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ABSTRACT

An accurate and general regime identifier is considered an important tool for future real time

applications in JET. In this perspective, a traditional approach based on Discriminant Analysis was

tested, using various sets of JET real time signals. Unfortunately no combination of signals managed

to provide a success rate higher than 90%. To improve the performance and increase the generalisation

capability, an identifier based on fuzzy logic was developed, which allowed quite naturally to include

also information on the time evolution of the Dα, a quantity normally not exploited by more traditional

solutions. With this technique a success rate of 95% was achieved using only Dα and the derivative

of β normalised diamagnetic as inputs. A Support vector Machines approach, based again on a

suitably defined distance like Discriminant Analysis, provided slightly inferior results with exactly

the same inputs but matched the fuzzy logic method with the inclusion of the absolute value of β

normalised diamagnetic. This comparative performance assessment of the various methods is an

important first step on the route to identify the best solution for a regime identifier for JET and in

perspective for ITER.

1. INTRODUCTION

In the last decades, real time control has assumed an increasingly important role in experimental

fusion devices. Since the scenarios are becoming more complicated every day, with higher shaping

and input power, feedback on various parameters is necessary to stabilise the configurations and to

maximise performances. As a consequence, in JET nowadays practically all the main diagnostics

produce real time outputs [1,2] to allow integrated identification of the plasma state. Moreover

various tools are also available to close the feedback loop: from the magnetic coils, acting on the

magnetic topology, to the gas valves and all the heating systems (LH, ICRF and neutral beams).

Moreover other emerging techniques, using new generation of real time visual processors, offer

promising strategies for efficient  real-time control [3]. All these technical means allow a great

variety of control scheme to be implemented [4].

On the other hand, one of the main limitations of present day control schemes is their static

nature, i.e. the fact that the plasma is assumed to reach a certain confinement state at a certain time

“a priori”, i.e. before the shot and on the basis of the pre-programmed discharge parameters. The

actual real time control strategy is then determined on the basis of this assumption about the regime

reached by the plasma at the time of the feedback. As already reported in ASDEX Upgrade [5], in

case of unexpected variations in the plasma confinement state, the real time controller can on

certain occasions apply a non optimal strategy, which can be counterproductive, contribute to the

degradation of the plasma performance and even induce disruptions. This problem has motivated

the development of automatic techniques capable of determining in real time the confinement regime

of the plasma and therefore giving the opportunity to adopt the best feedback strategy for the actual

scenario and not for the one assumed a priori before the shot.

In JET experiments, where the vast majority of the diagnostics provide already real time signals,
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the identification of certain regimes is relatively straightforward. The advanced scenarios for example,

being reached when the ρ* attains a certain value, are very simple to identify, since this parameter

is already available in real time [6]. To control the radiation fraction, a Digital Neural Network has

already been developed, which determines the total emitted power in the main plasma and in the

divertor from the line integrals of bolometry [7].

Discriminating if the plasma is in the L or H mode of confinement remains a more difficult

issue. First of all there is no single quantity providing a unique discrimination. Moreover the most

useful measurement, typically used by the specialists in their off line analysis, is the Dα, which is

difficult to analyse automatically because the relevant information resides in the time history of the

signal and not in its absolute value. Therefore, to solve this problem the traditional approach consisted

of trying to discriminate the regime on the basis of a series of magnetic and kinetic measurements.

The first attempt was made by Franzen et al. [5], who devised a fast online regime identification

algorithm for ASDEX upgrade. By using scaling laws and 14 online-available signals, L-mode and

H-mode in low and high radiative scenarios were discriminated, achieving an identification rate of

over 95%. The system was able to react dynamically to plasma regime transitions within a cycle

time of 2.5ms. This allowed unexpected regime transitions to be detected and corrected. The first

group to use discriminant analysis and non-linear system identification to localise the L-mode / H-

mode boundary in multidimensional operational space, were Martin and B¸hlmann [8] on the TCV

Tokamak. This was followed by an extensive project by Giannone et al. [9] on ASDEX upgrade

who developed a regime identification system with online signals using Scaling laws as well as

Discriminant analysis. Using a linear combination of two to five plasma variables, with this approach

it was possible to distinguish between L-mode and H-mode with an error as low as 1.3%. The

system was also applied to the improved the distinction between H-mode and advanced H-mode

yielding a failure rate of 5.3%.

At JET an implementation of this approach of Discriminant Function Analysis for L/H mode

identification has been attempted. The results were quite good but some weaknesses of the method,

which is based on defining a suitable distance in the parameter space of the measurements, became

quite apparent. First of all the number of parameters required for the classification is quite high and

the discrimination is based on their absolute value, requiring specific tuning of the thresholds

depending on the range of the main plasma parameters like the current and the toroidal field. Secondly

the main quantity used by the specialists, the Dα, is not included because the relevant information

resides in the time history and not in the absolute value of this signal. Moreover the final success

rate in the classification is good but not excellent (see section 2), reflecting the difficulties in devising

algorithms general enough to cope successfully with the great variety of JET scenarios and

experimental programmes. In order to improve performances and identify methods more suited to

JET needs, the scope of the entire classification task was redefined and new solutions, based on soft

computing approaches, were tried.

With regard to the scope of an automatic regime identifier at JET, it was considered important
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for the final solution to satisfy the following requirements:

1) Being able to discriminate on a ms time scale between the L and H mode of operation

2) Require a small number of input data

3) Provide a high rate of identification

4) Include Dα in the set of parameters describing the plasma

5) Use as much as possible signal derivatives in order to reduce the dependence of the performance

from the engineering parameters of the discharge

Given the nature of the L-H mode transition and the requirements for the identifier, fuzzy logic

appeared from the beginning as a good candidate. Fuzzy set theory, contrary to boolean logic, does

not use sharp distinctions but, on the contrary, is based on continuous degrees of membership. It is

therefore particularly suited to solve vague problems for which the expert opinion is essential. With

this method a significantly better success rate was obtained with a reduced number of measurements,

using mainly signal derivatives. In order to further address the relative merits of this approach with

respect to more traditional solutions, the results were compared with another technique, using so

called Support Vector Machines (SVMs). A Support Vector Machine is a learning algorithm for

pattern classification and regression. A SVM classifier finds the optimal hyperplane that correctly

separates (classifies) the largest fraction of data points while maximising the distance of either

class from the hyperplane (the margin). With almost the same inputs (all the inputs less one) SVMs

perform slightly less well than fuzzy logic but by addition of one more signal, they reach the same

level of success

As the main objective of the work was to asses the relative merits of more advanced methods,

like fuzzy logic and SVMs, for the identification of the plasma confinement state, it was decided to

produce a Database incorporating a large variety of conditions, in terms of plasma density, plasma

current and heating power, but without including an excessive large number of shots (the selection

of a wider database to be used in a more comprehensive validation analysis of the method is already

in progress). The chosen pulses were considered by various experts of JET team to evaluate the

correct L-H and H-L transition times. This information was used to validate the results obtained

with the different automatic methods.

The pulses used for the analysis described in this paper are reported in Table 1, together with the

main plasma parameters, i.e. the plasma current (Ip), the Toroidal Field (TF), the integrated density

(Ne), the Neutral Beam Injection power (NB), the Radio Frequency power (RF), the neutron fluence

(Neutrons) and the Diamagnetic Energy (Wdia).

With regard to the structure of the paper, the next session is devoted to the Discriminant Analysis

approach, describing the way it was implemented at JET and the obtained results. The importance

of the Dα, as an indicator of ELMs, is mentioned in section three, where the approach used to

include this signal in the fuzzy logic identifier is reported in detail. Section four describes the

approach based on Support Vector Machines. Finally summary and conclusions are given.
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2 . CLASSIFICATION BASED ON DISCRIMINANT ANALYSIS

Discriminant Analysis, a recognised branch of statistics, is a technique concerned with the

identification of patterns, described by a set of features. Its main objective consists of devising the

best rule to classify experimental observations into distinct groups so that the membership of

subsequent data can be optimally determined. This approach is based on discriminant functions

that need to be maximised to achieve the required partitioning of this feature space. In our case the

feature space is defined by a selection of plasma parameters. The samples have then to be mapped

to the class labels, L-mode and H-mode, in different multivariate plasma parameter spaces. The

parameter space was partitioned by a Discriminant Function using a Bayesian approach. In particular,

a classifier was set up to use the “maximum posterior” (MAP) decision rule. This means, the criterion

for assigning a label or class to a given sample was to maximise p(…i|x), the “posterior probability”

of a class, ωi, that is its probability, given a particular sample, x, in n-dimensional feature space.
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By using Bayes’ rule, the MAP discriminant functions can be written in terms of the posterior

probability, p(x|ωi). This is the probability that x is observed given that the class is known:
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By assuming that the likelihood densities follow a multivariate normal distribution, it is possible to
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In relation (3) p(ωi) is the prior probability of a class to occur and p(x) is the probability of observing

x, which is constant, when considering a given sample. Simplifying by eliminating constant terms

and taking logs, the Discriminant Function becomes:
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It can be seen that the classifier depends strongly on the quadratic term, (x - µµµµµi)
T Σi

-1 (x - µµµµµi), called

the Mahalanobis distance. This is a vector distance normalised to the covariance Σi
-1, which is a

way of quantifying the spread of the various quantities in the training set. By maximising yi(x), the

Mahalanobis distance of an observation to a class centre approaches zero; yi(x) is therefore a

minimum distance classifier. The second and third terms in (4) were neglected, in order to simplify

coding. The second term can indeed be neglected, provided the difference in |Σi| is small for L-
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mode and H-mode, which is normally verified at JET. Equal prior probabilities were assumed for

L-mode and H-mode classes, that is p(ω1) = p(ω2) and therefore the third term results in the simple

adding of a constant which can be ignored.

In order to classify a set of samples using discriminant analysis in the way described above, it is

necessary to know the following statistical parameters of the classes: Class means ºI and covariances

Σi. These parameters were obtained from a training set, a subset of the data base described in the

previous section.

Since at JET a series of quantities is available in real time, a systematic investigation was

performed to determine the most suited to the classification under study. The list of tested parameters

is reported in Table 2.

The one-to-five dimensional mappings, for which the Discriminant Analysis algorithm has the

highest success rates, are given in Table 3. The success rate is the fraction of the observations in the

validation set for which the Discriminant Analysis classifier gives the same estimate as the expert.

The best success rate appears to depend strongly on the number of parameters. For mappings with

spaces as small as 1 parameter, the algorithm produces a vague indication of whether a discharge is

in L-mode or H-mode, for larger sets, around 3-5 parameters, a fairly clear indication is given. On

the other hand no combination of inputs was able to provide a success rate higher than 90%. It is

also worth pointing out that no improvement in the classification was obtained by using other

signals in table 1. This seems to indicate a redundancy in the information contained in the table.

This was additional evidence that motivated the inclusion of Dα in the set of input signals as described

in the next section.

3. A FUZZY LOGIC APPROACH TO THE REGIME IDENTIFICATION

The results obtained with the Discriminant Analysis approach, were not as satisfactory, as those

reported on other machines. This is probably due to a particularly wide operation space and the

great variety of plasma scenarios of JET. These aspects are an additional obstacle to overcome

when assessing whether an already difficult and not clear cut phenomenon such as L-H transition is

taking place, which always requires a close look by the experts in order to be properly determined.

These difficulties motivated on the one hand the inclusion of the Dα in the set of inputs, since this

is one of the main signals used by the experts. On the other hand, the somehow uncertain nature of

the L-H transition suggested the adoption of a Fuzzy Logic approach to the identification problem.

3.1 ELMS AND REGIME IDENTIFICATION

Edge Localized Modes (ELMs) [10] are instabilities occurring in the edge of H mode plasmas in

toroidal magnetic fusion experiments, producing a loss of confinement. As a result, the lost energy

flows along the field lines to the divertor plates, causing a peak in the Dα radiation. Monitoring the

Dα radiation in the divertor region can provide, then, useful information on the presence of ELMs.

In particular, at JET there are two signals which are particularly suited to this purpose, the S3AD/
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AD35 and the S3AD/AD36, which monitor the D± radiation in the outer and inner divertor

respectively as shown in figure 1.

In addition to revealing the presence of ELMs, a very good indicator of the plasma confinement

state, the other main advantage of the Dα signal is that it can also help a lot in identifying the

transition point between the L and H mode. In particular it was observed that often the L-H transition

is accompanied by a drop in the Dα signal while the transition back to the L-mode is denoted by a

little step up of the signal itself (Figure 2).

Unfortunately the individuation of the transition time on the basis of the Dα signal is not completely

unambiguous, because it is strictly dependent on the plasma configuration and the divertor conditions.

Indeed, in discharges with a detached divertor or if the strike points are too far from the Dα lines of

sight, the above mentioned conditions for the transition are not always clearly distinguishable.

Moreover, depending on the scenario, H-mode discharges can exhibit ELMs free phases or type-I

ELMs with very low frequency. In these plasma conditions the Dα signal is not always enough to

evaluate the plasma confinement mode.

In order to overcome these problems additional measurements are required. In this perspective,

it was observed that a L-H transition is accompanied by a change in the slope of Bndiam (βN),

Wmhd or the electron density Dens1 (see Table 2). It is worth pointing out that also the absolute

value of these quantities can be used for regime identification. However, although the absolute

value allows estimating quite accurately the confinement modes in a single plasma experiment or

at maximum in experiments from the same session, it results difficult to extrapolate a general rule

that could be applied to shots from different experimental sessions. Indeed, the absolute value of

these signals is strictly dependent from the engineering parameters chosen by the physicists to

perform a specific plasma experiment. Therefore, in order to keep the approach as general as possible

and eliminate the need of re-tuning of the algorithm in dependence from the plasma parameters,

only the derivative of the aforementioned three signals was retained in the set of input signals. In

particular Bndiam proved to be the best suited because, being a normalised quantity, is the less

affected by the plasma parameters. In figure 3 it is possible to observe the trend of the abovementioned

signals for shot 58816.

3.2 THE FUZZY MODE IDENTIFIER

The reported considerations on the nature of the L-H transition and the interest in devising a quite

general solution, both  point in the direction of adopting the approach of fuzzy logic. Fuzzy logic

indeed is now an established and rigorous mathematical discipline in which knowledge representation

is based on degrees of memberships rather than on the crisp membership of classical binary logic.

Fuzzy logic is multivalued and reaches conclusions applying specific inference rules. The ability to

represent sets with fuzzy boundaries allows this logic to represent also linguistic variables and it is

therefore a very good tool to take into account the very valuable but often not easily quantifiable

opinion of the experts. A fuzzy identifier for the identification of the plasma confinement regime
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was therefore developed with the help of the Matlab® Fuzzy Logic Toolbox [11] using a Mamdani-

type Fuzzy Inference System (FIS) [12]. The main difficulty consisted in representing in a suitable

way the information contained in the signals, in order to select the best inference rules for the

discernment between the L or H mode.

At JET the D± signal is sampled at two different frequencies during the pulse, 10kHz for the first

115000 samples and 5kHz for the remaining samples. It was chosen to take into consideration only

the part of the signal with the higher sampling frequency. In order to obtain a parameter from the

Dα radiation signals (S3AD/AD34-35) that could be a suitable input for the fuzzy logic identifier,

the chosen approach was trying to extrapolate the information about the frequency spectrum of the

signal and its time evolution during the discharge. To achieve such a result, an overlapping sliding

window Fast Fourier Transform (FFT) analysis was performed. The window used for the computation

of the FFT comprises 1000 samples, obtaining a frequency resolution of 10Hz. The window is

moved along the samples, using a step size of 100 samples, so that the result obtained has a sampling

period of 10ms. Most of the other main signals reported in Table 2 have, in fact, a sampling frequency

of 100Hz. At this stage the signal obtained by this elaboration of the experimental data consists

therefore of the D± frequency spectrum, calculated every 10ms on a window sliding over the signal

itself. The time assigned to each frequency spectrum is the right extreme of the window used to

calculate the FFT. This result is, then, a tri-dimensional signal. In order to reduce it to a bi-dimensional

one, the frequency spectrum is integrated over frequency up to 600Hz, from which the amplitude of

the lowest frequency components is subtracted. Indeed, for the scope of the present analysis, it is

not important to obtain the single harmonic components and their amplitude but just to determine

how big is the contribution of the higher harmonic terms. The resulting signal, which is directly

proportional to the ELMs frequency content, is provided as first input to the fuzzy network and is

called “Dα Spectrum Integral”.

The first component of each FFT calculation, that represent the DC component of Dα, constitutes

another signal, which is time derived in order to estimate the step in the Dα signal, the most evident

symptom of the transition from L to H mode or vice versa. This signal is provided as the second

input and is called “Dα DC derivative”.

The third input is the time derivative of the plasma β normalized with respect to the diamagnetic

energy (Bndiam). As already mentioned, both the L-H and the H-L transitions are accompanied by

a change in the slope of this quantity. The derivative allows identifying this change quite accurately.

It also turns out to be useful to include in the set of inputs the plasma regime, L or H, as determined

by the algorithm at the previous step.

In perfect agreement with the philosophy of the fuzzy logic, the output of the network,  the

confinement mode of the plasma, is not represented by a crisp indicator but by a continuos quantity,

a number comprised between 0 and 1, 0 indicating the L mode and 1 the H mode.

The fuzzy sets for the input signals were devised manually after a careful observation of the

various input signals during the transitions and steady state. In particular in Table 4 the membership
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functions (mfs) for the signals involved are reported:

A total of 12 if-then rules, involving all or part of the input signals, were elaborated (Table 5).

The resulting algorithm was tested on the shots from the previously described database, a total of

25, and then compared with the estimated transition times from the experts.

The performances of the identifier are of about 95.3% of success at steady state. The LH transition

time was determined with a time error less than 0.1s in 19 shots, while the HL one with an error less

than 0.2s in 18 shots. On some shots it resulted quite difficult to identify correctly the transition.

For the L-H transition the maximum error is of about half a second, observed in 5 shots, while for

the inverse transition the maximum error was of 0.63s observed in three shots. It is worth mentioning

that the shots for which the identifier is less accurate are those deemed more difficult to interpret

also by the experts, who estimate that the error bars in the determination of the transition time are

comparable to the uncertainties in the identifier output.

4. CLASSIFICATION BASED ON VECTOR MACHINES

A Support Vector Machine (SVM) is a supervised algorithm developed by Vapnik and others [13]

over the past decade. The algorithm addresses the general problem of learning to discriminate

between two classes (positive and negative class) of n-dimensional vectors. During the so-called

learning phase a set of input-output patterns (training set) has to be suitable chosen by the designer

in order to set the design parameters.

The SVM algorithm operates by mapping the training set into a possibly high-dimensional feature

space and attempting to locate in that space a plane that separates the positive from the negative

examples. During the test phase, the SVM can then predict the classification of an unlabeled example

by mapping it into feature space and asking on which side of the separating plane the example lies.

Much of the SVM’s power comes from its criterion for selecting the best plane when many candidate

planes exist. Statistical learning theory suggests that, for some classes of well-behaved data, the

choice of the optimal separating hyper-plane, which maximizes the margin between itself and the

closest data point, will lead to maximal generalization when predicting the classification of previously

unseen examples.

The optimal hyper-plane can be obtained by solving the following optimisation problem:

subject to

where w and b are coefficients of the optimal hyper-plane equation, C is the error penalty, and ξi are

parameters for handling no separable inputs. The index i labels the N training cases, xi is the ith

training pattern and ith is the corresponding class label. The kernel Φ is used to transform data from

E (w) =    ww 
T
 + C     ξi

1
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the input to the higher dimensional feature space.

There are different kernels that can be used in SVM models:

The dominant feature, which makes SVMs very attractive, is that classes that are nonlinearly

separable in the original space can be linearly separated in the higher dimensional feature space.

Thus, SVM is capable of solving complex nonlinear classification problems.

4. RESULTS

The non-linear SVM classifiers have been trained using the OSU SVM Classifier Matlab Toolbox

(ver. 3.00) based on the version 2.33 of LIBSVM [13]; LIBSVM is a software library for classification

and regression by means of Support Vector Machines, that implements the training algorithms

developed by Vapnik [15].

In this case, the available 27 pulses have been divided in two sets: the 30% of the pulses (8

pulses, 9128 samples) have been used for setting the parameters of the SVM (training set), and the

remaining 70% (19 pulses, 21679 samples) have been used as test set.

As input to the SVMs three signals were selected, almost the same used by the Fuzzy Logic

identifier:

• high frequency components of the Dα radiation

• derivative of the continue component of the Dα radiation

• the time derivative of the plasma β normalized with respect to the diamagnetic energy (Bndiam)

In table 7, the performance of the best SVM classifier are reported in terms of the samples correctly

classified:

Improvements of these results (table 8) have been obtained adding to the previous signals the

absolute value (not only the derivative) of the β normalized with respect to the diamagnetic energy

(Bndiam).

The reported results were obtained with the radial basis kernel and it was also double-checked

that adopting the polynomial did not cause any significant difference in the success rate.

SUMMARY AND CONCLUSIONS

The traditional approach of Discriminant Analysis was tried to identify JET confinement regime

but its performances were not completely satisfactory. The accuracy was not particularly high even

when five different signals were used as inputs.  Moreover the use of the absolute value of so many

signals is believed to limit the generalisation capability of the technique, requiring significant fine

tuning, when the main parameters of the discharges are significantly varied. These drawbacks

motivated the investigation of different solutions. First of all a systematic analysis of the best way

Φi ( x 
i, x 

j) = (γx 
i ¥ x 

j + ϑ) 
p

Φi ( x 
i, x 

j) e 
-||xi-xi||2/2σ2

polynomial

radial basis
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to include the information of the Dα signal was performed. Second a fuzzy logic approach was

implemented, to handle the vagueness aspects of the problem in hand. With this method, a success

rate of 95 % was achieved using only the Dα and the Bndiam as inputs. Moreover, since mainly the

derivatives of the inputs are exploited, this identifier is less dependant on the engineering parameters

of the discharge and can potentially be successfully applied to a larger set of configurations. To

compare the results of the fuzzy identifier with another distance based method, the alternative of

Support vector machines was also implemented. The results are slightly inferior (91%) when almost

the same input signals are used. On the other hand the success rate increases to 95% when also the

absolute value of Bndiam is included.

The series of tests reported in this paper constitute a good staring point for the identification of

the best regime identifier for JET. In the near future, in addition to assessing the generalisation

capability of the fuzzy logic and the SVM approaches on a wider data base, these techniques will

also be tested during JET next campaigns in a variety of new plasma configurations. Since the main

goal of JET is now to develop ITER relevant scenarios, this activity should naturally provide some

interesting information in the perspective of the next step machines.
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TABLES

 JPN Ip(MA)   TF (T)  Ne (1018/m2) NB(MW) RF(MW)  Neutrons(n•s/m2)?     Wdia(MJ)

58569 2.5 2.5 140 15.3 - 2.5e+16 5.0

58730 2.5 2.4 250 13.7 3.8 1.9e+16 6.3

58810 2.1 3.0 132 15.4 - 3.2e+16 5.3

58816 2.5 2.4 107 8.7 - 8.3e+15 2.0

58819 2.5 2.4 123 8.6 - 6.8e+15 1.9

58844 2.5 2.4 172 13.4 - 2.4e+16 5.4

58853 2.5 2.4 215 13.1 - 3.0e+16 5.9

58858 2.5 2.5 146 15.4 - 1.6e+16 5.0

58886 2.8 2.7 138 9.4 6.3 1.5e+16 5.2

58906 2.0 2.6 97 15.2 - 2.1e+16 4.0

58907 2.0 2.6 100 12.5 - 1.8e+16 3.8

58909 2.0 2.6 173 15.2 - 2.5e+16 4.6

58971 2.0 2.3 84 5.2 - 2.3e+15 1.7

59051 2.5 2.7 171 12.8 3.9 1.7e+16 4.5

59055 2.5 2.7 196 12.8 3.2 9.8e+15 4.0

59083 2.0 2.6 159 14.9 3.6 2.5e+16 4.8

59085 2.0 2.6 179 15.2 3.7 2.5e+16 4.8

59151 2.7 2.7 134 15.6 9.2 3.3e+16 6.7

59293 2.0 2.4 135 14.2 - 3.8e+15 3.1

59355 2.5 2.6 256 15.0 4.8 2.6e+16 7.3

59375 3.1 2.6 277 13.9 4.4 2.1e+16 7.6

59423 2.5 2.4 310 13.8 4.4 2.7e+16 6.7

59424 2.5 2.4 339 15.3 4.5 3.0e+16 7.0

Table 1: list of pulses used in the paper including main plasma parameters
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1. Engineering parameters

Description Name

Total heating power Ptot

Plasma current Ipab

Toroidal magnetic field Bt

2. Plasma response parameters

Description Name

Beta normalised with respect to the diamagnetic energy. Bndiam

Beta normalised with respect to the Magneto-hydrodynamic energy Bndia

Magneto-hydrodynamic energy Wmhd

Time derivative of diamagnetic. Energy FDWDT

Area averaged electron temperature Teav

Maximum electron temperature Tmax

Line integrated density Ne1

Plasma inductance LI

Safety factor Q95

3. Plasma shape parameters

Description Name

Elongation ELO

Table 2: list of tested parameters

Size of feature space          Best combination    Success rate

1 βN 0.80

2 Bt βN 0.85

3 Bt βN li 0.90

4 Ipab Bt βN li 0.90

4 Ipab βN li 0.90

4 Bt βN li q95 0.90

5 Ipab βN li q95 κ 0.90
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Table 3: Combinations of plasma parameters yielding the highest success rates

Signals Type      # of mf Mf name Mf type        Mf Parameters

Dα Spectrum integral Input 4 Low Zmf [0.01 0.07]

(Dα-SI) Medium Gauss2mf [0.02 0.06 0.064 0.21]

High Gauss2mf [0.06 0.39 0.4 1.04]

Very High sigmf [9 1.15]

Dα DC derivative Input 3 Negative Trapmf [-30  -24.4 -0.28 -0.005]

(Dα-der) Null Trimf [-0.5 0 1.5]

Positive trapmf [0.5 2 26.5 61.7]

Bndiam derivative Input 3 Negative Trapmf [-20 -20 -1.7 -0.17]

(Bn-der) Nul Trimf [-1.5 0 1.5]

Positive Trapmf [0.31 1.0 20 20]

Mode previous cycle Input 3 L Trapm [-1 -1 -0.3 0.5]

(Mode-pc) LH Trimf [0.3 0.5 0.7]

H Trapmf [0.5 0.7 2 2]

Mode Output 3 L Trapmf [-1 -1 -0.3 0.5]

(Mode) LH Trimf [0.3 0.5 0.7]

H trapmf [0.5 0.7 2 2]

Table 4 : Membership functions. For details about the Mf type please consult [2]

Rule # Linguistic terms

  1 If Dα is low and Dα-der is neg and Bn-der is pos and Mode-pc is L then Mode is H

  2 If Dα-SI is medium and Dα-der is neg and Bn.der is pos and Mode-pc is L then Mode is H

  3 If Dα-SI is high them Mode is H

  4 If Dα-SI is very high the Mode is H

  5 If Dα-SI is medium and Bn-der is neg and Mode-pc is H then Mode is L

  6 If Dα-SI is low and Bn-der is neg and Mode-pc is H them Mode is L

  7 If Dα-SI is low and Bn-der is not pos and Mode-pc is L then Mode is L

  8 If Dα-SI is medium and Bn-der is not pos and Mode-pc is L then Mode is L

  9 If Dα-SI is low and Dα-der is not neg and Bn-der is pos and Mode-pc is L then Mode is L

10 If Dα-SI is medium and Dα-der is not neg and Bn-der is pos and Mode-pc is L then Mode is L

11 If Dα-SI is low and Dα-der is null and Bn-der is null and Mode-pc is H then Mode is H

12 If Dα-SI is low and Dα-der is null and Bn-der is null and Mode-pc is L then Mode is L

Table 5: Linguistic rules.
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Signals       Percentage of success
Dα-SI, Dα-der, Bn-der, Mode-pc 95.3 %
Dα-SI, Dα-der, Bn-der, Mode-pc, Bndiam 95.7 %

Table 6: Performances of the Fuzzy Logic identifier

Set       Percentage of success
     Training 96.83%
         Test 90.96%

Table 7: Performances of the SVM classifier using Dα-SI, Dα-der, Bn-der

Set       Percentage of success
      Training 99.39%

Test 95.77%

Table 8: Performances of the SVM classifier adding Bndiam to the precious signals

Figure  1: Field of view for the calculation of the Dα signal
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Figure  2: trend of some of the observed signals during a plasma discharge (Pulse No: 58816). It is possible to
observe the drop in the Dα signal during a L-H transition and a little step up of the signal itself  during the transition
back to the L-mode.
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