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ABSTRACT.

This paper explores the features of the Weiland model as a gyro-Bohm Critical Gradient Model

(CGM). The characteristic feature of a CGM is that whenever a threshold value in the temperature

gradient is surpassed the transport switches from a low to a high level. In CGM, the reformulated

Weiland diffusivities are given by χ = χgB χs(R/LT - R/LT,th)α + χgB χ0, where α = 1/2–3/2, roughly

depending on the height above threshold. In empirical CGM α = 1 is the norm, which was shown to

hold also for the Weiland model for a wide range of R/LT at constant threshold. In this paper the

critical gradient response of the Weiland model is studied in realistic scenarios where all temperatures

and thresholds respond to the increasing heating. It turns out that in this case we are sufficiently far

above the threshold to assume α = 1/2.

The simulations of the plasma response to increasing electron or ion heating, yield the Weiland

model as a stiff model. The change in (R/LT - R/LT,th)1/2 is moderate compared to the large variation

in the heating powers. A correlation between higher ion stiffness and a stronger trapped electron

mode drive of the ion diffusivity, was observed. Heat pinches were shown to distort the evaluation

of the background transport and give  χ0 < 0.

1. INTRODUCTION

In this work we have chosen to numerically investigate the reaction of a plasma to increasing ion or

electron heating, in order to evaluate the critical gradient behaviour of the Weiland model[1][2][3][4].

The increasing ion heating extrapolates the common neutral beam heated plasma scenario at JET,

which pushes the plasma towards more beneficial hot-ion mode[5], from a confinement point of

view. In a burning plasma like ITER however, the α-particles produced by the fusion reactions heat

the electrons and might create a hot-electron plasma. Thereof the interest for a deeper understanding

of the effects of both higher ion and electron power depositions on plasma transport properties.

In the last couple of years a number of experiments have studied heat transport by scans of

power deposition profiles or by seeking a relationship between the radial variation of the heat flux

and the steepness of the temperature profile [6], [7], [8], [9]. Their findings indicate the existence of

a threshold above which the heat diffusivity amplifies and thereby opposes further steepening of

the profiles. However, the quantification of these responses is not straight forward in steady-state

experiments as several plasma parameters, which are known to affect transport, vary simultaneously

with the thresholds and temperatures. Experimentally this can be avoided by power modulation

experiments [10], [11], [12]. It should be noted that the steadystate problems have been circumvented

in this work by the benefit of freezing parameters and doing numerous simulations. By probing the

outcome of each simulation at a specific radius it was made certain that all parameters except the

temperatures do not change inbetween simulations when they are compared. The analysis presented

here will in other words reveal pure temperature effects.

Currently, a threshold at which the transport switches from a residual to highly turbulent exists

in the majority of transport models like RLW [13], IFS-PPPL [14], GLF23 [15], OHE [16], Multi-
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Mode [17] and Weiland model. A review of these models is available in [18]. The threshold feature

is taken into account in empirical gyro-Bohm Critical Gradient Models (CGM) [19] [20]. Empirical

CGM was developed as an analysing tool for gauging the response of the heat transport to different

height above thresholds. The on-off mechanism of transport in CGM can lead to plasma parameters

staying close to marginal stability, as the induced transport relaxes the plasma towards the threshold.

The concept of stiffness is a consequence of this behaviour.

We have here reformulated the Weiland model according to the CGM formalism. This has an

interesting implication for the height-above-threshold dependence of the heat diffusivity, as it varies

with the distance from the threshold in Weiland CGM. Normally the dependence is assumed to be

linear in the Weiland model close to the threshold [21], in conjunction with gyro-kinetics. In the

present case, the unstable modes are far from the threshold which instead renders the Weiland

diffusivities proportional to square root of the height above threshold. This is not a unique feature

of the Weiland model, the gyro-fluid model IFS-PPPL[14] has similar properties. Other relationships

than the linear gyro-kinetical have as well been proposed for the heat diffusivities [12].

This study relies on the Weiland model as implemented in JETTO [22]. The effect of the threshold

in this model is generally thought to be weaker than in other, similar models [23]. That the threshold

nevertheless is important in this model is clearly seen from the behaviour of the ion temperature for

increasing electron heating. Indeed, it would not be wise to try to evaluate the heat transport of the

Weiland model without knowing the thresholds.

A quantitative measure of stiffness can be calculated if the heat diffusivity and height above threshold

responses to increasing heating are considered. If a plasma is stiff there will only be a small change in

the height above threshold for a significant change in the heating power. This normally implies a large

variation in the heat diffusivity as well. Hence calculating the rate of change of the heat diffusivity

with respect to the height above threshold can give an idea of the level of stiffness.

In the electron heating case it is found that ion stiffness varies with the instabilities responsible

for the drive of the ion transport (figure 5(b)). At low heating powers, the drive from Ion Temperature

Gradient (ITG) mode is dominant, followed by a phase of ITG and Critical Gradient Response of

the Weiland Model 3 Trapped Electron (TE) mode driven ion transport. This transition almost

triples the stiffness. For the highest electron heating powers, the ions become what could be described

as infinitely stiff. The TE mode then strongly drives the ion transport. For higher ion heating, the

ITG mode remains dominant and the stiffness is comparable to the case of low electron power

(figure 6). Analysis of the simulations using the empirical CGM gives evidence of the Weiland

model being quite stiff contrary to previous results [23]. That the Weiland model is capable of

satisfyingly reproducing stiff plasmas, has been shown by modelling of JET discharges [31].

In the Weiland CGM, extrapolation of the diffusivities down to the threshold gave negative

ambient diffusivities. This is not an effect of the varying dependence on the height above threshold

in the Weiland model, but is rather due to pinches distorting the transport close to the threshold.

Hence, a CGM should be used with care close to the threshold.
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We begin this paper by an introduction of the temperature dependent aspects of the Weiland model

in section 2. The CGM version is also derived in this section. The method and simulations are

presented in section 3, the results in section 4 with an evaluation of CGM response in 5. This paper

ends with conclusions in 6.

2. THE WEILAND MODEL

In this section we briefly describe theWeiland model. The equations displayed only holds the main

features of the model and are used as a simple tool to gain a better understanding of how the plasma

responds to the heating scenarios of the next section. The various ways of how electron and ion

properties can influence the transport of the other species are also addressed.

2.1. THE INSTABILITY OF ITG AND TE MODES

In essence the reactive drift modes of the Weiland model are interchange modes arising from the

pressure inhomogeneity with gravity replaced by the centrifugal force experienced by the particles

as they follow the twisted magnetic field lines. Reactive drift modes arise if particle trapping inhibits

quasi-neutrality or if a temperature gradient causes a competition between convection and thermalisation

[26] [27]. Here the stability of Trapped Electron (TE) and Ion Temperature Gradient (ITG) modes are

studied. The numerical version of the Weiland model used here also includes impurity ITG modes and

electromagnetic effects. In the most basic version of the Weiland model for toroidal geometry and

circular, concentric magnetic surfaces the dispersion relation is given by [4],

(1)

where the resonance factor

(2)

Above ω is the complex mode frequency, subscripts e and i denote electrons and ions respectively,

T is the temperature, ω∗ is the diamagnetic drift frequency, ω∗iT is the ion diamagnetic drift frequency

of the full pressure gradient, ωD is the magnetic drift frequency, kθ  is the poloidal mode number, ρs
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(3)

with r as the minor radius and n as the particle density.

The dispersion relation (1) of the ITG and TE modes decouple if the density profile is flat

enough, i.e. if R/Lne < 2. In this case the complex frequency of the ITG mode is given by the real

frequency,

(4)

and the growthrate,

(5)

with threshold

(6)
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and the ratio of trapped to free electron, Kt = ft /(1- ft).

The main thing to notice regarding the pure trapped electron mode depicted above is that it only

depends on electron parameters. This is in contrast to the pure ion temperature gradient mode,

which depends on electron properties as well. Hence, if the TE mode responds to a change in the

ion part of the plasma, it has to be due to linear mode coupling from (1). For ITG modes the

amplitude factor of equation (5) and the threshold (7) can counteract each other when  Ti rises. The

higher threshold can suppress the growth of  γi and results in the improved confinement properties

of the hot-ion mode.

2.2. ION TEMPERATURE RESPONSE TO ELECTRON HEATING

In the ensuing simulations the full Weiland model is used to predict the responses of the temperature

profiles to the stronger electron or ion heating. In JETTO, which is the code used for the simulations,

the effective heat diffusivity is given by the summation over all unstable modes. Somewhat simplified

this sum is given by,

(11)

where fe = ft , fi = 1, ωr and γ are normalised to the magnetic drift frequency of the electrons. It is

also assumed that the radial correlation length is of the same order as the poloidal one, i.e. kr
2  ≈ kθ

2

= 0.1/ρs
2. This derives from kθ

2 ρs
2 = 0.1 for the most unstable modes [23]. The employed JETTO

version uses this constant value and hence it is regarded as fixed in the analytical expressions too.

A recent version of the Weiland model includes the effects of magnetic shear on the correlation

length and changes the condition kθ
2 ρs
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2
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(13)

where H is the Heaviside function ensuring that only unstable modes drive transport in

conjunction with the sum in equation (11).

From equation (12) it is easy to see why Ti drops when Te rises as the ion threshold (7) then

lowers. Together with the Te dependence of the amplitude, these effects amplify χi. For constant ion

heating power, more heat is expelled than absorbed and the ion temperature decreases, suppressing

the ITG threshold even further. Luckily, the increased transport also works to shrink R/LTi, which

reduces the augmentation of transport. It is this stiffness feature of  χi that prevents it from growing

out of proportion, completely depleting the ion energy. Together with the TE mode drive of ion transport

this can explain the decrease of the ion temperature for increasing electron heating, not only observed

in these simulations but also in experiments at DIII-D[28] and ASDEX Upgrade [29].
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for the fastest growing mode with kθ
2 ρs

2   = 0.1, and ft = {2r/R/(1+r/R)}1/2 with r/R = 0.2. This

corresponds a normalised minor radius, r/a = ρ = 0.6 where the heat transport analysis will take

place. The second term in equations (14) and (15) represents the contributions from the instabilities

far from the resonance ωr ± 5Te,i /3Te in equation (11). In the simulations χ0i and χ0e also include

neoclassical transport.

In the investigation of the (R/LT - R/LT, th)α dependence in the original work by F. Imbeaux et al

[19], α = 1 only gave a slightly better fit to the experimental data than α = 1/2. As that study was

performed close to the threshold, it is not inconsistent with α = 1/2 far from the threshold in the

Weiland CGM presented above. In IFS-PPPL the criterion for   is given by the minimum value of

(R/LT - R/LT,th) and (R/LT - R/LT,th)1/2, i.e. for values larger than unity α = 1/2.

Since in empirical CGM was derived for α = 1, it is hard to compare the stiffness levels

obtained from experiment with the ones given by equations (14) and (15) above. We may

still compare the χs numbers given by the slope of the curve  χ/χgB vs (R/LT - R/LT,th)1/2,

between simulations to get an idea of if electron or ion heating renders the model more stiff

and study how much (R/LT - R/LT,th)1/2 changes when more heating is applied.

3. SIMULATIONS OF PLASMA RESPONSE TO INCREASING HEATING

The simplest way of varying the height above threshold is to make a scan over the minor radius. The

problem with this approach is that several parameters affecting transport are also radially dependent.

It might thus be hard to separate different effects from one another. To avoid this problem, the transport

can be evaluated at a single radial value but it requires several similar, preferably identical plasmas.

Experimentally this can be hard to obtain, and hence two series of simulations have been carried out

varying either the electron or ion power of JET Pulse No: 50628 [30] at time = 10s (fig.1). Note that

in figure 1(a) the ion temperature decreases with higher electron heating and that in figure 1(b), the

electron temperature rises only slightly when the ion heating increases. Although the plasma current

was allowed to evolve in addition to the temperatures in the simulations, it was unaffected by the

increasing heating and hence the transport becomes a function of the temperatures only.

Usually the Weiland model in JETTO is considered to be valid within 0.2 < ρ < 0.8, where ρ is the

normalised minor radius. The two bottom panels of figures 1(a) and 1(b) displaying R/LTe,i , show

that the largest variation of the temperature inhomogeneities occurs outside ρ = 0:8. This region is

dominated by non-stiff neoclassical transport. So, even if the outer boundary condition is frozen at ρ
= 1, the boundary changes where theWeiland validity region begins at ρ ≈ 0:8. Hence, it is not expected

that the temperature profiles in each of the second and third panels of 1(a) and 1(b) have to coincide,

as might be concluded from a stiff model. Moreover, in a stiff model with a changing threshold, the

profiles have to adjust accordingly, like the dropping ion temperatures in figure 1(a).

4. PREDICTED HEAT FLUX RESPONSES TO INCREASING HEATING

In this paper the normalised value, ρ = 0.6, of the minor radius has been chosen to evaluate the

influence of the changing temperature profiles at constant plasma parameters. Most of the heating

^
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power has been absorbed inside this radial value (uppermost panel of 1(a) and 1(b)), which is well

within the validity region of the Weiland model.

The use of the mixing-length estimates (12) and (13) to determine the CGM behaviour is justified

for these simulations as (ωr ± 5Te,i /3Te)
2 is sufficiently small compared to γ 2. This is especially

true for the electrons and at higher heating powers.

The curves in figures 2(a), 2(b), 3(a) and 3(b) show signs of the existence of a threshold above

which anomalous transport becomes significant. In this case the threshold of each mode is extracted

by scanning LTe or LTi in a stand-alone version of the Weiland code. When the growthrates exceed

a critical value, the thresholds in figure 4 are obtained. These figures show R/LT values well above

threshold, far from marginal stability. Similar observations were made in ASDEX Upgrade, with

comparison of experimental profiles and theoretical TE thresholds from the Weiland model[32].

The discontinuities in figures 2(d) and 4(b) are due to the fact that a stand-alone version of

theWeiland model is used for the calculation of the thresholds in all R/LT - R/LT,th. The thresholds

are not explicitly calculated and therefore they cannot be extracted directly from JETTO. For some

reason the stand-alone code overestimates the thresholds and completely suppresses the ITG mode

for strong electron heating whereas in JETTO, they only diminish (figure B1(b)). This descrepancy

between the two codes results in the discontinuities in figures 2(d) and 4(b). Although overestimated,

the thresholds in the stand-alone code, show the same trend as theory (figure 4(b)) and thus it

should not affect the evaluation of the CGM behaviour.

Figures 2(c), 2(d), 3(c) and 3(d) display the heat flux response to the height above threshold, for

increasing electron or ion heating power, respectively. The impact of the thresholds is important

and can be most easily observed in the ion heat flux in the electron heating case. The strange shape

of 2(b), where R/LTi becomes smaller for higher values of qi is due the ITG threshold (7) which

decreses with the larger Te /Ti. The lower threshold amplifies the ion diffusivity. Since no heating is

applied to the ions in this case, this leads to a depleation of ion energy and to that the ion temperature

drops and flattens. The strange shape of qi in figure 2(b) is therefore the consequence of an infinitely

stiff ion response where R/LTi follows the lower thresholds in figure 4(b) and keeps R/LT - R/LT,th

constant in figure 2(d) for high electron heating.

From the basic model in section 2.1 the electron heat flux in figure 2(a) should not respond at all

to the ion heating. The reason ion heating affects the electrons is in this case due to thermal

equilibration, see Appendix A. Experimental findings at JET by P. Mantica et al [33] show higher

electron stiffness with increasing ion heating. There are two possible explanations to this. Firstly,

the density profiles in these experiments are peaked and this makes it impossible to separate the

dispersion relation (1) into pure ITG and TE modes. Ion properties may then directly influence the

TE mode. Secondly the density in the experiments by Mantica et al is larger than here, 5×1019m-3

compared to 4×1019m-3. The thermal equlibration scales as the density squared, so it would be

likely it plays an even stronger role in the experiments by Mantica than in our modelling.

^ ^
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5. WEILAND CGM ANALYSIS

As was shown in the previous section the plasma response has stiff properties. In order to quantify

the stiffness in this study and enable a comparison between the two heating scenarios or even

within a heating scenario, the CGM introduced in section 2.3 was put to use. In figures 5 and 6 the

values of χs are calculated. The major difference between the two heating schemes Critical Gradient

Response of the Weiland Model 9 is that the plasma gets stiffer for higher electron heating with an

increasing χs as a result. Ion heating seems not to make the plasma stiff to the same extent as

electron heating. The change of  s in the electron heating case coincides well with the type of

instabilities present and their influence on the diffusivities through equation (11). In figure 5(b) the
χsi = 10, 27 and 153 derives from situations when the diffusivity is ITG dominated, is driven

equally by ITG and TE and then becomes mostly TE excited, respectively. As discussed in section

2.2 and shown in Appendix B, the ion diffusivity goes through these phases as Te /Ti increases since

the ITG mode subsides and TE mode gains significance in the ion part of the sum (11). The change

in  se from 4.4 to 14 in figure 5(a) coincides with the TE mode dominance of  i. It is interesting to

note that for low R/LT - R/LT,th in the electron heating case, the stiffness numbers are comparable

to the ion heating case in which the ITG mode dominates throughout the heating interval.

Although considered a non-stiff, the Weiland model has successfully reproduced power

modulation experiments in ASDEX Upgrade [25] and JET [31]. The χs values quoted above behave

in a way consistent with what would be expected from a CGM model, but cannot be compared with

experimental  s calculated with the empirical CGM. For a large variation in the applied power the,

0–38.5MW and 0–28MW in the electron and ion heating case respectively, only short ranges (  0:6)

of (R/LT - R/LT,th)1/2 are obtained. The plasma seems also in most cases to react to higher deposited

power with smaller changes in the height above threshold. To get a definite measure of the stiffness

of the Weiland model the empirical CGM was employed in Appendix C. With χse     ≈ 0.7 - 2 and
χsi     ≈ 2 - 31, these simulations would have been regarded as stiff, had they been real experiments.

5.1. PINCH EFFECTS

The curves in figures 5 and 6 imply that the diffusivities are negative at the threshold where they

are expected to be neoclassical. The large negative values are partly due to the fact that closer to the

threshold the diffusivities are more proportional to γ3 thanγ. Hence, a cubic fit for the smallest

values of χ should correct this. Figure 7 certainly shows an improvement, but χe is still negative.

Negative values of the diffusivities are usually due to pinches, which add a factor to the diffusivities

in section 2 and, schematically,

       (18)

where the functions p(ωr, R/Ln) and ∆(ωr, R/Ln) represent pinch effects and the resonance in equation

emp

emp

χpinch

 
= ∝

R/LTi - (ωr, R/Ln)

R/LTi

^

^

(R/LT - R/LT,th)3/2

R/LT - R/LT,th + ∆(ωr, R/Ln)3/2
• ,
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(11), respectively. For the ions, these functions also includes Te /Ti and R /LTe dependencies (see

e.g. reference [3]). Generally, larger pinch terms have a tendency to flatten the diffusivity for

small (R /LT - R /LT,th)1/2 and then make the diffusivity negative when p > R/LT. Bigger ∆’s have a

similar effect, except they cannot make χ < 0. The influence of varying the thresholds is more

marginal, but can affect the importance of the pinch.

Figure 8 illustrates the effects of the pinch for an electron-like 8(a) and an ion-like case 8(b). The

electron-like case has a pinch, p = 3.25 and resonance term, ∆ = 0.1, whereas the ion-like case has

p = 0:25 and ∆ = 1:5. These figures are adjusted to the TE threshold used, R /LT,th = 1.9. Since we

from figure 7 expect the pinches to be important for the electrons and of less significance for the

ions, the values of p were chosen accordingly.

The figures 8(a) and 8(b) yield that the linear fits are inaccurate closer to the threshold. Also the

cubic fits fail in this region, underestimating the diffusivity in the electron case and overestimating

it in the ion case. This agrees qualitatively with the results from the cubic fits in figure 7. It is thus

important to keep in mind that the ambient transport can be distorted by pinch effects when doing

CGM analysis.

CONCLUSIONS

Compared to an empirical gyro-Bohm Critical Gradient Model (CGM), the Weiland model have a

somewhat different behaviour. The in CGM linear dependence on the height above threshold, R /LT

- R /LT,th, becomes in theWeiland model (R /LT - R /LT,th)α, with α = 1/2 - 3/2 depending on the

distance to the threshold. The performed simulations show, in this case, that we are sufficiently

above the threshold to assume that square root dependence on the height above threshold is the

most accurate one.

The importance of the threshold when evaluating stiffness through CGM, is most easily perceived

in the ion heat flux response to electron heating. For high electron heating, the ion temperature

profile flattens to follow the shrinking ITG threshold. Without this information on the threshold, it

might be concluded that the ion response is not stiff, when indeed the opposite is true. It is the

stiffness of the ion temperature that forces it to drop. To avoid rash conclusions, the threshold

always has to be taken into account when determining the stiffness of a plasma.

Quite stiff features of theWeiland model were found in the analysis of simulations of the plasma

response to increasing electron and ion heating. This was not expected as previous comparison to

other transport models, especially gyro-kinetic or gyro-fluid, revealed the Weiland model as less

stiff and it has since been considered non-stiff. On the other hand, the Weiland model has performed

well in modelling heat modulation experiments. The plasma response gets stiffer for higher electron

heating, with smaller changes in the height above threshold for larger variations in the heating

power. This is reflected in the increase of the calculated stiffness numbers for higher electron heating.

A clear correlation between higher ion stiffness and stronger drive from the Trapped Electron

(TE) mode of the ion diffusivity was observed. For low electron to ion temperature ratios, Te /Ti, the

^ ^
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Ion Temperature Gradient (ITG) mode is mainly responsible for the ion diffusivity. As Te /Ti increases

the impact of the TE mode becomes non-negligible. This extra diffusivity drive pushes the ion

temperature profile down towards marginal stability which makes the ions react in a stiffer manner.

Caution is required when estimating the ambient, neoclassical transport by CGM analysis. The,

in CGM neglected, pinch factor in the anomalous transport creates an offset between the real and

CGM diffusivities. The result of this offset is that CGM analysis underestimates the ambient transport.

According to the version of theWeiland model without pinches, the diffusivities should scale like

(R /LT - R /LT,th)3=2 close the the threshold. Comparison of a fit of this kind to the full expression

with pinches, reveals that the electrons are influenced by a strong pinch, whereas the ions have a

more moderate pinch.

The drop and a flattening of the ion temperature profile is observed when the electron heating

increases at constant applied ion power. To begin with this effect is not significant as the thermal

exchange power provides the ions with a sufficient amount of extra energy. That the ion temperature

decreases is not at all surprising since the ITG mode of the Weiland model contains a feedback loop

which continuously amplifies the ion heat diffusivity when the electron temperature rises. The

feedback loop is broken when the ion diffusivity reaches such levels it keeps the ITG mode close to

marginal stability. At this point the TE mode becomes significant for the drive of ion heat transport.

Contrary to expectations, the electron temperature responds to increasing ion heating. Again this

is an effect of the thermal exchange power, effectively heating the electrons and has little to do with

a coupling of the TE and ITG modes. The latter is not expected in this case, as the plasma has a

density profile flat enough to decouple ITG and TE modes.

In summary the Weiland model has somewhat different features than empirical CGM and contrary

to common belief it can be quite stiff. Two points would make it interesting to redo the experiments

that resulted in the empirical CGM using ion instead of electron power modulation. Firstly, according

to the Weiland model the ion gyro-Bohm diffusivity can contain both the electron and ion temperature.

The temperature will still appear as a factor T3/2 but how it is divided between the ion and electron

temperature depends on the distance from the threshold. That leads us to the second point. The

exponent of the ion temperature is the same as the exponent   for the height above threshold. Hence,

if for instance fits with α = 1/2 and α = 1 for the height above threshold give equal results, it would

be possible to distinguish them by the fit of the ion temperature. In the electron modulation case

this is not possible as the electron gyro-Bohm diffusivity depends solely on the electron temperature.

Until now the capabilities of measuring the ion temperature in ion power modulation experiments

have been too poor to give sufficient resolution, but with recent upgrades in JET the possibility of

a successful experiment is high.
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APPENDIX A. EFFECTS OF THERMAL EQUILIBRATION

As can be seen from figures 1(b) and 3(a) electron properties react to the increasing ion heating.

Although the absorbed electron heating is constant, the effective heating,

 (A.1)

changes. Here Pabs is the heating absorbed by the electrons, Prad is the impurity radiation, Wth,e is

the thermal energy content of the electrons and PTHX ∝ Te - Ti, arises from thermal equilibration. In

the presented case, PTHX is the source of variation in Pee which effect on the electron temperature

is shown in figure A1(a). That the electrons and ions do not communicate widely through a coupling

effect of ITG and TE modes can be seen from figures 4(c) and 2(b) as neither the TE threshold nor

growth rate show any considerable dependence on Te - Ti.

The effect of higher Te on Ti is not very big for low electron heating. The difference in Ti between

the zeroth and 100th percent heating levels of figure 1(a) is negligible and only a minor drop can be

seen at the 300% level. At electron heating powers upto about 11MW (200%) the effect of thermal

equilibration is so strong it can counteract the ion temperature’s natural tendency to decrease. As

can be seen from figure A1(b) the effective ion power increases and keeps Ti at a constant level for

some time until the trapped electron drive forces it to drop.

APPENDIX B. MODE IDENTIFICATION

As discussed in section 2.2, all unstable modes are, to different degrees, responsible for the heat fluxes

in figures 2(a), 2(b), 3(a) and 3(b). To better understand the underlying physics it is important to try

and resolve which modes drive the ion and electron transport. This mainly concerns the ions as χi (11)

contains a Te /Ti dependence that can increase the influence of the TE mode. In a more up-to-date

version of JETTO this is a straight forward task, since the real part of the frequency can be used to

distinguish modes from one another. Here a more rudimentary, but efficient, method is used.

In figures B1 and B2 a simple comparison between growthrates and diffusivities are made. The

diffusivities (12) and (13) are normalised using the electron temperature and should hence be directly

proportional to the growth rates (5) and (9). The case of ion heating in figure B2 is trivial. The

highest growth rate in B2(b) is a perfect match for  χi = Te in B2(a) and the the lower growth rate

coincides with  χe = Te. That the smallest growth rate shows little dependence on Te /Ti only strengthens

this conclusion.

For stronger electron heating there is one growth rate monotonically increasing with the

temperature ratio in figure B1(b) and it seems to drive the electron diffusivity in figure B1(a). The

ion diffusivity which first increases and then flattens out, appears to be driven by a combination of

both growth rates. Thus the conclusion is that the monotonically increasing belongs to the trapped

electron mode, whereas the other belongs to the ion temperature gradient mode. As R /LTe steepens

faster than the TE threshold rises in figure 4(a), γe is expected to grow with Te /Ti.

e

P
eff 

= P
abs 

- Prad

 
-        - PTHX 

∂Wth,e

∂tee
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The behaviour of the ITG mode in figure B1(b) can be understood from figure 2(d). The ion heat

flux increases steady with the height above threshold until it becomes extremely stiff. This first

phase derives from the slowly rising ITG growth rate, for which the threshold, figure 4(b), has

started to decrease but the ions are not yet stiff enough to follow. As the ions become stiffer R/LTi

shrinks which accounts for the smaller growth rate at high Te /Ti. It seems the transition from

moderately to extremely stiff ion response coincides with the stronger influence of the TE mode. At

this point the ITG threshold is also made higher than the theoretical value (6) as if to adjust the ITG

driven heat flux, see figure 4(b).

The conclusions drawn in both the electron and ion heating investigations of figures B1 and B2,

are supported by the local code calculating the thresholds.

APPENDIX C. THE EMPIRICAL GYRO-BOHM CRITICAL GRADIENT MODEL

The empirical gyro-Bohm critical gradient model in [19][20] was derived based on the assumptions

of a electrostatic gyro-Bohm scaling law, and the existence of an instability threshold with a finite

transport below it. After comparison with experiment it was deduced that the best fit of these

parameters yielded the thermal diffusivity,

(C.1)

where q is the safety factor and H is the Heaviside function. Hence the transport is described by

the three parameters  χs,  χ0 and R/LT,th, which can be determined experimentally. It should be

noted that these parameters are not constants but depends in turn on other plasma parameters like

e.g. Te /Ti.

The main differences between equation (C.1) and the Weiland versions (14) and (15) are the

dependence on q and the linear proportionality to the height above threshold. The former was

included in the empirical CGM as to account for improvement of confinement with the plasma

current. The linear height above threshold dependence was obtained experimentally studying electron

cases close to marginal stability. It is thus not in contradiction to theWeiland CGM in section 2.3,

which is valid far above the threshold.

For easy comparison of the degree of stiffness in different plasmas, it is useful to have a

quantitative measure of it. In the case of the empirical CGM above, the stiffness number,  χs, is

used to gauge the stiffness of different plasmas[20]. Normally, a χs > 1 is regarded as stiff.

Despite that equation (C.1) should give a poorer description of the performed simulations than

equations (14) and (15) it is an interesting exercise since we can directly compare the empirical
χs number with the stiffness criterion.

Figure C1 shows the obtained plasma responses in empirical CGM for increasing electron heating

(to be compared with figure 5). The obtained stiffness numbers are χemp = 0.7 - 2 and  χemp = 2 -

χ
 
= χs q

3/2
 H + χ0 q

3/2
Tρs Tρs

eBR eBR

R R

LT LT,th

R R

LT LT,th
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31, both large enough to be considered stiff. In experiment  χse has been measured up to 4 [20].

Note that in this formalism, the background ion transport is positive when extrapolating down to

the threshold. This holds true also for the ion heating case, although not shown here.
se si

Figure 1. Profile changes in shot 50628 at time=50s for either increasing electron power at constant ion power (a) or
vice versa (b). The 100% levels of the heating are 5.5MW and 7MW for the electrons and ions, respectively. Not all
profiles are shown to improve visibility.

2

0
0.8

0.4

0

3

1

8

0

4

0

10

4

0 0.2 0.4 0.6 0.8 1.0

10
3  

(e
V

)
10

3  
(e

V
)

10
7  

(e
V

)

ρ

JG
05

.3
07

-1
a

Applied heating power

Te

Ti

R/LTe

R/LTi

0% Electron
100%
300%

500%
700%

2

4

0
6

4

2

4

2

6

2

0

10

6

0 0.2 0.4 0.6 0.8 1.0

10
3  

(e
V

)
10

3  
(e

V
)

10
7  

(W
)

ρ

JG
05

.3
07

-1
b

6

Applied heating power

Te

Ti

R/LTe

R/LTi

0% Ion
100%
200%

300%
400%

http://figures.jet.efda.org/JG05.307-1a.eps
http://figures.jet.efda.org/JG05.307-1b.eps


16

Figure 2. Heat flux responses and stiffness for increasing electron heating.
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Figure 3. Heat flux responses and stiffnes for increasing ion heating.

0.4

0.3

0.2

0.1

0

0.5

4.2 4.4 4.6 4.84.0 5.0

q e
 (M

W
/m

2 )

R/LTe

JG
05

.3
07

-3
a

0.8

0.6

0.4

0.2

0

1.0

4.0 4.5 5.0 5.53.5 6.0
q i

 (M
W

/m
2 )

JG
05

.3
07

-3
b

R/LTi

0.04

0.02

0

0.06

1.5 1.6 1.7

q e
/T

e 
5/

2 (
M

W
/m

3 k
eV

5/
2 )

(R/LTe - R/LTe,th
)1/2

JG
05

.3
07

-3
c

0.11

0.10

0.09

0.08

0.07

0.06

0.05

0.12

1.0 1.2 1.40.8 1.6

q i
/T

eT
i  

   
(M

W
/m

2 k
eV

5/
2 )

JG
05

.3
07

-3
d

(R/LTe - R/LTe,th
)1/2

3/
2

http://figures.jet.efda.org/JG05.307-3a.eps
http://figures.jet.efda.org/JG05.307-3b.eps
http://figures.jet.efda.org/JG05.307-3c.eps
http://figures.jet.efda.org/JG05.307-3d.eps


18

Figure 4. Thresholds vs Te /Ti when the electrons are heated. R/LT gives the temperature profile values, R/LT,theo is the
analytical threshold from section 2 and R/LT,th are the thresholds calculated by the stand-alone code from Göteborg.
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Figure 6. Calculation of χs  for the ion heating case

Figure 5. Calculation of χs for the electron heating case.
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Figure 8. The effect of pinches on the heat diffusivity. The threshold, R/LT = 1.9 in both (a) and (b).

Figure 7. Cubic fit to χe and χi. The fitting parameter, x= (R/LT - R/LT,th)
1/2.
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Figure B1. Comparison of diffusivities and growth rates to separate TE and ITG modes for increasing electron
heating. The monotonically rising growth rate in (b) is concluded to be the TE mode, the parabolic-like the ITG
mode. The ITG mode in the local-code is much smaller than in the JETTO ITG growthrates in (b). It is thus fair to
conclude that the localcode overestimates the ITG thresholds in this region, which give rise to the discontinuity in
(R/LTi - R/LTi,th)1/2 seen in figure 2(d).

Figure A1. Effect of the increasing heating on the other species through thermal equilibration. The effective heating
powers, P 

eff, are evaluated at the same radial value as temperatures to increase the correlation between the plotted
parameters.
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Figure C1. Calculation of empirical  χs for the electron heating case.
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Figure B2. Comparison of diffusivities and growth rates to separate TE and ITG modes for increasing ion heating.
The strongest instability in (b) is concluded to be the ITG mode, the smallest the TE mode.
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