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ABSTRACT

In many tokamak power exhaust transients, eg. Edge Localised Modes (ELMs), thermal quench of

disruptions and intermittent SOL bursts (so called blobs), thermal energy is largely removed to divertor

or limiter tiles by parallel transport in semi-collisionless plasma filaments. Such transient parallel

losses are governed by the coupled Fokker-Planck and Maxwell’s equations. While numerical

simulations of this system are now becoming available, they are still computationally expensive (CPU

time in days) and require specialist support. In this paper, two simplified parallel loss models are

developed, one based on the kinetic, the other on the moment or fluid approach. The two models can

be combined to form a kinetic-fluid hybrid, whose accuracy can be further improved by using fitting

parameters to best match the available kinetic results. This contribution demonstrates that such simple

models can capture most of the salient features of kinetic simulations at substantial savings in both

cost and complexity (CPU time in seconds). They may be used either as stand alone interpretive tools

or as modules in larger turbulence and/or transport codes. As shown here, the fluid model can

successfully reproduce ELM filament densities and electron energies measured at the outer poloidal

limiter on JET, as well as recent measurements of far-SOL ELM filament ion energies on JET. Taking

confidence from this favourable comparison, it is then used to predict the ion impact energies in Type-

I ELM filaments on ITER.

1. INTRODUCTION

Transient power loads on plasma facing components due to energetic plasma relaxations, such as

Edge Localised Modes (ELMs), Thermal Quench of Disruptions (TQD) and to a lesser extent

intermittent turbulent bursts (or blobs), are a cause for concern for next step magnetic confinement

fusion reactors; characterising, understanding and eventually mitigating their effects is recognised

as one of the most pressing problems in tokamak plasma physics [43, 28, 4]. In both ELMs and

TQDs, thermal energy is predominantly removed by parallel transport to plasma facing

components, which occurs transiently in semi-collisionless, highly elongated plasma filaments.

Since modelling transient parallel losses requires computationally costly kinetic simulations, it

is desirable to develop simple models of transient energy evolution, which could be included in

existing fluid and turbulence codes. The development of two such models, based respectively on

the kinetic and fluid approximations, is the aim of the present study.

The conceptual construct of a filament calls for a short comment: it is neither an ideal flux

tube nor a magnetic field line. Instead, a plasma filament may stretch and shear in the perpendicular

plane as it propagates radially and may eventually disintegrate into ever smaller filaments, which

is especially true in the open field line (SOL) region [12, 33]. Nonetheless, it is useful to consider

the evolution of the average thermodynamic quantities of the plasma filament, much as one

speaks of eddies or vortices in a turbulent fluid. In section 3, we will describe filament propagation

by a simple advective-diffusive model.
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2. MOTIVATION: PARALLEL TRANSPORT DURING TOKAMAK TRANSIENTS

2.1 EDGE LOCALISED MODES

Aside from sawteeth, ELMs are the most common plasma transients in many present day tokamaks

and form an integral feature of the H-mode confinement regime [43, 81, 8]. ELMs are plasma relaxations

thought to originate due to an interaction of two MHD modes: the peeling mode driven by the magnetic

shear (or plasma current) and the ballooning mode driven by the pressure gradient [71, 7]. An ELM

leads to a rapid drop in density and temperature of the edge (or pedestal) plasma, typically ejecting

several percent of the plasma stored energy on some local MHD time scale. Unless otherwise specified,

the term ELM will refer to Type-I ELMs, since Type-III ELMs are much smaller and pose a lesser

hazard to plasma facing components.

The typical chronology of a Type-I ELM on JET is shown in Fig.2.1; the temporal extent of the plot

is 2ms. The start of the MHD activity, measured by a magnetic pick-up coil near the top of the machine,

is quickly (<10µs) followed by soft X-ray signals in the main chamber and from the inner divertor CFC

tiles, indicating a burst of energetic electrons. The arrival of the bulk plasma pulse in the divertor, measured

by divertor Dα and Langmuir probes, is typically delayed due to ion inertia by ~ 100µs and is found to

scale with the parallel transit time at the pedestal sound speed, τ||,ped ~ L||/c
s,ped, which we denote as the

sonic timescale [56]. The pedestal stored energy decays on the MHD timescale, tMHD ~ 200-300µs,

which is typically comparable or larger than the sonic timescale [54, 7]. The ELM size (as measured by

the normalised pedestal energy drop ∆WELM/Wped) is closely (and inversely) correlated to the pedestal

collisionality ν*i,ped and τ||,ped, which suggests a major role played by parallel losses [54, 55]. For an

accessible overview of ELM experimental data the reader is referred to [8].

Let us consider the evolution of the ELM in the framework of the peeling-ballooning model. The

MHD ballooning activity associated with the ELM is strongest on the bad curvature, low field side of

the plasma, while the MHD peeling modes are strongest in the X-point region. This is consistent with

the experimental observation that Type-I ELMs eject (transport) particles and energy into Scrape-Off

Layer (SOL) mainly on the outboard side, from where they are carried by parallel and diamagnetic

transport to the divertor targets. The strongest evidence for the outboard origin of ELMs is the fact

that in double-null equilibria virtually all the ELM power arriving in the divertor is deposited on the

outer target [60, 22].

At this point, it is important to distinguish between the ELM as a coherent MHD eigenmode,

typically with toroidal mode numbers ~5-20, and the ELM filaments which are the effects of that

phenomenon in the SOL [8, 26]. In this picture, the evolution of the ELM may be divided into three

stages, which are illustrated schematically in Fig.2.2 and Fig.2.3:

• MHD stage: the ELM evolves by developing ~5-20 flute-like ripples in the pedestal

thermodynamic and field quantities (the perpendicular perturbations associated with the peeling-

ballooning mode). When these disturbances are weak, we speak of linear-MHD, when they are

comparable to the ambient quantities, of non-linear MHD. Top frame of Fig.2.2.
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• Transport stage: As the MHD disturbances grow in magnitude, transport effects become

pronounced and lead to saturation of the instability [15]. The initial flute-like perturbations thus

evolve into distinct plasma filaments, a situation typical in many interchange and Rayleigh-

Taylor instabilities. The observation of such filamentary structures on several large tokamaks

[67, 36, 30, 17, 27, 47, 27] is a relatively recent discovery. The filaments experience strong

radial forces, propagate outwards with radial velocities ~0.5-1km/s and at some point intersect

the pre-ELM separatrix, entering the SOL. At this point the initially closed filaments are either

opened by a form of peeling or reconnection at the X-point or their energy content is conducted

to the existing (pre-ELM) SOL plasma, which might involve the shearing, and gradual

disintegration of the filaments [12]. The former theory has been proposed by [72], who notes

that the Kadomtsev (or reconnection) time at the X-point is in the range 10-100µs for nominal

JET ELMs. It applies the ideas developed for sawtooth collapse by field line reconnection in the

core plasma to the X-point region [15] and is supported by evidence of strike point movement

during particularly large ELMs on JET [73]. The latter theory, often illustrated by drawing an

analogy between a rotating filament and a leaky hose, has been as suggested by [82]. The

compression of magnetic flux surfaces at the front of the expanding filament is suggested as the

mechanism responsible for increased radial transport to the ambient SOL plasma. Middle frame

of Fig.2.2.

• Exhaust stage: Having crossed the pre-ELM separatrix, the filaments continue to propagate

radially and expand in the perpendicular plane, most likely breaking up into ever smaller structures

[12]. In addition they experience strong parallel losses to the divertor targets and increasing

collisional effects, such as viscosity, conductivity and energy coupling between the ion and

electron channels. Bottom frame of Fig.2.2.

We will refer to the above picture of the ELM as the MHD-Transport-Exhaust (MTE) model. The

evolution of the outer mid-plane radial density (pressure) profiles are illustrated schematically in

Fig.2.3, where the pre-ELM and post-ELM profiles are also indicated. Note that the peak filament

quantities are reduced both by expansion and by parallel losses. The transfer of energy from the

closed (core) to the open (SOL) filaments is often obscured or glossed over in the topical literature.

Yet, this mechanism is essential to explain the observation that most of the ELM energy arrives at the

divertor targets, rather than being deposited on the vessel wall [25, 55]. It thus appears that during the

ELM crash the thermal energy of the pedestal plasma is conveyed to the divertor targets by parallel

convection and conduction within the ELM filaments and to the main chamber limiters by radial

propagation of the filaments themselves. Therefore, from the practical point of view (heat loads on

divertor and limiter tiles) the open ELM filaments are equally important as the original flute-like

perturbation. The specific aim of this article is to develop a model which follows the individual open

ELM filaments as they propagate in the SOL in order to estimate the decay of their density and energy

due to parallel losses.
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In order to justify the MHD-Transport-Exhaust (MTE) model of an ELM, it is necessary to show that

typical MHD timescale of the ELM and the average sonic timescale of the filaments, 〈τ||〉 are comparable,

such that both MHD and Exhaust processes determine the evolution of the ELM. Here we should not

confuse the duration of MHD activity, measured by τMHD, with the filament formation time which is

presumably much smaller. If tMHD was much larger than 〈τ||〉, many generations of filaments would

have to be formed, each one being drained by parallel losses as quickly as it is formed. The Exhaust

phase would thus be largely irrelevant and all the energy ejected into the SOL would appear directly

on the divertor tiles. Conversely, if τMHD was much smaller than 〈τ||〉, only one generation of filaments

would be (instantaneously) born, whose particle and energy content would then be gradually depleted

by parallel losses. Since τMHD ~〈τ||〉 ~200-300µs for typical Type-I ELMs on JET, we expect that

both MHD and Exhaust physics play a role in ELM evolution. On the strength of this observation, we

expect that only by including both effects can we hope to quantify the size of the ELM and the

partition of its energy between the divertor and limiter targets.

To this end, we examine the scaling of the two timescales with plasma dimensionless variables.

The MHD timescale of the ELM may be estimated as the transport-limited MHD growth time [7],

τMHD ~ (τA,ped
2 τE,ped)1/3                                                     (2.1)

where τA,ped is the pedestal Alfven time,

       τA,ped ~ L||/vA,ped ~ πRq95/vA,ped                                                  (2.2)

and vA,ped is the pedestal Alfven speed. The parallel connection length L|| ~ πRq95 is estimated using

the major radius R and the safety factor at the 95% poloidal flux surface, q95. Note that the Alfven

time is shorter than a typical sonic time, τ||,ped ~ L||/cs,ped ~ πRq95/cs,ped, where cs,ped is the pedestal

plasma sound speed, their ratio being equal to the square root of the plasma beta,

(2.3)

and βped ~ 0.01 in large aspect ratio tokamaks (hence βped
1/2 ~ 0.1).

The upper limit on τMHD may be obtained by setting τE,ped = 〈τE〉, where 〈τE〉 is the global energy

confinement time,

〈τE〉 = ∫WdV/PSOL,          W ≡ 3/2×n(Te + Ti)                                      (2.4)

where ∫dV denotes an integral over the core plasma volume and PSOL is the power crossing the

separatrix, i.e. entering the Scrape-Off Layer (SOL). The lower limit on τMHD is found with τE,ped =

τE,nc, where τE,nc is the pedestal neo-classical energy transport time,

τA,ped/τ||,ped ~ cs,ped/vA,ped ~ βped
1/2
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        τE,nc ~ Wped/(∂Wped/∂t) ~ Wped/(∇⊥nχnc∇⊥Ti) ~ 3/2×∆ped
2/χnc                      (2.5)

Here ∆ped is the pedestal width and cnc is the pedestal neo-classical (ion) heat diffusivity. We evaluate

cnc at the transition between the banana and Pfirsch-Schlueter regimes (the plateau regime being

absent when the inverse aspect ratio ε = a/R is greater than ~ 0.2 [39]),

(2.6)

where ρi and ρθi are the total and poloidal ion gyro-radii and tii is the ion-ion collision time. Using this

expression, we obtain the following estimate for the MHD time,

(2.7)

Substituting (2.3) and (2.5), this ratio can be expressed in dimensionless form as,

τMHD
min /τA,ped ~ ε-1/6 βped

-1/6 ν*i,ped
-1/3 ρ*θi,ped

-2/3                                  (2.8)

or

τMHD
min /τA,ped ~ 1.15×q95

-2/3 βped
-1/6 ν*i,ped

-1/3 ρ*i,ped
-2/3                                (2.9)

where the ion pedestal collisionality ν*i,ped and the pedestal width-normalised ion gyro-radii, ρ*θi,ped

and ρ*i,ped, are defined as

        ν*i,ped = L||/λii,ped ~ L||/χs,pedτii,ped,            ρ*θi,ped = ρθi/∆ped,         ρ*i,ped = ρi/∆ped         (2.10)

In Table 2.1, the above expressions are evaluated for nominal JET and ITER values. It is worth noting

the emerging hierarchy of time scales,

τA,ped  << τ||,ped  << τii,ped << τE,nc << 〈τE〉                                      (2.11)

ranging from micro-seconds for tA,ped  to seconds for 〈τE〉. In both tokamaks, the top of the pedestal

is collisionless, νi,ped* ~ L||/λii,ped ~ 0.02-0.04, while the separatrix is semi-collisional, νi,sep* ~ L||/

λii,sep ~ 1. Therefore, we expect kinetic effects to play an important role in ELM dynamics in both

JET and ITER.

The upper limit on τMHD is obtained from (2.1) and (2.4), assuming 〈τE〉 JET ~ 0.4s and 〈τE〉ITER ~

3.8s, which yields τMHD
max ~ 240µs for JET and τMHD

max ~ 690µs for ITER. The lower limit, that is

(2.1) with (2.5), depends on the value of the pedestal width. Assuming a nominal value of 25mm for

 χnc ≈ 1.5ε1/2ρθi
2/τii ≈ q95

2ρi
2/τii

τMHD
min /τA,ped ~  βped

-1/6(τE,ped/τ||,ped)1/3
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JET yields τMHD
min ~100µs. For ITER, τMHD

min is evaluated for two simple (and often cited) scalings

of the pedestal width, ∆ped/R = 0.025 and ∆ped/ρθi,ped = 2.5, which predict ∆ped = 50 and 21mm,

respectively; the former of these is the reference ITER prediction, while the latter is the purely neo-

classical or ion orbit loss scaling. The corresponding MHD times are found as τMHD
min ~300µs and

τMHD
min ~170µs. The results are summarised in Table 2.2. The observed MHD ELM times on JET,

which are typically measured as τMHD ~200-300µs [54, 7] are in good agreement with the upper

limit estimate, τMHD
max ~240µs and a factor of 2-3 larger then the lower limit estimate, τMHD

min ~

100µs. These times should be compared with the average sonic times for the filaments, which we

estimate as 〈τ||〉 ~ (τ||0τ||lim)1/2, where τ||0 is the initial parallel loss time, evaluated at the pedestal, and

t||lim, the final parallel loss time, evaluated just before the filaments intersect the limiter. Assuming

Tlim ~50eV on JET and ~100eV on ITER, we find 〈τ||〉JET ~ 190µs and 〈τ||〉ITER ~320µs. We thus find

that

JET: τMHD
min/〈τ||〉 ~ 0.4,                   τMHD

max/〈τ||〉 ~ 1

ITER: τMHD
min/〈τ||〉 ~ 0.5 – 0.95,        τMHD

max/〈τ||〉 ~  2

such that MHD and exhaust physics evolve on comparable timescales. We may speculate that τMHD
min

corresponds to filament formation time, while tMHDmax to the duration of all MHD activity, which

would indicated that filaments are indeed formed faster than they can be diluted by parallel losses.

Since the assumption of rapidly born filaments is central to the development of the parallel loss model

of the ELM, one of the main aims of the present article, it is encouraging to find that this assumption

to be consistent with known plasma physics.

As a final remark on ELM, we note that the above analysis largely justifies the proposed MTE

picture of the ELM. In practice, one is still forced to separate the physics into the MHD and Exhaust

parts, as is in fact done in this article where the MHD stage is not explicitly addressed.  However, this

should not detract us from realising that an integrated model of the ELM is ultimately necessary for

fully consistent predictions.

2.2 THERMAL QUENCH IN DISRUPTIONS

A tokamak discharge may terminate with a rapid loss of magnetic equilibrium and stored energy in a

so called plasma disruption. A short but clear introduction to tokamak disruptions may be found in

[82]; for more detailed reviews see [68, 65]. There are several types of disruptions, and several stages

in the disruption itself, reflecting the complexity of this most violent of tokamak transients. One of

these stages, the so-called thermal quench phase of a disruption (TQD) during which most of the

plasma stored energy is lost, generally precedes the current quench phase and occurs on much faster,

typically MHD (Alfvenic-sonic) timescales, see Section 2.1. This time scale is too short to be explained

by radiation alone, and it has been suggested that energy is largely removed by parallel transport [82].

This is supported by the observation of a radially accelerating helical perturbation acting as a precursor
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to a TQD in high beta plasmas with internal transport barriers [63]. The TQD onset begins when this

core filament protrudes beyond the separatrix and comes into contact with outboard limiters. Such an

explosive instability has been theoretically predicted in the non-linear evolution phase of the MHD

ballooning mode [23]. Infra-red thermography and divertor thermocouples show that the energy

removed during TQD is deposited on both the divertor and limiter tiles [59, 64]; observation of after-

glow heat on main chamber walls of the MAST tokamak suggests this deposition is spatially localised

and occurs via a helical filament excursion [47]. Since the intense heat loads associated with the TQD

could lead to ablation and melting of plasma facing components, mitigating their effects has been

identified as a high priority task for future reactors, including ITER [29].

The typical chronology of a TQD on JET is shown in Fig.2.4; the temporal extent of the plot is 10

ms, with a minor TQD occurring at 27.194s, followed by a major TQD at ~ 27.197s. The plasma

current remains unchanged during both events, suggesting the TQD occurs too quickly to change the

magnetic equilibrium of the discharge. The MHD activity is much more pronounced during the second

TQD phase in Fig.2.4. The start of this activity is coincident with a burst of energetic electrons at the

inner target (soft X-ray signal). This is quickly followed by the drop of the plasma stored energy,

which decays exponentially with a time constant of ~ 200 ms, comparable to the parallel sonic transit

time, τ|| ~ 100µs. The Da light at the outer mid-plane and in the outer divertor, associated with the bulk

plasma pulse and related recycling at the solid targets, is delayed by 500-1000µs with respect to the

electron burst. The overall behaviour is similar to that of a Type-I ELM discussed in the previous

section. It should be emphasised that temporal-spatial evolution of the TQD pulse remains largely

undiagnosed, and may involve stochastic mixing (radial ergodisation) of magnetic field initially forming

a flux surface.

2.3  SOL INTERMITTENCY

At the other end of the energy spectrum, tokamak plasmas are constantly subjected to micro-transients

associated with turbulence. While the TQD ejects nearly all the plasma stored energy, ∆WTQD/W ~ 1,

an ELM typically several percent, ∆WELM/W ~ 10-2, the intermittent turbulent bursts observed in the

SOL are typically much smaller, ∆WSOL/W ~ 10-6 -10-4. Since the frequency of these transients

scales roughly inversely with their size, fTQD ~ 0.1Hz, fELM ~ 10Hz and fSOL ~ 103-105Hz, the

resulting time-averaged powers, P ~ fDW,  are comparable for the three types of transients,

PTQD/W ~ fTQD∆WTQD/W ~ 0.1 s-1

PELM/W ~ fELM∆WELM/W ~ 0.3 s-1     (2.12)

PSOL/W ~ fSOL∆WSOL/W ~ 0.1 s-1

The existence of substantial fluctuations of density and temperature in the SOL is well established

[44, 42, 75]. Relative size of the fluctuations is larger in the SOL than in the core plasma and larger
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still in the far-SOL. The same is true for the level of intermittency, which measures the departure of

the probability distribution function away from the normal Gaussian shape [37]. This increasing level

of intermittency may be interpreted in terms of plasma filaments (or blobs) propagating radially with

velocities of order 1km/s or v⊥/cs ~ 10-2 - 10-3, similar to those measured for ELMs. Such filaments

have now been observed on most tokamaks using both Langmuir probes and gas puff imaging. Due to

their low energy content, they do not individually pose any danger to the plasma facing components,

but their collective action could lead to enhanced material erosion and impurity generation. This is

especially true if the ion temperatures in the filaments exceed the threshold for physical sputtering.

The theoretical framework of SOL turbulence appears to well established and capable of explaining

the observed phenomenology: two dimensional dynamics of elongated plasma filaments (acting as

turbulent eddies) in the plane perpendicular to the magnetic field, increasing intermittency in the far-

SOL, turbulence self-regulation via poloidal zonal flow formation, and strong dissipation of energy

by parallel losses. Most of these characteristics have been observed in the experiments [77, 2, 41, 17,

28] and have been largely reproduced in numerical simulations of SOL turbulence with different

levels of sophistication [10, 83, 69, 51, 24, 34, 34]. However, most SOL turbulence codes rely on the

fluid (typically single fluid) approximation, in which the parallel transport of energy to the divertor

targets is treated in the most rudimentary fashion.

3. ADVECTIVE-DIFFUSIVE MODEL OF TOKAMAK PLASMA FILAMENTS

In the fluid picture, the spatial-temporal evolution of plasma density and energy is described by

dynamical moment equations in advective-diffusive form [18, 40],

(3.1)

where na and ea are the particle and energy densities for species a = i,e, ua are flow velocities, ΓΓΓΓΓa and

qa the particle and energy fluxes, Da and χa the particle and heat diffusivities, Sn,a and Sε,a the particle

and energy sources and Qa the energy equipartition term. Note that we have neglected the momentum

conservation equation from (3.1); instead, we impose the Mach boundary condition (M ≥ 1) at the

entrance into the sheath and represent parallel losses by effective removal times, see below. Quasi-

neutrality requires that ne = Zni, ΓΓΓΓΓe = ZΓΓΓΓΓi, Sn,e = ZSn,i where Z is the ion charge. Although this

condition can be violated transiently, as will be shown in Section 4, in the context of the fluid approach

one may assume it to be satisfied at all times. For a fully ionised hydrogenic plasma, quasi-neutrality

requires ne = ni = n  and ΓΓΓΓΓe = ΓΓΓΓΓi = ΓΓΓΓΓ. The fluxes ΓΓΓΓΓ and qa involve three orthogonal directions: parallel

||, diamagnetic ∧ and radial ⊥, with the || and ∧ directions defining the flux surface; provided the

system is axis-symmetric (∂/∂φ ~ 0), they may be combined into a single, poloidal direction q. However,

+ ∇. Aa = Sn,a, Aa = naua - Da∇na

51 ..

∂na

∂t

+ ∇. qa = Sε,a + Qa, qa = ( 2 maua + 2 Ta ) Aa - na -a
∂εa

∂t ∇Ta

32 1Qe = -Qi εa = ( 2 maua + 2 Ta ) na
εi - εe

τie
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it should be noted that plasma transport always occurs in three (||, ∧, ⊥) rather than two (θ, r) directions,

where r is the radial coordinate. The geometry of SOL transport, including the role of classical drifts,

is discussed in [19, 75, 31].

In order to study the temporal evolution of (3.1), we can employ the Green’s function approach, a

comprehensive account of which may be found in [58]. The Green’s function, G(r,t) is the response of

the dynamical equations to a Dirac delta function impulse, δ(r)δ(t). It can be used to construct the

response to an arbitrary source, S(r,t) as a spatial and temporal convolution, S*G = ∫∫S(r,t)G(r-r’,t-

t’)dr’dt’. For example, the Green’s function for the density response in (3.1) is easily found if u⊥ and

D⊥ are assumed constant, and if parallel and diamagnetic divergences are replaced by n/τn, denoting

poloidal (parallel plus diamagnetic) particle loss with a characteristic decay time τn,

(3.2)

The solution to (3.2) is easily found as an advected, Gaussian wave-packet [58],

(3.3)

If the diamagnetic divergence term is included explicitly, rather than implicitly via τn, u∧ and D∧

appear in (3.3) in exact symmetry to u⊥ and D⊥,

(3.4)

where a is the diamagnetic co-ordinate and t||n is the parallel particle loss time. The above expression

defines an elongated plasma filament, whose centre moves in the ⊥−∧ plane with velocities u^ and

uŸ, and broadens as (D⊥t)1/2 and (D∧t)1/2 in the two directions. This corresponds to the filamentary

structures observed in tokamaks during ELMs [26, 48], TQDs [63] and SOL intermittency [78, 17]

and shown schematically in Fig.2.2. The temporal evolution of (3.3) is shown graphically in Fig.3.1

for the case of comparable advective and diffusive terms (u⊥ = D⊥ = 1) and negligible poloidal losses,

τn >> 1; it corresponds to the perturbed part of the profiles as illustrated in Fig.2.3. Its maximum

decays exponentially with time, and hence also with radius,

(3.5)

while its integral, which represents the total number of particles in the filament, is reduced only by

poloidal losses,

+ + u⊥∇⊥ - D⊥∇⊥   Gn = Gn = δ(r) δ(t)2∂
∂t

d
dt

1
τn

Gn(r,t;τn,u⊥,D⊥) = exp
1 (r - ⊥t)2 t

„D⊥t D⊥t τn

n(r,t) = ” dt’ ” dr’Gn (r -r’, t - t’) S (r’, t’)
t r

0-∞

Gn(a,r,t;τ||,u⊥,D⊥,u�) = exp
1 (r - u⊥t)2 t

„D⊥t„t D⊥t τ||n

(α - u�t)2

D�t

Gn t = =max exp
1 t

„D⊥t„t τn

r
u⊥



10

                       (3.6)

The Green’s function for the energy response can be similarly derived, although the presence of an

additional diffusion term complicates the final expression. The result is a product of convective and

conductive parts, where the former is formally identical to (3.4), while the latter follows from (3.4)

with the following transformation: D⊥a → χ⊥a, D∧a → χ∧a, τ||n → τ||a. The energy of the plasma

filament is therefore reduced by both convective and conductive transport in all three directions.

Specifically, the temperature profile of species a broadens roughly as (χ^at)
1/2 and (χ^at)

1/2, which

may occur much faster than the broadening of the density profile if χ^a >> D^a (as is the case for

classical ion conduction/diffusion).

The dynamics of plasma filaments in the ⊥−∧ plane has been investigated in the context of SOL

plasma turbulence and radial ELM propagation [10, 24, 59, 32, 17]. On JET, it was found that ELM

filaments propagate radially in the SOL with average velocities between 500 and 1000 m/s. However,

the details of radial filament dynamics are not important for the purpose of the present study, in which

we adopt the frame of reference moving with the plasma filament in the ⊥−∧ plane. We need only

note that in this frame the reduction of integrated particle and energy densities occurs only due to

parallel losses (these differ from poloidal losses in the presence of strong radial electric fields, when

diamagnetic fluxes become significant) and that peak filament values are additionally reduced by

filament expansion in the ⊥−∧ plane, nmax/n ∝ (D^t)-1/2. In the remainder of the paper, we will adopt

this (filament) frame of reference and assume v⊥ and D⊥ are known. For the sake of simplicity, we

will treat filament broadening in two stages, initially solving (3.1) with the assumption of D⊥ = 0, and

introducing filament broadening in the following stage by assuming polytropic expansion. It should

be stressed that filaments will be assumed to propagate into vacuum, i.e. the background SOL plasma

is ignored. In section 4, we will include this background explicitly to determine the relative change

from pre-ELM to ELM fluxes.

4. KINETIC DESCRIPTION OF PARALLEL LOSSES

The problem of transient parallel losses from the plasma to solid surfaces is intimately linked with

that of electrostatic (Langmuir) and magnetic (Chodura) sheath formation [22]. In this problem, the

velocity distribution functions for ions and electrons, fi(v) and fe(v), evolve according to Fokker-

Planck and Poisson equations [49, 57, 40]

(4.1)

Here s is the parallel distance,j the electrostatic potential and va, ea and ma the velocity, charge and

mass of species a, respectively; Cab and Sa denote inter-species collisions and volumetric sources.

t
τn

r
λn,u

λn,u = u⊥τn ” Gn (t,r)dr = exp = exp ,
-∞

+ v||a ∇|| + .∇v fa (s,va,t) =    • Cab+sa
b∈{i,e}

∂
∂t

ea (E + vax B)
ma

∇||ϕ = - ∇||E|| = -4„ (ee ” fedve+ ei ” fidvi)



11

Equations (4.1) are closed by assuming perfect absorption at the plasma-solid interface (s = L||),

(4.2)

The sheath problem, being one of the oldest in plasma physics, has been intensively studied, both

analytically and numerically [21, 75, 52]. Unfortunately, it is typically solved under steady state

conditions, with the additional assumption of zero current flow into the sheath,

Consequently, the existing literature is of limited use for studying the process of sheath formation

and the associated transient particle and energy fluxes. To address this issue, a simple model based

on the Maxwellian approximation is developed below and compared with recent kinetic simulations

in Section 4.2.

4.1 MAXWELLIAN APPROXIMATION

Neglecting collisional effects from (4.1), yields the Vlasov-Poisson problem. This approximation is

reasonable for the initial phase of high energy transients such as ELMs and disruptions, eg. for typical

JET conditions of Te,ped ~ 1keV and ne,ped ~ 1020 m-3, the thermal Mean-Free-Path (MFP) exceeds

the connection length, L|| ~ 30m. However, even under moderately collisional conditions, supra-thermal

particles may be effectively collisionless due to the strong increase of the Coulomb collisional mfp

with particle velocity, λaa(v) ∝ v4 [57, 45]. For the same reason, sub-thermal particles are nearly

always collisional. Consequently, the approach developed below is only applicable for thermal or

supra-thermal velocities.

To further simplify the analysis (and separate the electrostatic and inertial effects in the kinetic

equation), we neglect the Coulomb force (set E|| = 0) on the left hand side of (4.1), effectively decoupling

the ion and electron distributions. This leaves a purely magnetic Lorentz force which, in turn, vanishes

for parallel motion. As a result, (4.1) reduces to a force-free Vlasov equation. In this approximation,

ions and electrons are distinguished only by their masses, their charge having no effect on the parallel

dynamics. The resulting problem is formally identical to transient kinetic effusion of gas molecules

into a vacuum, which occurs following an explosion or a removal of a separating membrane between

two chambers, and has been treated extensively in the kinetic theory of gases [20, 53]. An accessible,

modern account of this problem may be found in [35]. Below we briefly show that gas kinetic results

provide important insights and a useful starting point for plasma kinetic analysis.

Consider a plasma filament in a tokamak SOL, bounded on either side by perfectly absorbing

divertor targets. We define the outer mid plane location as s = 0 and denote the connection lengths to

the inner and outer divertor targets as L||i and  L||o, respectively. The divertor targets are thus located at

s = -L||i and s = L||o. We would like to determine the temporal evolution of the filament-averaged

fi (s = L||, v||i > 0,t) = fe (s = L||, v||e ∇|| > 0,t) = 0

ei ” fiv||i dvi= ee ” fev||edve = 0
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density and temperature, as well as the particle and energy fluxes deposited at both divertor targets.

This can be obtained by calculating the Green’s function of the bounded filament, i.e. the response of

the bounded, force-free, Vlasov equation to a delta function impulse, Sa = δ(s)δ(t)fM,a(v) where

fM,a(v) is a Maxwellian distribution,

                      (4.3)

Here vT,a
2 = 2Ta,0/ma is the initial thermal speed of species a, and fM,a(v) is normalised to the same

value n0 for both ions and electrons to assure charge equality. This distribution is assumed stagnant,

ui = ue = 0 (ua ≡ ua|| is the parallel velocity), and isotropic, T||a,0 = T⊥a,0 = Ta,0, with potentially

different ion and electron temperatures, Ti,0 and Te,0. In (4.3) and the rest of the section, the subscript

0 refers to the initial (t = 0) value of any quantity and ⊥ denotes both directions perpendicular to B.

Consequently, v⊥ is a vector in the ⊥−∧ plane and T⊥a,0 is the temperature associated with the

particle gyration.

In the force-free, Vlasov equation,

                                                     (4.4)

the left hand side forms an advective time derivative, so that fa(t,s,v||,v⊥) evolves due to free streaming

of particles with constant velocities v||. This leads to a net dispersion of the initial Maxwellian

distribution, with each element fM,a(v||,v⊥)dv being translated to s = v||t after time t. By this time, all

particles with v|| > L||o/t have been lost to the outer target and those with v|| < -|L||i/t| have been lost to

the inner target. As a result, the distribution is progressively depleted at both ends, with the fastest,

most energetic particles being lost first. In the absence of forces and collisions, a particle initially

travelling towards the outer target will eventually terminate there. The loss of particles to the two

targets can therefore be treated separately by defining the critical velocity vcr(t) = L||/t, where L|| may

denote the connection length to either target. The fraction of particles remaining in the filament after

time t, (n/n0)a which constitutes the desired Green’s function for density evolution Gn, is found by

integrating fM,a(v) from 0 to vcr(t) and dividing by the initial value,

(4.5)

where erf(x) is the error function, τ||a = L||/vT,a the thermal transit time, and xa the critical velocity

normalised by vT,a and/or the inverse time in units of t||a. It is noteworthy that Gn depends on t, L||,

+ v||∇||  fa = fa = Sa
∂na

∂t
d
dt

Gn (xa) = = = erf (xa),  xa = βavcr =
1
2 = 

n

n0

” ” fM,a(v||, v⊥)dv||dv⊥

” ” fM,a(v||, v⊥)dv||dv⊥

vcr

vT,a

L||

vT,a
= 

τ||a

t
-∞

-∞

-∞

-∞ 0

0

0

vcr
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Ta,0 and ma via a single combination of these variables, namely xa. This implies, for instance, that

a spatially distributed source, Sn(L||) is formally equivalent to a temporal source Sn(t) with equivalent

transit times. This fact can be used to reduce the convolution S*G to a single integral over xa.

Similarly, the fraction of energy remaining in the filament after time t, (ε/ε0)a and hence the Green’s

function for energy evolution are found as

(4.6)

In the above integral, the energy associated with gyration ε⊥ is only reduced due to particle losses,

whereas parallel energy ε|| is reduced more quickly due to preferential loss of supra-thermal particles.

If we define the corresponding temperatures as 3T⊥a/2 = ε⊥a/n and 3T||a/2 = ε||a/n, we find that T⊥a

remains constant at Ta,0, while T||a is reduced due supra-thermal losses,

(4.7)

The effective temperature is an average ofT⊥a and T||a, with the former being counted twice due to

two degrees of freedom associated with the gyrating motion,

(4.8)

The above results are plotted in Fig.4.1 vs. t/τ||a = xa
-1. The decay of all quantities is delayed with

respect to a pure exponential, exp(-t/τ||a), the solution to dn/dt = – n /τ||a, which is also shown in

Fig.4.1; we will exploit this delay in the fluid approximation, Section 5. All functions approach unity

for xa >> 1 (t << τ||a) and zero for xa << 1 (t >> τ||a), with the exception of Ta which has an asymptotic

limit of 2/3. Energy and parallel temperature are reduced much faster than density, but only T||a

approaches pure exponential decay. Parallel temperature decays to half its initial value in one thermal

transit time, (T||/T0)a = 0.5 at xa ~ 1, energy takes √2 times longer, (ε/ε0)a = 0.5 at xa ~ 1/√2, and

density twice as long, (n/n0)a = 0.5 at xa ~ 0.5.

Under steady-state conditions, the (uni-directional) particle and energy fluxes for a half-Maxwellian

distribution, which we denote as Ga•  and qa•  respectively, can be integrated to yield

(4.9)

Gε (xa) = = = erf (xa) xae-xa
2ε0

ε0
=ε|| + ε⊥

ε0

” ” fM,a(v||, v⊥)dv||dv⊥

” ” fM,a(v||, v⊥)dv||dv⊥
-∞

-∞ 0

0
2

„3

= 1, = 1 - .T⊥

T0

(ε||/ε||0)a

(n/n0)
a

eae-xa
2

erf (xa)=
T||

T0 aa

2
„

= .T
T0

(ε/ε0)a

(n/n0)
a

xae-xa
2

erf (xa)= =1+
2T⊥T||

3T0 aa

T
T0 a

2
3

1
3

2
„3

Γa =  ” ” v||fM,a(v||,v⊥)dv||dv⊥ = nvT,a.

...

.1
4

1
4

q
a

TaΓa

2
„

2
„

q||a =  ” ” 2mav||v||fM,a(v||,v⊥)dv||dv⊥ = TaΓa  = q⊥a

qa = q||a q⊥a  ” ” 2ma (v||v⊥) v||fM,a(v||,v⊥)dv||dv⊥ = 2TaΓa

γa ≡ = 2,
Γa

nvTa
M|| ≡ = ¯ 0.28

1

1 2 2

2 ∞ ∞

∞∞

∞
∞

∞

∞

∞

∞ ∞
∞ ∞

∞

-∞ 0

-∞ 0

∞
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The effusion velocity is subsonic, M||
∞ < 1, and on average, the free streaming particles remove 2Ta of

kinetic energy from the plasma, with equal contributions from perpendicular and parallel energies.

Under transient conditions, the particle and energy fluxes striking the divertor target, and hence the

corresponding Green’s functions, may be obtained in two different ways. The first, more direct method

is to note that in the time interval between t and dt only those particles with vcr < v|| < vcr + dvcr reach

the divertor target. Since the number of particles in that interval is fM,a(vcr)dvcr, the rate of particle

loss is equal to fM,a(vcr)dvcr/dt. Substituting for fM,a(v) and evaluating dvcr/dt = d/dt(L||/t)= -vcr/t, we

find Γa/n0,a = π-1/2xaexp(-xa
2)/τ||a. The average energy of the removed particles is equal to T⊥a +

mavcr
2/2  which represents the loss of perpendicular and parallel energy, respectively. Since T⊥a = Ta,0

is unaffected by parallel losses, we obtain γa = qa/ΓaTa,0 =  1 + xa
2.

The second method consists in differentiating (n/n0)a and (ε/ε0)a obtained previously with respect to

time, such that 2Γa = dn/dt = n0,ad/dt(n/n0)a and 2qa = dea/dt = ε0,ad/dt(ε/ε0)a. These derivatives can

be evaluated using the chain rule d/dt = (dxa/dt)d/dxa with dxa/dt = d/dt(τ||a/t) = -xa2/τ||a = -xa/t and

Leibnitz’s formula for the derivative of a definite integral [3],

(4.10)

in exact agreement with the results obtained using the first method. The above expressions are shown

graphically in Fig.4.2. The particle deposition rate reaches a maximum of Γa
max ≈ 0.207/τ||a at the

thermal velocity, xa = 1, while the energy deposition rate reaches a maximum of qa
max ≈ 0.474/τ||a at

xa = 1.27. Consequently, the energy flux peaks earlier, t = 0.79t||a than the particle flux, t = τ||a. The

ratio ga is initially infinite, due to prompt loss of the energetic particles in the tail of the Maxwellian

distribution, but decays to the steady-state value of γa
∞ = 2 in one thermal transit time t = τ||a, at which

vcr reaches the thermal speed, xa = 1. Afterwards, only sub-thermal particles are lost and γa decays

asymptotically to unity, Fig.4.3. To quantify the degree of supra-thermal effects it is useful to define

the parallel Mach number as vcr normalised to the parallel thermal speed at time t, such that M||a is

positive definite

(4.11)

With this definition M||a behaves similarly to γa (infinite at t = 0, unity at t → ∞), but decays much

quicker in the initial phase, reaching a value of ~1.4 at xa = 1, Fig.4.3.

The above results can also be expressed in terms of characteristic loss times for density and energy,

GΓ (xa) = = =. . . ,Γa

n0

xae-xa

τ||a

dxa

dt
d

dxa

n
n0

1
2

1
„

∞

a a

2

2

Gq (xa) = = =. . .qa

ε0

(1 + xa) xa e-xa

τ||a

dxa

dt
d

dxa

ε
ε0

1
2

1
„a a

2 2
3
2

...
q

a

ΓaTa,0
γa ≡ = 1 + xa
∞

∞

M||a ≡ = ‡ 1vcr vcr
1
2

a
vTa (t)

T||
T0” ” v||fM,a(v||, v⊥)dv||dv⊥ / n0

-∞ 0

Vcr∞
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τn,a and τε,a, which can be useful in the fluid formulation,

                       (4.12)

4.1.1 In-out divertor asymmetries

Having constructed a simple kinetic model based on the Maxwellian approximation, we next use it to

address two important ELM-related problems: the in-out divertor asymmetry in the ELM power

deposition, and the difference in electron and ion transient energy fluxes.

Since the initial Maxwellian distribution is even-symmetric and remains so in the absence of

forces and collisions, the same number of particles and the same amount of energy must be

deposited on either target, i.e. ∫Γodt/∫Γidt and ∫qodt/∫qidt must be equal to unity. According to

(4.12), Γa ∝ τ||a
-1 ∝ L||

-1 so that this deposition occurs on a faster scale at the outer target (below

we assume that s = 0 corresponds to the outer mid-plane and that L||i > L||o, as is the case in most

large tokamaks, including JET and ITER). As a result, particles have less time to disperse in the

outboard side of the filament and the arriving pulse is more intense at the outer target. This is

illustrated in Fig.4.4 where Γa and qa are plotted vs. t/τ||a,o for both targets assuming L||i/L||o = 2;

here τ||a,o = L||o/νT,a is the thermal transit time to the outer target. The transient pulse arrives earlier

at the closer (outer) target, since xo/xi = τ||o/τ||i = L||o/L||i = 1/2, which leads to a compression of the

pulse profile by a factor of two with respect to the inner target. The ratio of peak fluxes is inversely

proportional to the ratio of connection lengths, Γa,o
max /Γa,i

max = qa,o
max /qa,i

max = L||i/L||o = 2.

The evolution of the in-out flux ratios is shown in Fig.4.5. The ratios Γa,o /Γa,i  and qa,o /qa,i are

infinite at t = 0, reach unity at t/t||a,o ~ 2 and 1.5, respectively, and saturate at L||o/L||i = 1/2 for t >>

τ||a,o. The associated ratio of energy per particle γi/γe increases from (L||o/L||i)2 = 1/4 at t = 0 to unity

at t >>τ||a,o, while M||o/M||i changes from 0.5 to 1 in the same limits.

The decay of inner-to-outer filament ratios of density, energy and temperature is illustrated in

Fig.4.6. All three are initially equal to unity, and while the density and energy ratios decay to L||o/L||i

= 1/2 at t >>τ||a,o, the temperature drops by 20% before approaching unity. In contrast, the parallel

temperature ratio decays to L||o/L||i = 1/2 after t ~ τ||a,o and approaches (L||o/L||i)2 = 1/4 for τ||a,o >> 1.

The outer filament is thus rarefied and its parallel energy effectively cooled by faster losses, although

the net temperature of the whole filament remains roughly equal.

In light of the simplifying assumptions, it is perhaps surprising that the Maxwellian model can

successfully reproduce the observed Type-I ELM delay between the outer and inner targets as measured

on JET and other tokamaks. The observed delay is found to scale roughly as ∆tin-out ~ (L||i/L||o)/cs,ped,

see Fig.13b of [55], which is entirely consistent with (4.12) and Fig.4.4. This agreement suggests that

inertial effects alone are sufficient for determining the transient pulse arrival times. In contrast, Coulomb

Γa =  
� �

� �
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„
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xae

-xa
2

τn,a
τ||a

qa =  =  ≡  , „3εa
2

na
τe,a

erf (xa) - xae
-xa

2

xae-xa(1 + xa)2

2

„3
2

τε,a
τ||a



16

forces become essential when calculating the magnitudes of the deposited fluxes, as will be shown in

the following section.

4.1.2 Electron vs. ion transient energy fluxes

To compare the transient response of ions and electrons in a plasma filament, we once again focus on

a single connection length L|| and note that xi/xe = τ||i/τ||e = vT,e/vT,i ~ (mi/meϑ)1/2 ~ 60 for D+ ions

with ϑ  = Ti,0/Te,0 = 1, which expresses the obvious fact that the lighter electrons are lost much faster

than the heavier ions. In this context, the most serious shortcoming of the force-free Maxwellian

model is the gross violation of charge neutrality in the plasma filament, Γe /Γi  >> 1 and ne/ni << 1.

This is illustrated in Fig.4.7 which shows the evolution of the ion to electron ratios of n, ε, T and T||

plotted as function of t /τ||i. These ratios increase to values much larger than unity on the timescale of

t||e, with ni/ne and ee/ei saturating at (mi/meϑ)1/2 ~ 60 and T||i/T||e at mi/meϑ ~ 3600 for t > τ||i. The

temperature ratio Ti/Te rises to 3/2 and then decays back to unity on the timescales of τ||i and τ||e,

respectively. The ion and electron particle and energy fluxes on the divertor target are shown in

Fig.4.8; they reach their maximum values at t ~ τ||e and τ||i, respectively. The electron peak fluxes are

larger by the ratio of thermal transit times, τ||i/τ||e ~ 60 such that the time integrated fluxes are equal (as

they must be in the absence of forces and collisions). The ion to electron flux ratios, Γi/Γe and qi/qe,

plotted in Fig.4.9, increase from zero at t = 0 to unity at t /τ||i = 0.5 and 0.4, respectively, and saturate

at (mi/meϑ)1/2 ~ 60 for t > τ||i. The associated gi/ge decreases from infinity at t = 0 to unity at t >>τ||a,o,

never reaching the steady-state ratio obtained from kinetic analysis of the sheath problem, γi
∞/γe

∞ ~ 3/

5 [76]. This discrepancy is a direct consequence of the neglect of the Coulomb force in our simple

model, which leads to the accumulation of positive charge density in the filament, ni/ne >> 1. In

reality, this space charge would inhibit (augment) further electron (ion) losses, prevent further cooling

of the electron channel and consequently reduce T||i/T||e.

To capture this effect within the Maxwellian model, we must strive to impose the quasi-neutrality

constraint, ni ~ ne. However, a strict imposition of this constraint, ni = ne, At,  leads to the trivial (and

incorrect) result,

          (4.13)

in which the electron and ion species evolve in strict unison and the parallel electric field vanishes. In

reality, we expect a violation of quasi-neutrality in the initial phase of the transient, when supra-

thermal particles of both species are lost. A more accurate prescription would be to allow the electron

and ion densities to evolve independently in the initial phase of the transient (t << τ||i), but require the

re-establishment of quasi-neutrality on the timescale of the ion thermal transit time (t > τ||i). This

weaker constraint may be imposed as a relation between xi and xe, reducing to the limiting values in

the absence/presence of the quasi-neutrality constraint: xi/xe → (mi/meϑ)1/2 ~ 60 for xi >> 1 and xi/

xe → 1 for xi << 1. One possible functional form involves weighting the limiting values by the
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transitional variable z(xi) which approaches zero and unity in the limits of small and large xi,

respectively. This can be expressed as follows,

 (4.14)

where y > 0 is a free (fitting) parameter.

The effect of the weak quasi-neutrality constraint with y = 1 on the temporal evolution of particle

and energy densities is shown in Fig.4.10. While both na and ea decay on the transit timescale t||a,

such that the decay of ion quantities is delayed by τ||i - τ||e ~ τ||i, after this time the quasi-neutrality

constraint (4.14) assures that all ion and electron quantities rapidly converge. The corresponding

evolution of ion to electron thermodynamic ratios is shown in Fig.4.11. The effect of the delayed

quasi-neutrality constraint is best appreciated by comparison with Fig.4.7. While ni/ne, ee/ei and T||i/

T||e exceed unity, they quickly (t < τ||i) saturate at 1.6, 2.6 and 3.6, respectively, a significant reduction

from the unconstrained values of 60, 60 and 3600. The temperature ratio Ti/Te rises by only 30%,

before decreasing towards unity. The particle and energy fluxes on the divertor are shown in Fig.4.12

and should be compared with Fig.4.8. The electron fluxes are initially much larger, but converge to

the ion fluxes, producing a quasi-ambipolar flow of charge for t > τ||i. The delayed quasi-neutrality

constraint reduces the ratio of electron to ion peak particle and energy fluxes from 60, Fig.4.8, to 15

and 20, Fig.4.12. The ion to electron flux ratios, Gi/Ge and qi/qe, are plotted in Fig.4.13, which should

be compared with Fig.4.9. In contrast to the monotonic increase in the absence of the quasi-neutrality

constraint, both ratios reach their maximum values of 1.3 and 1.55 at t /τ||i  ~ 2 and 1, respectively.

Comparison with measurements of Type-I ELM electron and ion pulse arrivals times at the divertor

targets on JET and other tokamaks, eg. Fig.2.1 [51, 32], reveals that the weak quasi-neutrality

Maxwellian model can successfully reproduce the observed delay between the electron and ion pulses.

This delay is also observed in 1-D PiC simulations of ELM pulse propagation [9, 81]. Once again, we

may conclude that inertial effects alone determine the ion and electron pulse arrival times at both

divertor targets.

The asymptotic quasi-neutrality constraint (ni/ne → 1 as  xi → 0), also implies γi/γe → 1, making it

impossible to simultaneously satisfy both ni/ne ~ 1 and γi/γe ~ γi
∞/γe

∞ ~ 3/5 in the Maxwellian

approximation. This is perhaps not surprising, since the steady-state value originates with the pre-

sheath electric field and the associated distortion of the ion distribution away from the shifted

Maxwellian. Non-Maxwellian distributions, such as the variable skewness distributions used in

turbulence theory to characterise intermittency [37], may therefore be required to satisfy both constraints.

To overcome this shortcoming, the Maxwellian result γa = 1 + xa
2 may be modified by a fitting

parameter, eg. γa = γa,0 + xa
2. A more elegant approach would be to include the Coulomb force in the

Vlasov equation, eg. E|| = E0 + 4πe(ni - ne)L||, such that each element fM,a(v||0,v⊥0)dv is translated with

changing velocity v||a(t) = v||0 +∫(eaE||/ma)dt, and arrives at sa(t) = ∫v||adt after time t. The critical

velocity v||a(t) and xa = v||a(t)/vT,a are then defined implicitly by {v||a(t) | L|| = s(t)}. Since xa depends

= (1 - ζ) + ζ y > 0ζ = ,,
xe

xi

meϑ
mi

xi

1 + xi
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on na via E||, the coupled system must be solved by numerical quadrature, i.e. by standard time marching

algorithms which are both easy to implement and quick to execute. A more sophisticated (and expensive)

solution, would involve abandoning the Maxwellian approximation altogether, and solving the 1D1V

(s,v||) Vlasov-Poisson system using a grid based finite-difference scheme. A number of public domain

codes could be used for this purpose, many utilising specialised computational fluid dynamic (CFD)

techniques [1]. The final step would consist in solving the complete 1D2V (s,v||,v⊥) Fokker-Planck-

Poisson system, with a simplified treatment of collisions, eg. using the BGK operator [11]. Numerical

solutions of the complete system are discussed in the following section.

We may also consider the response of the Maxwellian model to a constant source, Sa =

δ(s)H(t)fM,a(v), where H(t) is the Heaviside function. This will both illustrate the method of convolution,

and permit a comparison with kinetic simulations, discussed in Section 4.2. As was already mentioned,

the response to an arbitrary source can be obtained by integrating the Green’s function responses to

the delta function expansion of the source, as represented by the convolution formula (3.3). For example,

the particle and energy fluxes on the target are found as

(4.15)

where the time integration of GΓ and Gq yields Gn and Ge, respectively. The resulting fluxes are

plotted in Fig.4.14, where the weak quasi-neutrality constraint has been assumed. As expected, both

fluxes saturate at the value determined by the constant source for t >> τ||a, with the ratio ga approaching

the half-Maxwellian effusion value of 2.

4.2 PARTICLE-IN-CELL SIMULATIONS

In the previous section, kinetic effects were derived from the simplest possible form of the Boltzmann

equation, from which both forces and collisions were neglected. In order to assess the accuracy of

these results, we would like to compare them with transient solutions of the full Fokker-Planck-

Poisson system (4.1). Such solutions were recently obtained using the Particle-in-Cell (PiC) method

in the context of ELM modelling [9]; a clear account of the PiC technique may be found in [13, 76].

Under low collisionality conditions, the PiC simulations confirm the underlying assumptions of the

Maxwellian approximation, such as the constancy of T⊥a and uni-directional half-Maxwellian losses.

The PiC simulations also indicate the arrival of electron and ion pulses on the scale of their respective

transit times, eg. Fig.2 of [9], in good agreement with the predictions of Section 4.1.2. However, the

Coulomb force is shown to increase (decrease) the ion (electron) energy arriving at the target. The ion

to electron deposited energy ratio, ∫qidt/ ∫qedt, not to be confused with ratio of energy densities in the

filament τi/τe, was found to vary from 1 to 7 for a range of conditions, with values of ~3 being typical,

see Table 1 of [9] (in the absence of the Coulomb force, this ratio is equal to unity as predicted by the

half-Maxwellian loss model, Section 4.1.2).
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The most accurate kinetic simulations of the ELM transient under JET relevant conditions have been

performed using the BIT1 PiC code [80]. The improvements over previous simulations include a

binary treatment of Coulomb collisions and much smaller shortening parameters [79]. The connection

length L||/2 was assumed as 40m in the simulation. In the pre-ELM phase, the upstream region was

continuously supplied by a Maxwellian source with Te = Ti/2  = 100eV, n ≈ 1×1019 m-3. The ELM

was simulated by increasing this source to Te = Ti = 1500eV, n ≈ 5×1019 m-3 for a duration of 200µs

(typical duration of a Type-I ELM on JET, see Fig.2.1). The length of the ELM pulse corresponds to

2.5 τ||i evaluated with L||o ~ 30m. However, the ELM source in the simulation was spatially distributed

over nearly the entire SOL region above the X-point. The electron temperature, deposited energy flux

and γa = qa/ΓaTa, are shown in Fig.4.15 for the duration of the ELM pulse. Both γe and gi exhibit sharp

peaks above their steady state values of γe
∞ ~ 5 and γi

∞ ~ 3.5, occurring at t ~ τ||e and τ||i, respectively.

The energy flux increases promptly (t ~ τ||e) due to electron loss, but reaches a plateau due to a

repulsive electric field set up by the negative space charge. Only after the arrival of the bulk ion pulse

at t ~ τ||i does it increase further.

To compare the above PiC results with the predictions of the Maxwellian approximation, we have

to combine the latter with the pre-ELM backbround, i.e. Γ = Γpre-ELM + ΓELM, etc. The pre-ELM

fluxes are chosen in accordance with the PiC simulations (npre-ELM/nELM ~ 0.2, Tpre-ELM/TELM ~

0.1,  εpre-ELM/τELM ~ 0.02) and are shown in Fig.4.14. In order to calculate the Maxwellian response

to a Heaviside source, Sa = δ(s)H(t)fM,a(v), a spatial convolution of the Green’s function response is

required. To approximate this effect, the ion transit time is chosen for the average connection length

(L||i + L||o)/2 ~ 50 m, such that τ||i ~ 120ms. To ensure correct asymptotic behaviour, γe
∞ ~ 5 and γi

∞ ~

3.5 are assumed for the pre-ELM energy fluxes. The results are shown in Fig.4.16. It is clear that the

Maxwellian approximation captures many of the features of the PiC simulations. The temporal scales

are generally well reproduced, with the best match found for y = 1.7, which confirms the adapted

choice of the weak quasi-neutrality constraint, (4.14). Although the peak ion value is well matched,

gimax ~ 6.5, the peak electron value gemax ~ 35 is much larger in the PiC simulation. This discrepancy

is a direct consequence of the neglected Coulomb force, and could be largely eliminated if the parallel

electric field is included in the Vlasov system (see the discussion at the end of section 4.1.2).

5. FLUID DESCRIPTION OF PARALLEL LOSSES

In the previous section, we developed a model for the transient evolution of a collisionless plasma

filament in contact with a solid surface. In order to include the effects of collisions, which become

increasingly important as the filament cools, it is advantageous to construct an equivalent moment or

fluid model, in which the effects of collisions are easily included via appropriate relaxation times

[45]. This section is dedicated to the construction of such a model.

We begin by rewriting the set of moment equations (3.1) in the rest frame of the  plasma filament

and averaging over both perpendicular (⊥, ∧) directions (we suppress the subscript || on fluxes and

velocities to simplify the notation),



20

 (5.1)

We additionally assume no filament broadening (i.e. D⊥ = D∧ = 0), such that n and ea represent

average density and energy in the filament; to simplify the analysis, we will treat filament broadening

(i.e. finite D⊥  and D∧) at a later stage by assuming polytropic expansion in the ⊥−∧ plane, see section

6.1. With the above assumption, the average quantities, n and εa, are reduced only by parallel losses,

see (3.6). In accordance with the neglect of the Coulomb force in the Maxwellian approximation of

Section 4, we assume quasi-neutrality to hold at all times, such that n = ne = Zni and Γ = Γe = ZΓi. To

remove the final spatial dimension, we replace the parallel gradients by the inverse connection length,

∇|| → L||
-1, obtaining the 0-D model equations,

(5.2)

where n and εa now represent averages over the whole filament, and the associated loss times are

given by

                                         (5.3)

The second line of (5.3) defines the temperature decay time τT,a in terms of τe,a and τn, which follows

from εa ~ 3/2×nTa where the filament averaged compressional energy, 1/2×nmau
2 was assumed to be

small. In (5.3), M is the parallel Mach number with respect to the sound speed, cs = [(ZTe + Ti)/mi]
1/2

=  (1 + Z/ϑ)1/2 vti = ξvti, Z is the ion charge, vti = (Ti/mi)
1/2 is the characteristic thermal ion speed and

ϑ ≡ Ti/Te. The parallel heat conductivities are given by the harmonic averaged, heat flux limited

expressions,

     χ||a = χ||a
SH / (1 + Ωaχ),     χ||a

SH = c||avtaλaa ,      c||i = 3.9,   c||e = 3.2                    
(5.4)

          Ωaχ  = (c||a/αa)(vtaτaa)(∇||Ta/Ta) ~ (c||a/αa)(λaa/L||) ~ c||a/αaν*a

where χ||a
SH are the classical Spitzer-Harm-Braginskii heat diffusivities [74, 18, 5], νa* ≡ L||/λaa
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= L||/vtataa the collisionalities and αa = qa/nTavt,a the flux limiting factors, otherwise known as the

free streaming multipliers, i.e. the ratio of the actual flux to the free streaming value [75]. Equations

(5.2) – (5.4) constitute a closed model with three specified time-independent parameters (the system

size L||, the atomic mass A, and the ion charge Z), and three free parameters (M, αi and αe), which

may vary with time.

The model equations (5.2) – (5.4) may be written in dimensionless form as

(5.5)

where time has been normalised by the particle loss time evaluated at the initial conditions, τn,0. Aside

from the sources, they depend on three dimensionless ratios: {τε,i, τε,e, τie}/τn. The functional form of

these times may be found in Appendix A of [30]. As expected, the normalised time ratios can be

reduced to a combination of only two dimensionless plasma parameters, namely νe* and νi*, or

alternatively νe* and ϑ. The reason for this reduction can be traced to the fact that the Fokker-Planck

and Maxwell’s equations which underlie all dynamical plasma equations, including the Braginskii

equations which form the starting point of our fluid model (5.1), depend on four dimensionless

parameters (for given values of A and Z), typically chosen as ρ*, νe*, β and ϑ. Since both ρ* and β

depend on the magnetic field, while parallel dynamics do not, we expect (5.1) to depend only on νe*

and J. Consequently, the homogenous (source-free) part of the solution is completely determined by

the initial values, ne,0* and J0 in addition to the ion mass and charge.

(5.6)

Equations (5.5) thus form an initial value problem which can be solved numerically for specified,

νe,0* and ϑ0 and sources, Sn’, Si’, Se’(t). Since an initial value problem is inherently transient (aside

from the trivial case when the system is in steady state), it is not necessary to introduce the perturbation

via the sources. In order to maximise the transient response, all sources were therefore set to zero (it

should be stressed that inclusion of arbitrary sources does not complicate the solution of the problem,

although the sources may depend non-linearly on the solution); as a result, density and energy decay

to zero as t → ∞. The system was solved by a forward marching numerical quadrature using a 4th

order Runge-Kutta method [3].

As an example, we choose for initial values the typical JET pedestal conditions: n0 = 1020 m-3,

Te,0 = Ti,0 = 1keV, with L|| ~ 30m as appropriate for q95 ~ 2.7.  In Fig.5.1, the characteristic times for
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these values of n0, T0 and L|| are plotted in the ELM relevant temperature range of 10-1000eV (the

Bohm criterion, M = 1, was used to specify the Mach number, while ai and ae were chosen such that

γe → γe
∞  ~ 5 and γi → γi

∞  ~ 3.5 in the collisionless limit, νe* → 0, see Section 5.2 below). The same

information, presented in dimensionless form, is shown in Fig.5.2, where the normalised times are

plotted vs. the electron collisionality. Also shown in both figures are the ion-ion and electron-electron

collision times, at which the respective plasma species relax to a Maxwellian distribution; these times

are shorter than tie by the square root of the mass ratio, τie: τii: τee ~ 1: (me/mi)
1/2: me/mi, justifying

the two-fluid approach. The collisional times tend to increase with temperature, in contrast to the

transport times which decrease with Ti = Te. It is useful to list the ELM filament temperatures at which

the particular times are equal to 100 ms; recall that transit times for typical JET Type-I ELMs lie in the

range 100−200µs. Consulting Fig.5.1 these temperatures are found as:

• Ti = Te ~ 1000eV for τn = 100µs,

• Ti = Te ~ 500eV for τT,i  = 100µs,

• Ti = Te ~ 250eV for τe,i  = 100µs,

• Ti = Te ~ 150eV for τT,e = 100µs,

• Ti = Te ~ 100eV for τe,e = 100µs,

• Ti = Te ~ 45eV for τie = 100µs.

In addition, the normalised times {τT,i, τT,e, τie}/τn are equal to unity at Ti = Te ~ 300, 40 and 100eV

and ne* ~ 5, 250 and 40, respectively. In other words, the ion temperature decays faster than the

density for Ti > 300eV or νi* < 5, while the same is true of the electron temperature for Te > 40eV or

νe* < 250. In contrast, the ion-electron equilibration rate is faster than the density decay rate for Te <

100eV or νe* > 40. We therefore expect a hot (1keV) filament to cool faster than it dilutes, with

electrons cooling faster than the ions. When Te reaches ~ 100eV, the ions should become additionally

cooled by collisions with the already much colder electrons, and the two temperatures should begin to

converge. This behaviour will indeed be observed in the numerical solutions of (5.5) presented in

Sections 5.1-5.3.

Finally, we need a criterion for comparing the fluid and kinetic solutions, for which we choose the

sheath energy transmission coefficient, γa = qa/TaG. Capturing the correct temporal evolution of ge

and gi as indicated by the kinetic results of Section 4.2, eg. Fig.4.15, is a key requirement of any

simple transient parallel loss model of magnetised plasma bounded by solid surfaces (open field line

response). This criterion can therefore be used to evaluate the performance of a fluid model and

eventually normalise the results in terms of several fitting parameters. The intention would be to

merge the fluid and kinetic models into a simple kinetic-fluid hybrid. In the rest of this section, we

investigate the validity of this project in order of increasing complexity.

We begin by solving the model equations for two ion species,  D+ (A = 2, Z = 1) and He++ (A = 4,
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Z = 2) with initial temperatures of Te,0 = Ti,0 = 1keV and for two values of the initial density, n0 =

1019 m-3 and 1020 m-3. With these temperatures, τn,0 = L||/cs,0 is equal to 67, 95 and 134 ms for H+,

D+ and He++, respectively. In Sections 5.1-5.3, we discuss the solutions with different assumptions on

the free model parameters: M, αi and αe (or alternatively, γe and γi).

5.1 SHEATH LIMITED REGIME: M=1, γγγγγe 
= γγγγγe

∞∞∞∞∞, γγγγγi
 = γγγγγi

∞∞∞∞∞

The simplest fluid case is the so called sheath limited regime, defined by the Bohm criterion, M = 1,

and the energy fluxes, qa = γa
∞TaΓ with γe

∞~ 5 and γi
∞ ~ 3.5, and n and Ta constant along the filament;

it is generally valid at low collisionality under steady state conditions [75]. The constraints on the

energy fluxes can be implemented directly into the code in place of the definition of qa found in (5.1),

which is equivalent to choosing the free streaming multipliers as αi >> 1, αe = 2.5ξ(vti/vte). Solving

the system, we find an exponential decay of n, Ti and Te and a monotonic growth of Ti/Te. With the

chosen initial conditions, the filament becomes collisional at t’ ~ 1 or t ~ 100µs. Both ge and gi remain

constant at the imposed steady-state values, in contrasts to the kinetic results, Fig.4.15. We can therefore

dismiss the sheath limited model as invalid for plasma energy transients, except in situations in which

the steady state values, M=1, γe = γe
∞, γi = γi

∞ can be assumed to hold at all times. Ironically, this is

only expected at the high collisionality, which contradicts the other sheath limited regime assumption,

namely n ~ Ta ~ const. In the following sections, we investigate the effect of parallel dynamics on the

filament evolution.

5.2 PARALLEL DYNAMICS WITH THE BOHM CRITERION: M=1, αααααi
 = 3.5ξξξξξ, αααααi

 = 5ξξξξξ(v
ti
/v

te
)

To allow γi and γe to evolve in response to the parallel plasma dynamics, we next consider the case in

which the Bohm criterion is imposed at all times, but the energy densities evolve according to (5.2)-

(5.4). This is equivalent to choosing the flux limiting factors as αi = 3.5x and αe = 5ξ(vti/vte), so that

γe  → γe
∞ = 5 and γi → γi

∞ = 3.5 in the low collisionality limit (the same values were used for Fig.5.1).

The resulting decay of n’ ≡ n/n0, Ti’ ≡ Ti/Ti,0 and Te’ ≡ Te/Te,0 is shown in Fig.5.3 for D+ ions at the two

different initial densities. As predicted earlier based on Fig.5.1, both temperatures decay faster than

the density, and rapidly converge after t’ ~ 2-3 or t ~ 200-300µs for the high density case, and t’ ~ 3-

5 or t ~ 300-500µs in the high density case (as expected due to lower collisionality). Since the

deposited fluxes can be obtained as, Γ’ ~ dn’/dt and qa’ ~ dεa’/dt, these are maximum at t = 0 and

decay exponentially with time. The ratio Ti/Te shown in Fig.5.4, reaches a maximum of ~ 2.5-3 for D

and ~ 3.5-5 for He at t’ ~ 1 – 1.5 for high density and t’ ~ 2-2.5 for low density. The γi and γe for the

D cases are plotted in Fig.5.5. They decay from their initial values of gi ~ 5-6 and γe ~ 7.5 to the

asymptotic limit of ~ 3. Although the peak values are too low compared with Fig.4.15, the ratio γi/γe,

is in better agreement, with γi/γe > 1 for t’ > 1.5-2.5.

5.3 PARALLEL DYNAMICS WITH DELAYED BOHM CRITERION: M = ΨΨΨΨΨ(t’–1), αααααi 
= 3.5Mξξξξξ,

αααααe
 = 5ξξξξξ(v

ti
/v

te
)
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Kinetic analysis presented in Section 3, suggests that transient losses are delayed by roughly one

transit time to the nearest solid surface, as illustrated in Fig.4.1 or, for both ions and electrons, in

Fig.4.10. A comparison of the latter with Fig.5.3 shows the absence of this behaviour in the fluid

results of Section 5.2. This can be traced to the M = 1 assumption, which overestimates the ion loss in

the initial phase of the transient. To introduce a delayed response we switch on the Bohm criterion

only for t’ > 1 or t > τn,0, which is accomplished by setting M = Ψ(t’ – 1), where is Ψ(t) a softer version

of the Heaviside function, based on the hyperbolic tangent. Otherwise, we retain the ai and ae values

of Section 5.2, i.e. αi = 3.5Mξ and αe = 5Mξ(vti/vte), which are now likewise delayed by Ψ(t’ – 1).

The results, not shown here, indicate that all quantities, including the times of the peak temperature

ratios, are indeed delayed by ∆t’ ~ 1 or ∆t ~ τn,0 (the peak temperature ratios themselves are largely

unaffected by this delay). The initial values of γi and γe are ~ 6 and ~ 8, respectively, and decay to 4

and 3 after t’ ~ 2, not unlike the half-Maxwellian results in Fig.4.16. Comparison with PiC simulations,

Fig.4.15, suggests that the delay of the electron heat pulse should be removed in order to allow ge to

transiently increase to values of order 10−100.

This may be implemented by removing the Mach number from the electron free streaming multiplier,

αe = 5ξξ(vti/vte), and otherwise retaining all assumptions of Section 5.3. The resulting decay of n’, Ti’

and Te’, shown in Fig.5.6, demonstrate that this combination is indeed closest to the kinetic results of

Section 4.2, cf. Fig.4.10. The electron temperature now decays much faster than either the ion

temperature or the density, although Ti’ and Te’ still converge for long times, t’ >> 1. Whereas the

deposited electron energy flux, qe’ ~dεe’/dt, still decays nearly exponentially with time, the plasma

flux and ion energy fluxes now reach a maximum at roughly t’ ~1. The ratio Ti/Te shown in Fig.5.7

reaches  a maximum value of ~ 3.5-4 for high density at t’ ~1.5-2 and ~ 5-6 for low density at  t’ ~1-

1.5. Finally, the gi and ge, plotted in Fig.5.8 for D+ only, now tend to resemble the kinetic results of

Fig.4.15, with ge decaying exponentially from very large initial values ~ 100 and gi from the moderate

level of ~6; both variables saturate at ~3-4 for t’ >> 1. Considering the crudeness of the imposed

functional form of the delays and the moderate levels of collisionality in the fluid results, the agreement

in the observed behaviour is encouraging. It suggests that given proper optimisation of the delay

function, the essential features of the kinetic results could be captured in the moment approach.

One obvious improvement would consist of relaxing the quasi-neutrality constraint along the lines

considered near the end of Section 4.1.2. This requires solving two density equations for ne and ni,

coupled by the parallel electric field, E|| ~ E0 + 4πe(ni - ne)L||. This field must also be included in the

energy equations as the work done on a moving charge Q||,e = -Q||,e ~ eE||Γ, analogous to the energy

equipartition term Qe = -Qi. The final system of four coupled equations should produce the desired

delay due to the rise and fall of the space charge electric field.

6. APPLICATIONS OF THE PARALLEL LOSS MODEL

The development of the parallel loss model was largely motivated by experimental measurements of

tokamak energy transients, primarily ELMs and disruptions. In this section we compare the model
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against measurements of ELM filament fluxes and energies in the far-SOL of JET, and use this

experience to predict the degree of ELM-limiter interaction on ITER. Since the ELM filaments in the

JET experiments are initially semi-collisional (n* ~ 0.2 – 1 evaluated with the mid-pedestal quanties),

we restrict the comparison to the fluid approach.

6.1 COMPARISON WITH LIMITER PROBE MEASUREMENTS OF ELM FILAMENT

DENSITIES AND ELECTRON ENERGIES ON JET

The degree of ELM-limiter interaction on JET was recently investigated [30]. The peak Type-I ELM

filament densities and electron temperatures at the limiter location were measured using an array of

Langmuir probes embedded in the outer poloidal limiters. The experiments were performed in deuterium

plasmas (A = 2, Z = 1) with Bφ ~ 2.4T, Ip ~ 2.5MA, q95 ~ 2.7, Pheat ~ 10-16MW, <ne>/nGW ~ 0.5 –

0.7, L|| ~ 30m and fELM ~ 12-27Hz. The nominal pedestal parameters were measured as Te,ped ~

Ti,ped ~ 1300eV and ne,ped ~ 2.5×1019 m-3. Assuming the ELM filaments originate in the pedestal

region, their initial values may be defined as averages between the pedestal-top and the separatrix,

Te,0 = (Te,ped + Te,sep) / 2 ~ 750eV ~ Ti,0 and ne,0 = (ne,ped + ne,sep) / 2 ~ 2×1019 m-3, such that τn,0 =

L|| / cs,0 ~ 112µs and ν*0 ~ 0.15.

The above transit time is applied in the normalisation, t’ = t/τn,0. To estimate the time delay (∆t)

between the start of parallel losses (t = 0) and the contact with the limiter, we need to consider two

unknowns: the first is the radial velocity of the ELM filament in the SOL, the second is the radial

distance the ELM filament travels from t = 0. The average radial propagation velocity of Type-I ELM

filaments in these plasmas was measured as 450-750m/s, with the velocity in the limiter shadow of ~

900m/s [30]. The above range of velocities was well matched by predictions of a filament propagation

model based on sheath resistivity and parallel losses [24, 30]; we will use this fact to extrapolate the

above values to other JET experiments and to ITER, sections 6.2 and 6.3. In the present plasmas, we

may take the nominal Type-I ELM filament velocity as <v⊥,ELM> ~ 600 ± 200m/s. Note that <v⊥,ELM>

has been observed to scale with ELM size, such that small (Type-III) ELMs propagate slower than

large (Type-I) ELMs, and consequently deposit a smaller fraction of their initial energy on the limiter

tiles [72]. There remains some disagreement as to the variation of v⊥,ELM in the SOL, with deceleration

reported from JET and DIII-D [70, 19] and acceleration from MAST and AUG [48].

The estimate of the distance the ELM filament travels from t = 0 is more problematic. It is not clear

whether t = 0 occurs at the pedestal top (eg. via peeling or reconnection of flux tubes to the divertor)

[73] or at the pre-ELM separatrix location by radial transport to the existing SOL plasma [82]. So

while the nominal distance from the separatrix to the limiter was rlim - rsep ~ 90 mm-omp, where rsep

and rlim are the separatrix and limiter radii mapped to the outer mid-plane, the distance travelled by

the ELM filament, ∆r = rlim - r0, could range from rlim - rsep to rlim - rped. The pedestal width in these

discharges was measured as ~ 30mm-omp, such that the possible radial range is ∆r ~ 90 - 120 mm-

omp. Combining the above yields ∆t = tlim = ∆r / <v⊥,ELM>  ~150 – 200µs and t’ ~ 1.33 - 1.78.

We next solve (5.5) with A = 2, Z = 1 and the initial conditions corresponding to the mid-pedestal
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values: 750eV and 2×1019 m-3. To reduce the number of free parameters, we adopt the assumptions

of Section 5.2, i.e.  M = 1, αi = 3.5ξ, αe = 5ξ(vti/vte), which correspond to the most rapid decay of all

filament quantities. For the mid-pedestal time, t’ ~ 1.55, we obtain the following average filament

values at the limiter location,

n’ ~ 0.44,                  Ti’ ~ 0.185,              Te’ ~ 0.063,            W’ ~ 0.055                   (6.1)

where W’ = n’(Te’+Ti’)/2 is the normalised, average energy of the filament. We thus expect most (1 -

W’ ~ 0.95) of the ELM energy to be deposited at the divertor targerts, as is indeed inferred from power

balance measurements in these high clearance discharges [56]. It is useful to express the above values

in terms of effective exponential e-folding times τn/τn0 ≡ - t’/ln n’(t’), etc. and e-folding lengths, λn

= <v⊥,ELM>τn, etc.,

(6.2)

Recalling the discussion in Section 3, we note that all the quantities in (5.8) are filament average

values, which in the assumed absence of filament broadening (D⊥ = D∧ = 0) are reduced only by

parallel losses. In order to compare the above predictions with the limiter probe measurements, we

need to relate these average values to maximum values within the filament. In other words, we need

to estimate the amount of filament broadening, or expansion, in the ⊥−∧ plane. Such broadening was

indeed observed in the above JET experiments where the Type-I ELM filaments were seen to expand

in the limiter shadow with an effective diffusivity of D⊥
ELM ~ 500m2/s; unfortunately, we have no

reliable information on the filament broadening in the main SOL. It is important to stress that such

broadening may involve the stretching, shearing and eventual break-up of an individual filament into

progressively smaller filaments [12, 33].

In section 3, it was shown that the broadening of a delta function filament may be quantified by

(3.5) and (3.6), which indicate that the ratio of the average to peak densities increases as n/nmax = n’/

nmax’ = λint =  (D⊥t)1/2. Here λint  is the integral width, which vanishes at t = 0 as it must for a delta

function impulse. This singularity is absent in a real (spatially finite) wave-packet filament, which

consists of a radial distribution of delta functions. Such a pulse would broaden more gradually, with

the largest effect close to its boundary. Hence, the amount of filament expansion inferred from the

Green’s function analysis should be treated as an upper estimate. It is noteworthy that normalised to

any given time, the increase of λint becomes independent of D⊥. To summarise, we expect the ratio of

peak to average filament densities to decay no faster than t-1/2. In the absence of reliable experimental

data, we are forced to resort to an additional assumption regarding the relation between the integral

width, lint and the distance traveled by the filament, r = <v⊥,ELM>t. In the rest of this section, we

assume these quantities to be linearly proportional,

τn/τn0 ~ 1.89, τTi/τn0 ~ 0.91, τTe/τn0 ~ 0.56, τW/τn0 ~ 0.53

λn ~ 127mm, λTi ~ 61mm, λTe ~ 37.5 mm, λW ~ 36 mm
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nmax’/n’ = 1/λint ,         λint/r = λint/<v⊥,ELM>t = const                     (6.3)

which requires D⊥/u⊥ to increase linearly with r (such monotonic increase of D⊥ in the SOL is frequently

reported in the literature, eg. [75]). The above scaling roughly corresponds to the situation depicted in

Fig.2.3 and Fig.3.1, although in the latter case the ratio D⊥/u⊥ was assumed to be constant.  Provided

the initial filament width is defined by the pedestal width, λint(t = 0) ≈ rsep - rped = ∆ped, we can use

(6.3) to estimate the degree of filament broadening and the corresponding reduction in the relative

peak density at t = τlim as

nmax’/n’ = λint (0)/λint(tint) = (rsep - rped)/(rlim - rped) = ∆ped / (∆ped + ∆SOL)              (6.4)

In the present case, we find nmax’/n’ = 3 / (9 + 3) = 0.25.

The corresponding relative peak temperature reduction may be estimated in the limits of

adiabatic (γ = 5/3) and isothermal (γ = 1) expansion. Recall that polytropic expansion can be

expressed as d(pn-γ)/dt  = 0 which for an ideal gas implies T∝ nγ-1. Thus for adiabatic expansion

(no perpendicular heat flow, χ⊥ = 0) we get T ∝ n2/3, and with a factor of two expansion, Tmax’/

T’ is reduced by ~ 1.6. For isothermal expansion (infinite perpendicular heat diffusivity, χ⊥ = ∞),

Tmax’/T’ remains constant. Since χ⊥i >> χ⊥e we may expect the ions to be closer to the isothermal,

and electron to the adiabatic, expansion limits. Assuming moderate heat conduction (g = 4/3) for both

species and nmax’/n’ ~ 0.25 at the limiter location, the predictions (6.1) and (6.2) for the filament

average values yield the desired peak filament quantities,

nmax’ ~ 0.11, Ti,max’ ~ 0.115,             Te,max’ ~  0.04

nmax ~ 2.2×1018 m-3, Ti,max ~ 86eV,              Te,max ~ 30eV

τn,max/τn0 ~ 0.70, τTi,max/τn0 ~ 0.72,         τTe,max/τn0 ~ 0.48

λn,max ~ 47mm, λTi,max ~ 48mm,           λTe,max ~ 32.5mm

for which τW,max/τn0 ~ 0.325 and λW,max ~ 22mm. The above predictions are in fair agreement with

the nominal peak ELM filament densities and electron temperatures measured at the limiter, nmax ~

2.4×1018 m-3 and Te,max ~ 25eV [30]. The density estimate was obtained from nominal peak probe

current of 70 mA, projected probe area of 3mm2 (which includes a factor of four erosion as calibrated

against the reciprocating probe data [72]) and assumed ion to electron temperature ratio, Ti/Te ~ 3.

The temperature was obtained from fitting the current-voltage spectrum for a statistical sample of

over 100 Type-I ELMs. Although Langmuir probes provide no information about ion energies, we see

that this estimate of Ti/Te is in good agreement with the model prediction, Ti/Te ~ 2.95. In other words,

the parallel loss model offers a self-consistent match to the JET limiter data. This suggests that the

ELM filaments may originate in the mid-pedestal region, propagate radially at the average SOL velocity

(6.5)
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predicted by the sheath-limited model and expand polytropically with moderate radial heat conduction,

γ ~ 4/3. We will denote this combination of assumptions as the mid-pedestal approximation:

• Mid-pedestal initial filament quantities: n0 ~ (nsep + nped)/2 , T0 ~ (Tsep + Tped)/2

• Mid-pedestal transit time: r0 = (rped + rsep)/2, ∆t0 = (rlim - r0)/<v⊥,ELM>

• Polytropic expansion coefficient mid-way between adiabatic and isothermal limits, γmid ~ (5/3

+ 1) / 2 = 4/3.

6.2 COMPARISON WITH RFA MEASUREMENTS OF ELM FILAMENT ION ENERGIES

ON JET

The obvious shortcoming of the Langmuir probe measurements is the lack of ion temperature

information. Recently, first data on ELM ion energies in the far-SOL has been obtained on JET

using a Retarding Field Analyser (RFA) probe head mounted on a fast-scanning, reciprocating

assembly [62]. In this section, we briefly compare these measurements with predictions of the

parallel loss model; the details of the experiment and an extended discussion of the comparison

may be found in [62].

The RFA experiments were performed in hydrogen plasmas (A = Z = 1) with Bφ ~ 1.2 T, Ip ~

1.2MA, q95 ~ 3, Pheat ~ 7MW,  <ne>/nGW ~ 0.7 and Wdia ~ 1.1MJ. The ELMs were frequent (fELM ~

60Hz) but Type-I, with a stored energy drop of ∆WELM/Wdia ~ 4-5 %.  The RFA probe was located

near the top of the machine, reciprocating into the far-SOL region just beyond the outer-wall protection

limiter radius, rRFA < rlim. The relevant ELM data was collected with the RFA located at rRFA - rsep ~

35mm-omp (mapped to the outer mid-plane). Pedestal parameters were measured as Te,ped ~ Ti,ped ~

400eV and nped ~ 2.5×1019 m-3 such that Wped/Wdia  ~ 1/3 and ν*ped ~ 0.6, assuming L|| ~ 30m. The

initial mid-pedestal ELM filament values are found as Te,0 = (Te,ped + Te,sep) / 2 ~ 300eV ~ Ti,0 and n0

= (nped + nsep) / 2 ~ (1.5 – 2)×1019 m-3, such that tn,0 = L|| /χs,0 ~ 125 ms and ν*0 ~ 0.6.

To estimate the average radial propagation velocity of Type-I ELM filaments in the SOL, we use

the value of 600m/s measured in the experiments discussed in section 6.1, and apply the scaling

predicted by the filament propagation model based on sheath resistivity and parallel losses [24, 30].

Based on this model, we expect the filament velocity to scale roughly with the sound speed, so it may

be lower by the square root of the ratio of mid-pedestal temperatures and atomic masses (D+ vs. H+),

i.e. (750/300)1/2×(1/2)1/2 ~ 1.1 in the RFA plasmas. We can therefore estimate the filament velocity in

the RFA plasmas as <v⊥,ELM> ~ 600 ± 200m/s, which roughly corresponds to the values found in the

earlier experiments.

Based on magnetic reconstruction the distance from the separatrix to the RFA was estimated as rRFA

- rsep ~ 35mm-omp, while the pedestal width was measured as ~ 50mm-omp. Hence, the distance

travelled by the ELM filament, ∆r = rRFA - r0, could range from rRFA - rsep to rRFA – rped, with a

possible radial range of ∆r ~ 35 – 85mm-omp. Combining the above yields ∆t = tRFA = ∆r / <v⊥,ELM>

~ 65 - 130 ms and t’ ~ 0.5 - 1.1.
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The fluid model equations (5.5) were solved with A = Z = 1 for a range of initial conditions centred on

the mid-pedestal values of 300eV and 1.5×1019 m-3 and the assumptions of Section 5.2, i.e.  M = 1,

αi = 3.5ξ, αe = 5ξ(vti/vte). The normalised results are shown in Fig.6.1. They were obtained with

300eV and 1.5×1019 m-3, and exhibit little variation for factor of two changes in the initial conditions.

In the expected range, t’ ~ 0.5 - 1.1, which is represented by a shaded region in Fig.6.1, we obtain

the following average filament values at the RFA location: n’ ~ 0.7 - 0.5, Ti’ ~ 0.55 - 0.33, Te’ ~ 0.3

- 0.17, with the ratio Ti/Te ~ 2 - 2.5. The middle of this range t’ ~ 0.8, which corresponds to the

mid-pedestal approximation, yields the following prediction:

n’ ~ 0.57, Ti’ ~ 0.405, Te’ ~ 0.177, W’ ~  0.166

τn/τn0 ~ 1.42, τTi/τn0 ~ 0.885,         τTe/τn0 ~ 0.46, τW/τn0 ~ 0.445  (6.6)

λn ~ 107mm, λTi ~ 66mm, λTe ~ 34.5mm, λW ~ 32.3mm

We thus expect ~ 15% of the ELM energy to be deposited on the limiter tiles. Recalling the discussion

in Section 6.1, we can estimate the reduction in the relative peak density at t = tRFA due to radial

filament broadening as nmax’/n’ > (rRFA – rsep)/(rRFA – rped) ~ 0.5. Assuming polytropic expansion

with γ = 4/3 yields the desired peak filament values,

nmax’ ~ 0.285, Ti,max’ ~ 0.32, Te,max’ ~ 0.14

nmax ~ 4.3×1018 m-3, Ti,max ~ 96.5eV, Te,max ~ 42eV
 (6.7)

τn,max/τn0 ~ 0.64, τTi,max/τn0 ~ 0.70, τTe,max/τn0 ~ 0.41

λn,max ~ 48mm, λTi,max ~ 52mm, λTe,max ~ 30mm

With these estimates, we are finally ready to attempt a comparison with the experiment. Fig.6.2

shows ion saturation current density (top plot) and the ion collector current (bottom plot) measured by

the probe for a typical Type-I ELM. The former is measured at the entrance slit plate directly intersecting

the SOL plasma, whilst the latter is due to ions that have surmounted the retarding potential of 400 V

applied to an electrode inside the RFA cavity. Both currents are measured on the ion-side of the

device, i.e. the side facing towards the outer mid-plane, and hence looking into the outer divertor.

Details of RFA interpretation are discussed in [62]. The spikes in the probe signals correspond to

individual ELM filaments sweeping toroidally past the probe location, in addition, sampling at MHz

resolution indicates smaller structures within each filament [71, 62]. These are seen more clearly on

the saturation current due to bandwidth broadening in the collector signal (the same effect means that

peak values of the collector current could be larger by up to 50%) [62]. Assuming the ELM evolves

with toroidal mode numbers ~ 10 (or rather that it ejects ~ 10 individual plasma filaments into the

SOL), as expected from both MHD stability analysis and observations on JET and other machines

[71, 7, 47, 26, 8], the temporal differences between the individual spikes in Fig.6.2 imply rapid braking

of toroidal rotation of the filament in the SOL, vφ
ELM(r = rRFA)/vφ

ped ~ 0.1 [62]; conversely if we
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assume  vφ
ELM(r = rRFA) ~  vφ

ped, then toroidal mode numbers of order unity are inferred, i.e. a single

ELM filament passing the RFA probe many times. The lower rotation velocity is comparable to that

obtained in the inter-ELM or L-mode far-SOL based on the toroidal component of the parallel Mach

numbers measured using fast scanning (reciprocating) Langmuir probes [62, 51]. Although the

mechanism of toroidal braking in the SOL has not been clearly identified, we expect particle and

energy removal (either by parallel losses or by filament disintegration) to be accompanied by toroidal

momentum loss from the rotating filaments. The situation is analogous to a hydrodynamic boundary

layer in which viscous effects lead to rapid reduction of the ambient velocity [66]. In the case of the

SOL, the divertor targets and the adjacent sheath (which define the stationary, laboratory frame of

reference) play the role of the solid surface in the boundary layer problem. Clearly more experiments

are needed to resolve this important point.

Also shown in Fig.6.2 are the slit and collector currents predicted by the parallel loss model

and including an appropriate analytic description of the RFA function [61]. This prediction was

based on Fig.6.1 with t’ ~ 0.5-1.1 and filament expansion leading to nmax’/n’  ~ 0.5 and Tmax’/T’

~ 0.5γ-1 at t = tRFA. Three cases are shown:

• Mid-pedestal values (300eV, 1.5×1019 m-3) with adiabatic expansion (γ = 5/3)

• Mid-pedestal values (300eV, 1.5×1019 m-3) with isothermal expansion (γ = 1)

• Pedestal values (400eV, 2.5×1019 m-3) with adiabatic expansion (γ = 5/3)

In each case, the upper and lower limits of the predictions are shown, which correspond to t’ ~ 0.5 and

t’ ~ 1.1 in Fig.6.1, respectively. While a significant variation in the predicted values may be discerned,

it is encouraging that best agreement with the measured slit and collector currents, indicated by the

shaded regions in Fig.6.2, is found with the mid-pedestal approximation, defined at the end of section

6.1 (although it should be noted that adiabatic expansion from the pedestal top offers a comparable

level of agreement). This finding reinforces the conclusions drawn in section 6.1, namely that ELM

filaments originate in the mid-pedestal region, propagate radially at the average SOL velocity predicted

by the sheath-limited model and expand polytropically with γ ~ 4/3.

6.3 PREDICTION OF ELM-LIMITER INTERACTION ON ITER

Taking confidence from the favourable comparison found with recent JET data, sections 6.1 and 6.2,

we next apply the mid-pedestal approximation to predict the peak Type-I ELM filament densities and

temperatures at the outboard limiter location in ITER. We begin by assuming reference ITER plasma

parameters, see Table 2.1 [43, 4, 50]: R0 ~ 6.2m, a ~ 2m, q95 ~ 3.0, L|| ~ 60m, Bφ ~ 5.3T, ne,ped ~

2ne,sep ~ 6×1019 m-3, Ti,ped ~ Te,ped ~  4 keV, Ti,sep ~ 2Te,sep ~ 400eV, which yield the mid-pedestal

quantities, n0 ~ (nped + nsep) / 2 ~ 4.5×1019 m-3, Te,0 ~ Ti,0 ~ (Tped + Tsep) / 2  ~ 2keV, ν*i,0 ~ ν*e,0 ~

0.08 and a related particle loss time, tn,0 ~ 140 ms. The radial propagation velocity of the ELM

filament may be estimated based on the parallel loss limit of the sheath resistive filament propagation

model, which predicts the following scaling [24],
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(6.8)

As reported in [32], this expression may be used to extrapolate the JET results to the ITER reference

conditions. Below we improve on the earlier estimate. In the first instance, we find (v⊥/cs)ped
ITER/

(v⊥/cs)ped
JET ~ (4/1.5)1/3(5.3/2.4)-2/3(6.2/3)-2/3(3/2.7)-1/3 ~ 0.5. This allows us to predict the SOL

average radial filament velocity in ITER as

              (6.9)

The mid-pedestal to limiter distance on ITER is estimated as ∆r0 = (rped + rsep)/2 + |rsep – rlim| ~ 5/2 +

5cm ~ 7.5cm, which gives a mid-pedestal transit time of ∆t0 = ∆r0 /<v⊥,ELM> ~ 120-210ms or t’ ~

∆t0/τn,0 ~ 0.85-1.5.

We next solve (5.5) assuming a pure deuterium filament with initial ITER mid-pedestal values and

the Bohm (Section 5.2) and delayed Bohm (Section 5.3) approximations. The former, as shown in

Section 6.1, offers good agreement with recent JET experiments. It also corresponds to the highest

expected parallel losses from the ELM filament, and hence constitutes the lowest (most optimistic)

prediction of the amount of ELM energy deposited on the ITER limiters. The results are shown in

Fig.6.3, where t’ ~ 0.85-1.5 is indicated by the shaded region. In this range, Fig.6.3 predicts the

following average filament values at the limiter radius:

n’ ~ 0.58-0.45,       Ti’ ~ 0.26-0.16,       Te’ ~ 0.12-0.06,       W’ ~ 0.11-0.05                (6.10)

which give ν*i ~ 0.5 – 1, ν*e ~ 2-10 and Ti/Te ~ 2-2.8. Also shown in Fig.6.3, are the results of the

delayed Bohm approximation of Section 5.3, which estimates the upper bound of the reduction in

parallel losses due to kinetic effects associated with the ion inertia. These may be expected to play a

role in the initial stages of filament evolution on account of the low mid-pedestal collisionality, ν*0 ~

0.08. As expected, the delayed Bohm results predict much smaller reduction in filament density and

ion temperature at the limiter radius,

n’ ~ 0.97-0.9,       Ti’ ~ 0.9-0.7,       Te’ ~ 0.13-0.07,       W’ ~ 0.5-0.35               (6.11)

such that Ti/Te ~ 7-10. It is instructive to compare the delayed Bohm results with the purely

kinetic, Maxwellian predictions of Section 3.  Thus Fig.4.10 yields the following estimates in the

range t’ ~ 0.85-1.5,

ni’ ~ 0.9-0.7,       ne’ ~ 0.55-0.45,       T||,i’ ~ 0.65-0.25,       T||,e’ ~ 0.15-0.1      (6.12)

where T||,i/T||,e ~ 2.5-3.5. Comparing the density decay (~0.95 vs. ~0.6), indicates that the assumed

∝T1/3B-2/3R-2/3q-1/3
95||loss

v⊥

cs

v⊥ 
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ion delay, M = Ψ(t’-1), αi = 3.5MΨ, significantly overestimates the actual kinetic effect. On the other

hand, the Maxwellian results of Fig.4.10 suffer from the neglect of inter-particle collisions, which

manifests itself in the asymptotic behaviour of the net temperatures, Ti’ ~ Te’ → 2/3 as t’ → ∞. In the

presence of collisions, isotropisation of the velocity distribution would assure that T||,α’ ~ T⊥,a’~  Tα’

in the long time limit; to capture this effect, a solution of the Fokker-Planck equation with a simplified

collision operator, eg. in the BGK form, would be necessary. Without resorting to such a calculation,

our best estimate in the trans-collisional region consists of the Bohm approximation multiplied by a

kinetic enhancement factor Ki of order unity, 1 < Ki < 2, such that: n’ → Kin’, Ti’ → KiTi’, Te’ → Te’

(note the electron temperature is not affected by ion inertial effects). Since Ki = 1 with the mid-

pedestal approximation successfully reproduced JET RFA results, one would expect Ki to be heavily

weighted towards unity. On the other hand, the ELMs measured by the RFA on JET were much more

collisional than those expected on ITER, ν*ped ~ 0.6 vs. ν*ped ~ 0.08, such that kinetic corrections

would have been substantially smaller. The above results are summarized in Table 6.1.

To find peak filament values at the limiter location, we assume a polytropic radial expansion with

γ ~ 4/3 and nmax’/n’ ~ (rlim-rped)/(rlim-rsep) ~ 5cm/10cm ~ 0.5. Note that filament expansion does

not affect the fraction of ELM energy deposited on the limiter tiles, which is predicted as W’ ~ (0.11

-0.05)×Ki
2 or with Ki ~ 1 at between 5 and 10%. For the peak filament quantities, the Bohm

approximation yields,

n’max ~ (0.29-0.23) × Ki, Ti.max’ ~ (0.21-0.13) × Ki,      Te.max’ ~ 0.10-0.05           (6.13)
nmax ~ (1.3-1) × Ki × 1019 m-3, Ti.max ~ (420-260) × Ki eV,    Te.max ~ 200-100eV

Assuming a toroidal mode number of the ELM in the range, nφ ~ 10-20, the maximum poloidal

extent of a filament may be estimated as 2πa/nφ ~ 0.6 – 1.2m or more accurately as a Gaussian shape

with a half width of  ~ 0.3-0.6m. Given a specific limiter geometry, one may then calculate (within

the above accuracy) the spatial and temporal distribution of the deposited ELM energy.

Finally, let us consider the implications of the predicted temperature range Ti.max ~(420 – 260) ×

Ki eV, Te.max ~200-100eV for ITER, bearing in mind that more experiments are clearly needed to

increase the confidence level of this prediction. It is well known that the ion impact energy onto a

solid surface, such as a limiter, consists of the ion energy into the sheath, ~2Ti, and the energy drop

across the sheath, which accelerates the ions by additional ~3Te. If the predicted temperature

values prove accurate, we may estimate the average impact energy of ELM ions striking the

limiter as ~2Ti.max + 3Te,max ~ 2 × (420 – 260) × Ki + 3(200 – 100)eV ~  1.4-0.8keV, assuming Ki

= 1. Since this estimate represents the most optimistic scenario, we may expect Type-I ELM ions to

cause significant sputtering of ITER limiters, irrespective of whether these are made of beryllium or

tungsten. In both cases the threshold for physical sputtering would be exceeded, eg. for tungsten this

threshold is roughly ~200eV for impact by T+ and D+ ions.
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As a final result, we present a comparison of nominal peak filament quantities at the limiter locations

predicted using the parallel loss model for three large tokamaks: AUG, JET and ITER. Deuterium

ions and the usual Bohm assumption (M = 1) were used for the calculation. The mid-pedestal

approximation was adopted in each case with the following initial (mid-pedestal) values:

• AUG: n0 ~ 3 × 1019 m-3,  Te,0 ~ Ti,0 ~ 0.45keV;  〈v⊥〉 ~ 450m/s, r-r0 ~ 50mm

• JET: n0 ~ 3 × 1019 m-3,  Te,0 ~ Ti,0 ~ 0.8 keV;  〈v⊥〉 ~ 600 m/s, r-r0 ~ 60mm

• ITER: n0 ~ 4.5 × 1019 m-3,  Te,0 ~ Ti,0 ~ 2 keV;  〈v⊥〉 ~ 480 m/s, r-r0 ~ 75mm

The nominal JET and ITER values were already cited in the previous sections, eg. Table 2.1, while

AUG values were adopted from [47]. Also listed are the average radial ELM filaments velocities and

the expected mid-pedestal to limiter distances; in this case AUG values were obtained from [49]. The

solution of (5.5) in each case indicates that ~90% of the initial ELM energy is deposited on the

divertor targets, with the fraction arriving at the limiters being equal to W’ ~ 8, 11 and 8% in AUG,

JET and ITER, respectively. Assuming the filaments expand polytropically with γ ~ 4/3 and that

nmax’/n’ ~ 0.5 at the nominal limiter radii, as predicted for each device by (6.4), the peak filament

quantities at the limiter location may be determined, Table 6.2. Also listed in Table 6.2 are the effective

e-folding times and radial e-folding lengths, cf. (6.3). The predicted ELM temperatures at the limiter

increase roughly linearly with machine size (factor of four variation from AUG to ITER), while the

radial e-folding lengths are comparable on all three machines (with ~50% variation from AUG to

ITER). Based on Table 6.2, the predicted peak ELM filament ion impact energies at the nominal

limiter radii, Eimp,max = 2Ti.max + 3Te,max, may be calculated as ~270eV, 590eV and 1120eV for

AUG, JET and ITER, respectively. Since these results represent the most optimistic scenario, we

expect the threshold for physical sputtering of tungsten by T+ and D+ ions (~200eV) to be only mildly

exceeded by typical Type-I ELMs on AUG, but significantly exceeded by comparable ELMs on JET

and ITER (assuming outer wall gaps consistent with the values of r – r0 used in the calculation, see

above). The heat loads on the limiters associated with the thermal quench in disruptions represent an

additional and largely separate concern.

As a concluding remark the authors would like to point out that the above predictions contain a

number of uncertainties and should therefore be treated with caution. Although an attempt has been

made throughout the discussion to indicate the main cause of uncertainties in the prediction, a full

fledged error analysis was not performed. Therefore, the reader may wish to view the above predictions

as tentative.

CONCLUSIONS

Although parallel energy transients can now be calculated by numerical solution of the coupled Fokker-

Planck and Poisson equations, these simulations are computationally expensive and are available

only for limited conditions, eg. only a handful of kinetic ELM simulations have appeared in the
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literature. It is therefore highly desirable to develop simplified models, which could capture as many

of the salient features of the kinetic simulations as possible, yet offer substantial savings in both cost

and complexity. The accuracy of such models could then be optimised with the help of several fitting

parameters, so as to best match the available kinetic simulations. The simple models could be used

either as stand alone tools, eg. for interpreting diagnostic data following energetic transients such as

ELMs, thermal quench of disruptions and to a lesser extent intermittent turbulent bursts, or as modules

for 2-D fluid plasma transport codes.

For this purpose, two simple models of parallel energy transients have been developed and described

here, one based on the kinetic, the other on the fluid approach. In both cases, several simplifying

assumptions have been invoked in order to minimise the computational time of the solution, eg. the

Coulomb force leading to the parallel electric field has been neglected.

In the kinetic approach, the force-free Vlasov equation is used to construct a collisionless model of

transient particle and energy fluxes onto a solid surface. The results are obtained in terms of definite

integrals over the Maxwellian distribution, which can be evaluated analytically in terms of exponential

and error functions. The quasi-neutrality constraint is imposed gradually, using a delay on the scale of

the ion thermal transit time (this has been largely confirmed by kinetic simulations). Despite these

simplifications, most of the features of the numerical solution of Fokker-Plank-Poisson system (using

the PiC code BIT1) under JET relevant Type-I ELM conditions are captured by the analytical model.

The remaining differences are caused by the absence of the Coulomb force in the simple model. This

force may be included at different levels of sophistication, from purely analytical, to forward time

marching, to a 1D1V Vlasov solution. Based on the preliminary analysis presented in Section 4, we

can anticipate that moderate extensions can lead to a reasonably accurate model of the collisionless

phase of the transient.

The same problem is also tackled using the fluid or moment approach, in which the coupled density

and energy equations, including ion-electron collisional energy exchange, are solved numerically

using a forward marching scheme. In keeping with the collisionless case, the parallel electric field is

neglected in the first approximation; in addition, strict quasi-neutrality is assumed at all times. Despite

these restrictions, the key features of the kinetic results can be captured in the 0-D moment formulation

by introducing a delay to ion fluxes of the order of the thermal transit time. The Ti/Te ratio is found to

peak at ~3-5 for a wide range of conditions. For longer times, Ti and Te converge due to collisional

relaxation. The fluid model can be significantly improved at little additional cost by evolving two

density equations, coupled by a parallel electric field.

Finally, it should be possible to create a kinetic-fluid hybrid model, weighting the two models by

the collisionality of the plasma filament. Such approaches are common in Knudsen regime gas

dynamics, and have the advantage of guaranteeing the correct asymptotic behaviour in both the low

and high collisionality regimes. Provided both the kinetic and fluid models are computationally light,

the benefit of evolving both simultaneously would greatly outweigh the additional complexity

introduced by the hybridisation.
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The parallel loss model has been compared to recent JET measurements of far-SOL ELM filament

densities and electron temperatures using the limiter Langmuir probes and ion energies using a Retarding

Field Analyser (RFA) probe [63]. In each case, the experimental data is well reproduced using the

fluid approach (expected to apply for the semi-collisional ELM filaments in the JET experiments)

including the Bohm assumptions of Section 5.2 and the mid-pedestal approximation. The same

approximation is then used to estimate the degree of ELM-limiter interaction on ITER. Under the

most optimistic assumptions, we expect 10% of the ELM energy to be deposited on the ITER limiters

with the following peak filament values: nmax ~(1.3-1) × Ki× 1019 m-3, Ti.max ~(420-260)× Ki eV

and Te.max ~200-100eV, where 1 < Ki < 2 measures the degree of kinetic corrections (best agreement

on JET was found with Ki ~1). This leads to a peak ion impact energy of ~1.4-0.8 keV, in excess of

the threshold for physical sputtering for both beryllium and tungsten. Although more experiments are

clearly needed to increase the confidence level of the above predictions, it is hoped that the present

contributions will help in advancing our understanding of tokamak plasma transients as a whole, and

ELMs in particular.
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Fig.2.1: Typical Type-I ELM on JET. Signals in
descending order: magnetic pick up coil at top of the
vessel, plasma stored energy, main chamber soft X-ray,
inner divertor soft X-ray, vertical Dα chord passing
through the outer mid-plane and looking at outer baffle
and outer divertor Dα. The temporal extent of the plot
is 2ms.

Fig.2.3: Schematic representation of the outer-mid plane
density profile evolution: initial (pre-ELM) profile (black),
filament formation (dark grey), filament propagation
(light grey). Parallel losses are pronounced in the SOL
and may be active in pre-ELM pedestal region if
reconnection at the X-point has taken place.

Fig.2.4: Typical disruption on JET (thermal quench at t
~ 67.1972s). Signals in descending order: average
magnetic perturbation, magnetic pick up coil at top of
the vessel, plasma stored energy, plasma current, main
chamber soft X-ray, inner divertor soft X-ray, vertical Dα
chord passing through the outer mid-plane and looking
at outer baffle and outer divertor Dα. The temporal extent
of the plot is 10ms.
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Fig.2.2: Schematic representation of the three stages of
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Fig.3.1: Temporal evolution of the Green’s function of
the SOL, namely an advected Gaussian wave-packet, with
u⊥ = D⊥  = 1 and negligible parallel losses.

Fig.4.1: Temporal decay of normalised filament density,
energy and temperatures for a delta function impulse as
a function of time normalised by the parallel transit time,
τ||a.

Fig.4.2: Temporal evolution of deposited particle and
energy fluxes, the inverse Mach number, and sheath
transmission coefficient for a delta function impulse (the
steady state value of the latter is indicated by a dotted
line).

Fig.4.3: Temporal decay of the Mach number and sheath
transmission coefficient for a delta function impulse (the
steady state value of the latter is indicated by a dotted
line).
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Fig.4.7: Temporal evolution of the ratio of ion to electron
quantities: density, energy and temperatures, for a delta
function impulse. Time is normalised by the ion parallel
loss time.

Fig.4.4: Temporal evolution of particle and energy fluxes
deposited on the outer and inner divertors; corresponding
Mach numbers are also indicated.

Fig.4.5: Temporal evolution of ratio of outer to inner
target deposited particle and energy fluxes, Mach numbers
and sheath transmission coefficients for a delta function
impulse.

Fig.4.6: Temporal evolution of the ratio of outer to inner
filament-half quantities: density, energy and temperatures,
for a delta function impulse (pure exponential decay is
indicated by a dotted line).
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Fig.4.8: Temporal evolution of ion and electron particle
and energy fluxes deposited on the outer divertor, for a
delta function impulse; corresponding Mach numbers are
also indicated.

Fig.4.11: Temporal evolution of the ratio of ion to electron
quantities: density, energy and temperatures for a delta
function impulse, assuming the weak quasi-neutrality
constraint with y = 1.

Fig.4.10: Temporal decay of normalised ion and electron
filament quantities: density, energy and temperatures for
a delta function impulse as a function of time normalised
by the parallel ion parallel loss time, τ||i. The results
assume the weak quasi-neutrality constraint with y = 1.

Fig.4.9: Temporal evolution of ratio of ion to electron
deposited particle and energy fluxes, Mach numbers and
sheath transmission coefficients, for a delta function
impulse.
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Fig.4.15: Results of PiC simulations of JET Type-I ELM
using the BIT1 code showing the temporal evolution of
the electron temperature, deposited energy flux and the
sheath transmission coefficients [Tskhakhaya04].

Fig.4.12: Temporal evolution of ion and electron particle
and energy fluxes deposited on the outer divertor for a
delta function impulse, assuming the weak quasi-
neutrality constraint with y = 1.

Fig.4.13: Temporal evolution of the ratio of ion to electron
deposited particle and energy fluxes, Mach numbers and
sheath transmission coefficients for a delta function
impulse, assuming the weak quasi-neutrality constraint
with y = 1.

Fig.4.14: Temporal evolution of ion and electron particle
and energy fluxes deposited on the outer divertor for a
Heaviside impulse, assuming the weak quasi-neutrality
constraint with y = 1.
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Fig.4.16: Results of the Maxwellian model with simulation
of a JET Type-I ELM for same initial conditions as those
shown in Fig.4.15, assuming a weak quasi-neutrality
constraint with y = 1.7. In addition to the total deposited
energy flux, both the electron and ion contributions are
shown.

Fig.5.3: Temporal decay of normalised filament quantities
(density, Mach number and ion and electron temperatures)
based on the results of the fluid model with assumptions
of Section 5.2: parallel dynamics with Bohm criterion.
Assuming D+ ions, initial temperatures Te,0 = Ti,0 = 1keV
and two values of the initial density: n0 = 1019 m-3 (open
symbols) and 1020 m-3 (solid symbols).

Fig.5.2: The same information as that shown in Fig.5.1,
with characteristic times normalised by the density loss
time and plotted vs. the electron collisionality.

Fig.5.1: Characteristic parallel loss and collisional
relaxation times for n0 = 1020 m-3, Te,0 = Ti,0 = 1keV and
L|| ~ πRq95 ~ 30m in the ELM relevant temperature range
of 10-1000eV, assuming M = 1, and αi and αe chosen
such that γe → γe

∞  ~ 5 and γi → γi
∞ ~ 3.5 as νe

*→ 0.
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Fig.5.4: Temporal evolution of the ratio of ion and
electron temperatures based on the results of the fluid
model with assumptions of Section 5.2: parallel dynamics
with Bohm criterion.   Initial temperatures Te,0 = Ti,0 =
1keV, both D+ and He++ ions and two values of the initial
density: n0 = 1019 m-3 and 1020 m-3.

Fig.5.7: Temporal evolution of the ratio of ion and
electron temperatures based on the results of the fluid
model with assumptions of Section 5.3: parallel dynamics
with ion delay.  Initial temperatures Te,0 = Ti,0 = 1 keV,
both D+ and He++ ions and two values of the initial
density: n0 = 1019 m-3 and 1020 m-3.

Fig.5.6: Temporal decay of normalised filament quantities
(density, Mach number and ion and electron temperatures)
based on the results of the fluid model with assumptions
of Section 5.3: parallel dynamics with ion delay.
Assuming D+ ions, initial temperatures Te,0 = Ti,0 = 1
keV and two values of the initial density: n0 = 1019 m-3

(open symbols) and 1020 m-3 (solid symbols).

Fig.5.5: Temporal evolution of the sheath transmission
coefficients based on the results of the fluid model with
assumptions of Section 5.2: parallel dynamics with Bohm
criterion. D+ ions only. Initial temperatures Te,0 = Ti,0 =
1keV, and two values of the initial density: n0 = 1019 m-3

and 1020 m-3.
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Fig.5.8: Temporal evolution of the sheath transmission
coefficients based on the results of the fluid model with
assumptions of Section 5.3: parallel dynamics with ion
delay. D+ ions only. Initial temperatures Te,0 = Ti,0 = 1
keV, and two values of the initial density: n0 = 1019 m-3

and 1020 m-3.

Fig.6.3: ITER type-I ELM prediction. Temporal decay of
normalised filament quantities (density, ion and electron
temperatures and total energy) based on the results of
the fluid model with assumptions of Section 5.2 (solid
symbols) and Section 5.3 (open symbols).  Assuming D+

ions, and mid-pedestal initial values: Te,0 = Ti,0 = 2keV
and n0 = 4.5×1019 m-3.

Fig.6.2: JET Type-I ELM experiment vs. modelling
comparison. RFA slit ion saturation current density and
RFA collector current for a typical Type-I ELM in the
discharges considered. The horizontal lines represent
predictions of Fig.6.1 with t’ ~ 0.45 – 1.1 with filament
expansion such that nmax/nint ~0.5 and Tmax/Tint ~ 0.5γ-1

at t = tRFA. Three cases are shown: a) mid-pedestal values
(300eV, 1.5×1019 m-3) with γ = 5/3, b) the same with γ =
1, c) pedestal values (400eV, 2.5×1019 m-3) with γ = 5/3.

Fig.6.1: JET Type-I ELM modelling for the RFA
experiment. Temporal decay of normalised filament
quantities (density, ion and electron temperatures) based
on the results of the fluid model with assumptions of
Section 5.2: parallel dynamics with Bohm criterion.
Assuming H+ ions, initial conditions: Te,0 = Ti,0 = 300eV,
n0 = 1.5×11019 m-3.
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Table 2.1: Nominal pedestal and separatrix parameters for JET and ITER, and the ratio of ITER to JET values.
The neo-classical time is evaluated with the two different pedestal width scalings of Table 2.2.

A

Z

R0 (m)

B0 (T)

Ip (MA)

q95

PSOL (MW)

ne (1019 m-3)

ne,ped (1019 m-3)

ne,sep (1019 m-3)

Ti,ped, Te,ped (keV)

Te,sep (eV)

Ti,sep (eV)

ν*e,ped, ν*i,ped 

ν*e,sep

ν*i,sep

βped (Romp)

ρi,ped (Romp) (mm)

ρθi,ped (Romp) (mm)

τA,ped (Romp) (µs)

τ||,ped (µs)

[τ||] (µs)

τii,ped (ms)

τE,nc (ms)

[τE] (s)

2

1

3.0

2.4

2.5

2.7

9.0

6.5

3.8

1.9

1.5

100

200

0.036

4

1

0.014

3.1

10.3

5.6

67

186

1.54

20

0.4

2.5

1

6.2

5.3

15

3.0

75

10

6

3

4

200

400

0.018

3.6

0.9

0.012

2.6

8.6

8.2

106

317

4.73

55-300

3.8

JET ITER

1.25

1

2.1

2.2

6

1.1

8.3

1.54

1.58

1.58

2.66

2

2

0.5

0.9

0.9

0.85

0.83

0.83

1.46

1.57

1.7

3.07

2.75-15

9.5

ITER/
JET
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Table“2.2: Estimated lower limits on the ELM MHD time for JET and ITER with two different pedestal width scalings:
Dped /R = 0.025 and Dped /rqi,ped = 2.5, and the ratio of ITER to JET quantities. The estimate is based on equations
(2.1) and (2.5). The upper limits, predicted by (2.1) and (2.4) yield tMHDmax ~ 240 ms for JET and ~ 690 ms for
ITER.

Table 6.1: Summary of predicted average ELM filament quantities (normalised to initial, mid-pedestal values) at the
ITER limiter radius. Here 1 < Ki < 2 is a kinetic correction, weighted towards unity. Normalised peak filament
values, assuming polytropic radial expansion with g ~ 4/3, are obtained as nmax’ /n’ ~ 1/2, Ti.max’/Ti’  ~ Te.max’/Te’
~ 0.5g-1.

˘ped = 0.025R (mm)

ρ*i,ped = ρi,ped /˘ped 

τMHD
min

/τA,ped

τMHD
min (Romp) (µs)

˘ped = 2.5ρθi,ped(Romp)(mm)

ρ*i,ped = ρi,ped /˘ped

τMHD
min

/τA,ped

τMHD
min (Romp) (µs)

25

0.125

17

95

25

0.125

17

95

50

0.05

36

297

21

0.125

20.5

169

JET ITER

2

0.4

2.1

3.1

0.83

1

1.2

1.8

ITER/
JET

Bohm

Modified Bohm

Bohm delayed by τn,0

Maxwellian

0.58 - 0.45

ki (0.58 - 0.45)

0.97 - 0.9

0.9 - 0.7

0.26 - 0.16

ki (0.26 - 0.16)

0.9 - 0.7

0.55 - 0.45

n’ Ti’ Te’

0.12 - 0.06

0.12 - 0.06

0.13 - 0.7

0.65 - 0.25

0.11 - 0.05

ki (0.11 - 0.05)

0.5 - 0.35

0.15 - 0.1

W’ = n’(Ti’ + Te’)
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Table 6.2: Summary of predicted peak ELM filament quantities at the nominal limiter radii for three large tokamaks,
with the initial conditions and average filament radial velocities as given in section 6.2. The filament was assumed to
expand polytropically with g ~ 4/3 and nmax’ /n’ ~ 0.5 at the limiter radius.

nmax’

Ti,max’ 

Te,max’

nmax (m-3)

Ti,max (eV)

Te,max (eV)

τn,max/τn0

τTi,max/τn0

τTe,max/τn0

λn,max (mm)

λTi,max (mm)

λTe,max (mm)

0.30

0.195

0.07

6.9×1018

88

31

0.91

0.82

0.5

33.5

30

18.5

0.275

0.23

0.09

8.25×1018

185

74

0.72

0.635

0.39

47

41

25

AUG JET

0.26

0.175

0.07

1.2×1019

350

140

0.83

0.64

0.42

54.5

42.5

27.5

ITER


