢

⎤

⎦
⎥ = − ×∇ + BB B

B
B B

0

0

0
2 0

⋅( )( )⎡

⎣
⎢

⎤

⎦
⎥

+ × ⋅∇( )⎡

⎣
⎢

⎤

⎦
⎥ +

δ

δdiv
B

divv
B

B
B B0

0
2 0× ⋅∇( )

⎡

⎣
⎢

⎤

⎦
⎥δ

div
B t

div
B

P
4 4

4
0

0

2

2
0

0πρ δ π
δ

δ

π
∂

∂
= − ∇ +

⋅( )⎡

⎣
⎢

⊥
⊥

r B B ⎤⎤

⎦
⎥ +

⋅∇( )⎡

⎣
⎢

⎤

⎦
⎥ +

⋅∇( )⎡

⎣
⎢

⎤

⊥

div
B

div
B

B B B B0

0

0

0

δ δ

⎦⎦
⎥
⊥

ε β ε2 / m << <<

 
div

B t B ma

P

B

m

a

4 4 1 40

0

2

2
0

0

2 0

0

2πρ δ πρ
ω δ

π ε∂

∂
⊥

⊥

r
r� �

33
δr⊥

 
div

B
P

P

B

m

a

4 4

0

0

0

3

3

π
δ

π
δ∇⊥ ⊥� r



6

where we only consider the part of the δP - term, associated with the cross-field displacement of

the plasma. These estimates show that the inertial term can be safely neglected in Eq. (16) compared

with the δP - term.  The two line-bending terms in Eq. (16) are also much smaller than the δP -

term, provided that β  is much greater than ε 2 / m , which we consider to be the case here.  It is then

allowable to replace Eq. (16) by the condition of the balance between perturbed pressure of thermal

plasma and the perturbed magnetic field pressure,

(20)

This condition can be rewritten in terms of ξ , Φ , and Ψ with only the dominant terms retained:

(21)

B. Acoustic mode equation

Substitution of expressions Eq.(10), (11) and (13) into Eq.(12) gives the following acoustic mode
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This equation simplifies to
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For high mode numbers, this equation can be further transformed to

(26)

where Eq.(21) was used to eliminate the Ψ - contribution.

Equations (23) and (26) form a closed set of coupled equations for acoustic and shear Alfvén waves.
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eigenmode equation will then be evaluated separately. We thus obtain
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Similarly to the procedure described in Ref.[4], Eq.(27) can be written as a set of coupled equations

for Φ j r( ):

(30)

where the operators jlL ;
ˆ  are given in Appendix A, and the summation over  j is implied with j running

from m - 1 through m + 1 for a mode with m -th dominant poloidal harmonic. Such a truncation

includes all the essential effects determined by the main and two satellite harmonics arising from the

toroidal coupling effect, but it neglectsn m ± 2 contributions that are small at low β.

Further, the procedure of Ref.[4] transforms Eq.(27) into an eigenmode equation for mΦ :

(31)

where the neglected terms contain either an additional small factor ( ) 1/1 <<m  or additional inverse

aspect ratio factor ε  with respect to the retained  O(ε2) terms. In order to investigate AC characteristics

at their lowest frequency, we delineate the effects associated with the low-frequency deformation

of the Alfvén continuum (left-hand-side of Eq.(31)) from the effects that give a deviation δω of the

eigenmode frequency from the Alfvén continuum (right-hand-side of Eq.(31)).

A. Low-frequency deformation of Alfvén continuum

The dispersion relation for the Alfvén continuum is determined by a vanishing multiplier in front of

the second-order derivative in Eq.(31), which gives

(32)

for the normalized frequency

(33)
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/  involves specific heats of electrons and ions,

calculated from the kinetic theory in toroidal geometry [15]. Thus one sees that the low-frequency

region of the dispersion relation, Eq.(32), is sensitive to the value of ie TT / .
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The last term in Eq.(32) describes the geodesic deformation of the Alfvén continuum and it determines

the lowest frequency of an Alfvén cascade with mode numbers mn,  achieved when the minimum

value of the safety factor 0q  satisfies 00 =− nqm :

(34)

This expression for the minimum frequency is insensitive to the mode number in agreement with

experimental data for ACs [1-6].

The additional deformation of AlfvÈn continuum due to the toroidal coupling to the acoustic

wave described by two coupled Eqs.(23), (26) rather than simplified single Eq.(27) modifies the

last term in Eq.(32)  to

.
(35)

The corresponding modified solution of Eq. (32) at the rational surface is

.
(36)

This expression, together with Eq. (34), shows that the acoustic deformation of AlfvÈn continuum

is indeed weaker than the geodesic deformation for typically high values of the safety factor in the

shear-reversed tokamak plasmas,

.
(37)

B. Eigenmode equation

The deviation δω  of the AC eigenfrequency from the Alfvén continuum is determined by the right-

hand-side of the eigenmode equation (31). This equation can be analyzed similarly to Refs. [2, 4]

by expanding the parallel wave number parameter about the point of zero magnetic shear, 0rr = ,

where ( ) 00 qrq ≡  is the minimum value of the safety factor:

.
(38)

so that the eigenmode equation is simplified to

.
(39)
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where ( ) 00 / rrrmx −=  is dimensionless radial variable, and δω  is characterized by the parameter

(40)

Same as in Refs. [2-4], the quantity

Q provides a potential well for the existence of a discrete eigenmode. Eq. (31) gives

(41)

where 2
0Ω  is given by Eq.(32) with the value of the safety factor taken at the zero shear point,

0qq = .

The analysis of Eq.(39) can be performed similarly to Refs. [2-4] to obtain the following dispersion

relation:

(42)

where )(2/* 00 nqmQQ −Ω≡ , and 2.43≈C  is a constant [18].

In the presence of a significant population of energetic ions with orbit width exceeding the radial

size of the mode, and with thermal plasma pressure gradient taken into account, the value of Q

consists of three contributions: the contribution due to the toroidicity, torQ , due to the hot ions, Qhot ,

and due to the thermal plasma pressure gradient, Qpressure:

(43)

where the contribution from the hot ions was calculated in Ref. [2]

(44)

The fast ion effect was found to facilitate the eigenmode formation in Ref. [2]. The effect of the

thermal plasma pressure gradient, on the contrary, plays a negative role in the mode formation. This

can be seen from considering case of

nmq /0 = , so that the operators jiL ,
ˆ  from Appendix A take a simplified form and using the

approximation r ′( )′ − ′ =∆ ∆2 0  as in Ref.[4], one obtains:
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where

(46)

It is seen from Eq.(45) that the pressure gradient term for ACs with frequencies below the TAE gap

always has the sign corresponding to a potential “hill”, not to a potential “well” for the ACs. This

conclusion is opposite to the one made for the pressure gradient effect on ACs in Ref. [14] because

of the wrong signs in Eqs.(9), (10) of Ref. [14]. Thus the interpretation suggested in Ref. [14] for

the ACs obtained with the NOVA-K code is inconsistent and an alternative effect should be sought.

In applying our theory to JET experiments, we note that 0q  typically varies from 4 to 2 in the

shear reversed discharges, so that 2
02/1 q  is indeed small in such experiments. Substituting typical

values of the safety factor and plasma pressure into a code developed for calculations of the pressure

effect on ACs in toroidal geometry one sees from Figure 3 that the minimum frequencies are an

appreciable fraction of the TAE frequency for quite low beta. This geodesic limitation on the AlfvÈn

continuum frequency is independent of mode numbers n and m, and it appears to be the dominant

reason for the experimental pattern seen in Fig. 2.

4. PROSPECTIVE DIAGNOSTIC APPLICATIONS

Experimental data on Alfvén cascades is successfully used for diagnosing the time evolution of the

minimum value of the safety factor ( )tq0  for facilitating development of internal transport barriers

in shear-reversed plasmas[9,10]. The evolution of ( )tq0  is derived from Eq.(2) and the clustering

of ACs with different toroidal mode numbers in time [1].

It is likely that additional information about plasma parameters can be obtained in view of the

developed understanding of the low-frequency properties of ACs. Here, we point out first a possibility

for diagnosing electron temperature eT  and/or the ratio of ion and electron temperatures, ei TT / ,

from observations of the lowest frequency of ACs. Such independent measurements are especially

important for the early phase of plasma discharges. At the early phase the current drive techniques,

such as lower-hybrid current drive on JET, create a significant supra-thermal population of fast electrons

obscuring eT  measurements with electron cyclotron emission and Thomson scattering. In addition,

measurements of ion temperature iT  are also difficult because of the low density of the plasma and the

large shine-through effect of diagnostic neutral beam injection. On the other hand, instability of Alfvén

cascades is easily excited in such plasmas with fast ions accelerated by ion-cyclotron resonance heating

(ICRH) with ICRH power as low as 1 MW (in JET). Thus the ACs are always present at the early

phase of discharges with ICRH and can be exploited for diagnostic purposes.

Providing one observes the lowest frequency of ACs, f kHzAC
Low

AC
Low[ ] = [ ] ( )ω π1 2/ s / , in

discharges without toroidal plasma rotation (which is small at the early phase of the discharges),

and assuming that the frequency separation between the AlfvÈn continuum and the AC is negligibly

small, Low
ACωδω << , one obtains in accordance with Eq.(36) the following relation:

dr

dP

B

Rq
0

2
0

0
2
08π

α −=
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(47)

Preliminary validation of this relation was made by using experimentally measured eT , Low
ACf , and

assuming typical values ≈ei TT /  0.5 and ≈ar /0 0.33 for a number of JET discharges. It was found,

that that Eq.(47) holds if the ICRH power accelerating fast ions is not too high, ≤ICRHP 3 MW. For

a higher value of ICRH power, the experimentally observed lowest AC frequency Low
ACf  was found

to be about 50% higher than that given by Eq.(47), most likely because of high values of Qhot  that

invalidates the assumption Low
ACωδω << . Further experimental validation of Eq.(47) with a complete

set of the necessary diagnostics is planned on JET and will be reported elsewhere.

It may be also of interest to consider a mixture of ion species when the minimum frequency of

AC satisfies the generalized expression

(48)

For the case of deuterium-tritium mixture, HD MM 2= , HT MM 3= , with equal temperatures of

the different ion species, iTD TTT ≡= , one obtains from (48)

(49)

In this case, the relation between the minimum AC frequency and the ratio DT nn /  may be used for

determining DT nn /  provided that eT  and iT are known with sufficient accuracy.

Another interesting issue to explain, in addition to the deviation of the AC frequency at the

lowest point from the shear Alfvén dispersion, is the downwards frequency-sweeping ACs observed

experimentally, e.g. in Figures 2. Such modes are very rare and they are not described by Eq.(39).

The specific condition under which these modes occur seems to be associated with a very flat )(rq -

profile, so that a nearly-zero shear region covers a significant radial width. Equation (39) has to be

modified then in order to accommodate a higher-order expansion of the parallel wave-number

(since d2q/dr2 → 0) and to include the spatial dependence of the fast ion density gradient that may

have a scale shorter than the magnetic shear scale. Other candidate mechanisms for the downward

sweeping modes were discussed Ref. [11]. However, regardless of sweeping direction, one still

expects the mode frequency of AC to track the Alfvén continuum at the zero shear point.

CONCLUSIONS

In this work we have extended the analytical theory of Alfvén cascades that have been observed in

a variety of tokamak experiments with reversed magnetic shear. The modified theory incorporates

all the essential plasma pressure effects and explains the observations that the AC spectral lines

bend at low frequencies and never reach a zero frequency point, thus deviating from the shear

T eV
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Alfvén wave dispersion relation. This paper establishes that the reasons for such bending are finite

pressure of the plasma and geodesic curvature that precludes shear Alfvén perturbations from being

strictly incompressible. Our analytic treatment also covers two other pressure effects on shear AlfvÈn

waves, which are convection in presence of an equilibrium pressure gradient and the toroidicity

induced coupling between shear Alfvén waves and acoustic modes.

It is found that the main difference between the geodesic compressibility and acoustic coupling

is that geodesic compression does not cause a plasma displacement along the magnetic field lines.

Under this condition, the phase velocity of an AC is greater than the ion thermal velocity even in

isothermal plasma, so that AC avoids a strong ion Landau damping. It was also found that the effect

of plasma pressure gradient plays the role of a potential “hill” for ACs, not a potential “well”. The

“ potential well” found in Ref. [14] results from an error in sign.

This paper also suggests a plasma temperature and ion mixture diagnostics via MHD spectroscopy

employing the low-frequency part of the ACs. Our preliminary attempts to explore this diagnostic

are encouraging but further dedicated experiments are needed to assess its actual capabilities.
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APPENDIX: MATRIX ELEMENTS

Equation (27) can be written in the form (30), where the “diagonal” operator is modified by the

geodesic effect and it has the form

(A1)

while the “off-diagonal” operators remain similar to these derived in Ref.[4]:
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(A3)

One also notes, that for rational values of q , nmq /= , the geodesic effect is negligibly small in

expressions of the type 11,1
ˆ

±±± ΦmmmL , so that the contributions of the satellite harmonics in the

eigenmode equation for mΦ  remain as in Ref. [4]:

(A4)

Combining Eq.(A1) and Eq.(A4)  gives the eigenmode equation (31).

The effect of the thermal plasma pressure gradient modifies the expressions for the matrix elements

Eqs. (A1)-(A3) as follows:

(A5)

Following the procedure described in Ref. [4] and neglecting the cross-product terms of the type

( )∆′−Ω 0
2 εα , which are o ε 2( )  in comparison with 2α  for 4/12 <Ω , one obtains Eq.(45).
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Figure 2: (b) (Color online)  Magnetic spectrogram
showing toroidal mode numbers of ACs in Fig.2(a).

Figure 2: (a) (Color online)  Magnetic spectrogram
showing the amplitude of the perturbed magnetic field
due to ACs in JET Pulse No: 56940. It is seen that ACs
with different toroidal mode numbers reach the same
lowest AC frequency. In contrast to Fig.1, amplitudes of
the ACs increase at low frequency indicating lower
damping rates.

Figure 1: (Color online) Magnetic spectrogram showing spectral lines of ACs and TAEs in typical JET discharge
(Pulse No: 53346). Different colors correspond to modes with different toroidal mode numbers. It is seen that ACs
with different toroidal mode numbers terminate at different lowest frequencies  due to the continuum damping effect.
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Figure 3:  Computed behavior of AC spectral lines showing the effect of plasma pressure on AC frequency (in units of
the central TAE-gap frequency) for the n = 3 and m = 11, 12 eigenmode as a function of safety factor q0. Solid curve
represents the MHD continuum and the triangular and the circular points are for the values of β of 0.005 and 0.0015
respectively.
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