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ABSTRACT

The Berk-Breizman augmentation of the Vlasov-Maxwell system is widely used to model self-
consi stent resonant excitation and damping of wavefieldsby evolving energetic particle popul ations
in magnetic fusion plasmas. It is shown here that frequency splitting phenomena displayed by
MagnetoHydroDynamic (MHD) oscillations in the Joint European Torus (JET) can be explained
by aslow change in time of the Berk-Breizman model parameters. Fully nonlinear self-consistent
numerical implementation of thismodel enablesusto construct arigorouslink between the tokamak
observations and the classical nonlinear phenomenology of bifurcations, period doubling and the
transition to chaos.

1. INTRODUCTION

Energetic Particles (EPs) play an important role in the plasmas of magnetically-confined nuclear
fusion experiments (1). Sources of EPsinclude Neutral Beam Injection (NBI) heating, lon Cyclotron
Resonance Heating (ICRH) and fusion-produced al pha-particles. It iscritical to the success of any
future fusion reactor both that the kinetic energy of these EPs is contained within the plasma
sufficiently long to sustain the fusion process and al so that the presence of these particles does not
destabilizethe plasma(2; 3). Alfvén eigenmodesare of particular interest asan example of collective
wavemodesthat may be resonantly excited by EPs (4). In this paper we concentrate on an observation
shownin Figure 1 of atoroidal Alfvén eigenmode (TAE) undergoing frequency splitting observed
in Pulse No: 40332 at the Joint European Torus (JET).

This observation has been interpreted in terms of period doubling bifurcations (5). It is widely
accepted that the Berk-Breizman augmentation of the VIasov-Maxwell system (6) (henceforth "the
VM (BB) model”) provides aphysically motivated paradigm for the interactions between energetic
particle populations and high frequency MagnetoHydroDynamic (MHD) modes in tokamaks.
Recently, for example, a fully nonlinear numerical implementation (7-10) of the VM(BB) model
has demonstrated that the frequency sweeping phenomenon known as chirping emerges naturally
(112; 12) from the VM (BB) model with fixed parametersin a specific range. Thustheintrinsic time
evolution exhibited in chirping does not require or reflect time evolution in the system parameters.
Instead it reflects the intrinsic time evolution of a nonlinear system that has fixed parameters.

The following questions naturally arise. First, can the fully nonlinear VM (BB) model display
frequency splitting that resembl es, to some degree, the behavior seen in tokamaks? Does frequency
splitting in the model occur for fixed or time-varying parameters? What are the links between
observed frequency splitting and the classic nonlinear phenomenology of bifurcations, period
doubling and the transition to chaos?

In the present paper we demonstrate for the first time that frequency splitting, arising from
period doubling bifurcations, sometimes separated by regions of chaos, can occur naturally as the
parameters of the VM (BB) model are slowly varied. Thisisin contrast to the frequency sweeping
result (11; 12) which occurs for fixed parameters. Within the VM (BB) model, bifurcation



phenomenol ogy can be seen most clearly when field amplitudes are considered. In addition to time
traces and frequency spectra, therefore, we also construct figures that display the evolution of peak
field amplitude with model parameters. We quantify the region in VM(BB) parameter space for
which this behavior arises, and in particular relate it to previous results (7) that categorized the
periodic, multiply periodic, and chaotic regimes of the VM (BB) system. The structure of the VM (BB)
model is such that, additionally, we can relate frequency splitting phenomenology to the self-
consistent evolution of the energetic particle distribution function in vel ocity space. We shall show
that the key physicsis determined by the extent to which particles are captured by, trapped in, and
released from the potential well of the excited mode.

2. ANALYSISOF FREQUENCY SPLITTING DATA IN JET PUL SE N0:40332

Figure 1 shows the power spectrum of a family of TAES in JET Pulse N0:40332, previously
considered in Ref.5. The raw signal is from an external magnetic pick-up coil sampled at 1 MHz.
The power spectrum is constructed from Fast Fourier Transforms (FFTs) of Hanning data windows
that are each 4096 time stepsin length. The greyscale is effective across two orders of magnitude.
Each TAE beginslife as asingle mode which later devel ops sidebands. The TAEs are excited viaa
combination of NBI and ICRH hesating. The different TAES have toroidal mode numbers in the
range 5-12 and frequencies that are Doppler-shifted due to plasma rotation. In the model analysis
below, we concentrate on asingle excited mode. To analyse the experimentally observed structures
in more detail, the slow frequency drift of the modes (due to a slow change in the properties of the
background plasma) is compensated for as follows: for each of the data windows (i.e. at each
discrete time step) we pick out the power maxima as afunction of frequency; we then test to seeiif,
astime varies, there exist pixels corresponding to maximawhich are connected, either side-to-side
or diagonally. All connected structures of this type that have at least 100 elements are shown in
Fig.2. The best resolved structure has been highlighted in bold; its frequency defines afunction of
time which we shall refer to as w, (t,), where t,, is the time coordinate of the n-th pixel. The
frequency coordinate of the origina power spectrum Fig.1 at each time step i sthen mapped according
to w(t,) 7 — o(t,) (o (tg) = 0 (1)) Theresult of thisprocedureisshownin Fig.3. Thisenables
the power spectrum to be compared at di®erent times on the same frequency scale. Figure 4 shows
two cuts through the transformed power spectrum Fig.3 at t = 12:40s and t = 12:45s. We note that
each of the dominant peaks in panel (a) has devel oped sidebands in panel (b).

3. FREQUENCY SPLITTING IN THE VM (BB) MODEL

The VM(BB) system self-consistently models the resonant nonlinear coupling between energetic
particles and the wave modes they excite. It isbased on the one-dimensional electrostatic bump-on
-tail model, with particle distribution relaxation and background el ectric field damping. We cast the
model asfollows (7), in terms of the particle distribution f(x, v, t) and the electric field E(x, t):
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Here F, denotes the combined particle source and loss function, v, the particle relaxation rate, 4
the combined effect of all background damping mechanismsthat act on the electric field, and f the
spatial mean of f. Spatial lengths are normalised to the Debye length A; velocities to the thermal
speed vy, time to the inverse plasma frequency (op'l = Ap/Vyy, and EtO mevthzlekD. Central to the
present paper isan interpretive code (8) which uniquely solvesthe fully nonlinear VM (BB) system
without employing analytical approximations. It allows direct numerical solutions of the fully
nonlinear self-consistent VM(BB) system across the entirety of (yy; v,) parameter space for any
Fo(v). Application of this code (7) for a particular Fy(v) shows how the behavior of the VM (BB)
system depends on its parameters. Our first objective hereisto investigate how far the conceptually
simple physics basis of the VM(BB) model captures the observed phenomenology of frequency
splitting in JET.
For both the simulations described in this paper, we initiate using a bump-on-tail distribution

Fo (V) = Fuik * Foeam (3)

where
m) Y2 Fu i = v exp (-va2v2)) 4
21) Y2 Foon = [(1 = M)V exp [—(v = vp)Z2V%, (5)

andwechoosen =0.9, v, = 1.0, vy = 4.5, and v; = 0.5. The results presented bel ow are not dependent
onthisspecific choiceof parameters, they are quoted for the sake of reproducibility. We note, however,
that thischoice of distribution hasasmall proportion of particlesinthe energetic tail and that the beam
iswell separated from the bulk. Space istaken to be periodic with period L = 27/4/k, where ky = 0.3.
Thesimulations areinitialised with f(x, v, t = 0) = Fo(v)(1 + o cos(kq X)) where o, = 0.001; theinitial
electric field is provided by Poisson’s equation E(x, t = 0) = (o = Kg) sin(ky X).

Previous work (7) has classified how the system’s behavior depends on the parameters (yy, v,)-
Specificaly it has been shown that, for different values of (y, v,), the system may be damped,
steady state, periodic or chaotic. Let us now study how the system proceeds from steady state (i.e.
thefield is a single mode with constant amplitude) to chaos. Thisis achieved by choosing acut in
(g V) parameter space, where one end corresponds to steady state and one to chaotic behavior.
Simulations are then performed where we travel dowly along the cut, at a rate sufficiently slow that
the results are independent of the speed of travel. The cut chosen isthe straight line segment y, = 1.0,



0.022 < v, < 0.05: with 4 unchanged as we move along the cut, v, = 0.05 and v, = 0.022 correspond
to steady state and chaotic system behavior, respectively. It isfound that it is possible to movethrough
some sections of parameter space more quickly than through others; intervalsthat arerichin bifurcations
must be traversed dowly. We have therefore performed two numerical simulations, travelling along
sections of the same cut at two different speeds: (a) v, =0.06 - 10" tand (b) v,=0.0265 - 107%. The
second simulation therefore provides a more detailed picture of the end of the cut corresponding to
smaller v,, in the chaotic regime. Each simulation ran until t = 5x10° and took approximately 120
hours running in parallel on four processors each capable of 5.2 GFLOPS.

During each simulation we record the (complex) component of the electric field in the first
spatial mode E;(t) = JE(x, t) exp(=ikgX)dx.

Spectra |I§1((o)| of the electric field component E,(t) are shown in Fig.5. These spectra are
generated by linearly interpolating the ssmulation time series onto a regular temporal grid with
spacing At = 0.1, taking windows of 4096 points, applying a Hanning windowing function, and
then performing a Fast Fourier Transform (FFT) on each of these windows. The results shown in
Fig.5 use a greyscale scheme across five orders of magnitude.

To examine the spectrain detail we take cross-sections of Fig.5 at different fixed valuesof v,; a
selection is shown in Fig.6. Thefirst plot (a) (v, = 0.05) confirms that the system is dominated by
asingle r~node; the Fourier spectrum isof the shape one would expect for asingle mode of frequency
g Viz. E4(o) ~ c)/((ozO - wz). The second plot (b) (v, = 0.045) shows the appearance of distinct
sidebands; the envelope of the spectrum is still dominated by the central mode. The third plot (c)
(v, =0.04) correspondsto aregime of complex behavior; thereisno clear structureto the spectrum.
Structurereturnsin plot (d) (v, = 0.03) although here there are amuch larger number of significant
side-bands. Moreover, the envelope of the maximain w behaves asexp (—|m — o). Between plot
(d) and plot (e) (v, = 0:0245) thereisaperiod-doubling bifurcation, which correspondsto ahalving
of the distance between sidebands. The consistency in sideband separation between plot (e) and
plot () (v, = 0.02375) impliesthat there is no period-doubling bifurcation between these values of
v,. There is however a period doubling going from plot (f) to plot (g) (v, = 0.023). Plot (h) (v, =
0.022) corresponds to the chaotic regime.

4. THE BIFURCATORY ORIGIN OF FREQUENCY SPLITTING
TheVM(BB) model defined by Egs.1 and 2 can be said to capture frequency splitting in JET Pulse
No: 40332 insofar as, for example, Fig.5 resembles Fig.3; see adso Ref.5 which uses an analytic
approximation to the fully nonlinear VM(BB) model deployed here. The results in the preceding
section suggest that the classic nonlinear phenomenon of period doubling bifurcation lies at the heart
of the observed plasma behavior. This conjecture is strengthened by the following analysis, which
provides arigorous account of the role of period doubling bifurcationsin the fully nonlinear model.
A period doubling bifurcation isaglobal bifurcation that occurs when a periodic orbit becomes
unstable and the system moves to a nearby periodic orbit of double the length; this new orbit



traverses twice around in a neighborhood of the original orbit before joining back on itself. Such
orbit splitting can manifest itself in the splitting of extrema in the time series of macroscopic
quantities, such as|E4(t)| inthe VM(BB) system considered here. For example, if we write a(t) =
|E1(1)], and consider aprojection of the system onto the (a, &) plane, then extremain acorrespond to
the Poincaré section a= 0. This motivates the diagrams shown in Fig.7, which plot extremain time
of |E4(t)| asfunctions of v,, by inverting the mapping t — v, for the two simulations (a) and (b).

Since the bifurcation sequence proceeds from right to left with decreasing v,,, let us discuss Fig.
7inthat direction. For values of v, > 0.046, the system isdominated by asingle mode. The parameter
range over which a steady state is observed is extensive: 0.1 > v > 0.046, although for the sake of
clarity it is not shown on this diagram. Despite the mode amplitude being nearly constant in this
range, small fluctuations render it visible in this plot of extrema. At v, = 0.046 the time series
developsawell separated maximum and minimum. The behavior intheinterval 0.044 > v, > 0.038
iscomplex, and appearsto display regionsof chaosalternating with regionsof order. Intherelatively
large interval 0.038 > v, > 0.025, the time seriesis periodic with two maximaand two minimain
each cycle. Bifurcationsare then observed at v, = 0.025 and v, = 0.0236. The onset of chaos occurs
at v, =0.0228. It appearsthat arapid quantitative changein system behavior occursat v, = 0.0239.
However, thisis only achange in the size of the orbit, and no qualitative change (such as a change
inthe number of extrema) occurs; thisdoes not constitute abifurcation. The analysis of theVM(BB)
model from this perspective establishesthe quantitative correspondence between the evolving Fourier
spectrum (Fig.6) and the nonlinear systems plot of bifurcations (Fig.7).

CONCLUSIONS

The results presented in this paper suggest that key aspects of the frequency splitting observed in
JET Pulse N0:40332 are captured by the VM (BB) model initsfully nonlinear self-consistent form
(Egs.1 and 2) asimplemented in the code of Refs. 7; 8. Our results also provide strong support for
the conjecture that period doubling bifurcation underlies the observed plasma phenomenology.
Thisfollows both from analysis of the power spectrum of the dominant mode asit evolvesin time,
and from a non-linear systems approach to plots of field extrema. These results open the way to
relating observations of frequency splitting to thetwo key model parameters (y, v,) of theVM(BB)
system, subject to signal-to-noise constraints.

ACKNOWLEDGEMENTS

The authorswould like to thank Boris Breizman, Herb Berk, George Rowlands and Tony Arber for
helpful discussions. This work was supported in part by Euratom and the UK Engineering and
Physical Sciences Research Council. Computing facilitieswere provided by the Centrefor Scientific
Computing of the University of Warwick with support from Joint Research Equipment Initiative
grant JROOWASTEQ.



REFERENCES

[1].

12].

3].

[4].

[5].

[6].
[7].

8.
9.
[10].

[11].
[12].

S.D. Pinches, H.L. Berk, D.N. Borba, B.N. Breizman, S. Briguglio, A. Fasoli, G. Fogaccia,
M. Gryaznevich, V. Kiptily, M. Mantsinen, S.E. Sharapov, D. Testa, R.G.L. Vann, G. Vlad, F.
Zonca and JET-EFDA contributors, Plasma Phys. Control. Fusion 46, B187 (2004).

Liu Chen, Phys. Plasmas 1, 1519 (1994).

N.N. Gorelenkov, H.L. Berk, R. Budny, C.Z. Cheng, G.-Y. Fu, W.W. Heidbrink, G.J. Kramer,
D. Meade, and R. Nazikian, Nucl. Fusion 43, 594 (2003).

N.N. Gorelenkov, E. Fredrickson, E. Belova, C. Z. Cheng, D. Gates, S. Kaye, and R. White,
Nucl. Fusion 43, 228 (2003).

A. Fasoli, B.N. Breizman, D. Borba, R.F. Heeter, M.S. Pekker, and S.E. Sharapov, Phys. Rev.
Lett. 81, 5564 (1998).

H.L. Berk and B.N. Breizman, Phys. Fluids B 2, 2226, 2235, 2246 (1990).

R.G.L. Vann, R.O. Dendy, G. Rowlands, T.D. Arber, and N. d Ambrumenil, Phys. Plasmas
10, 623 (2003)

T.D. Arber and R.G.L. Vann, J. Comput. Phys. 180, 339 (2002).

S.D. Pinches, Ph.D. Thesis, The University of Nottingham (1996).

S.D. Pinches, L.C. Appdl, J. Candy, S.E. Sharapov et a., Comput. Phys. Commun. 111, 133
(1998).

R.G.L. Vann, R.O. Dendy, and M.P. Gryaznevich, Phys. Plasmas 12, 032501 (2005).

S. D. Pinches, H.L. Berk, M.P. Gryaznevich, S. E. Sharapov and JET-EFDA Contributors,
Plasma Phys. Control. Fusion 46, S47 (2004).

Transformed frequency (kHz)

4501
™
T
<
= 400
(&)
c
(4]
=}
o
o
% 350+
300t S ~ = : 300 Tor— ! g
12.40 12.45 12.50 12.40 12.45 12.50
Time (s) Time (s)

Figure 1: Experimental observation of TAESIinJET Pulse  Figure 2: Connected structures defined by pixel-by-pixel
No: 40332 undergoing frequency splitting. The slow analysis of the power spectrum shown in Fig.1. The
frequency drift is due to slow variation of macroscopic  structure highlighted in bold provides the basis for the
plasma parameters. Logarithmic greyscale plot of thefast  frequency map by which Fig.3 is obtained.

Fourier transform (FFT) acrosstwo orders of magnitude.
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Figure 3: Transformed power spectrum of JET Pulse No:
40332. Frequency has been nonlinearly stretched to
eliminate the dlow frequency drift using a map based on
the structureidentified in Fig.2. Timeis unaffected by this
map. This transformation allows cross sections
corresponding to different times (as in Fig.4) to be
compared on the same frequency axis. Logarithmic
greyscal e across two orders of magnitude.

Figure 4: Cuts through the transformed power spectrum
showninFig.3attimes(a)t= 12.40sand (b) t = 12.45s.
Panel (a) displays four distinct modes. Panel (b) shows
that side-bands have formed beside the dominant modes.
It is not clear whether only a small number or many
significant sidebands are formed. Fromt = 12.45s until
at least the end of the observation there is no qualitative
change in the power spectrum. The feature at 408kHz in
panel (a) isan unrelated mode.
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Figure 5: Field spectra [E;(w)/ as a function of time for the two simulations (a) and (b) described in the text. Plot (&)
shows, as v, decreases, the transition from a single mode, through a region of complicated behavior, to a significant
interval with a number of modes with well-defined spacing, to a region where separate modes are indistinguishable.
Plot (b) shows details that cannot be observed in plot (a). It shows two period doublings, at v, = 0.0250 and v, =
0.0236. At v, = 0.02284 either a further period doubling or transition to chaos occurs. Cross sections of these plots
are shown in Fig.6. (Greyscale plots over five orders of magnitude)



http://figures.jet.efda.org/JG05.306-3c.eps
http://figures.jet.efda.org/JG05.306-4a.eps
http://figures.jet.efda.org/JG05.306-4b.eps
http://figures.jet.efda.org/JG05.306-5a.eps
http://figures.jet.efda.org/JG05.306-5b.eps

LoglE; ()] (a.u)

JG05.306-6a

(b)

JG05.306-6b

(d)
£)
S
© n
i
L
=)
o
|
g N | g
®
R 15~ —
S
S
S 10— L
i
w
=)
o
|
5
Q 3 l\ 3
20
()] (h)
- 15 r
S
S
S 10F L
i
w
=)
o
|
H
0 I I § I I §

|
1.00
Frequency (w/w,)

1.50

Figure 6: Cross sections through Fig.5 showing power spectra for various values of the model parameter v,.
bifurcation sequence is discussed in Section IV.
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main text. The splitting of extrema corresponds to bifurcationsin the time series A(t). Plot (ii), which corresponds to
simulation (b) carried out at high time resolution, is a magnification of a section of plot (a); it shows the bifurcation
path of the system to chaos through a series of bifurcations.


http://figures.jet.efda.org/JG05.306-7a.eps
http://figures.jet.efda.org/JG05.306-7b.eps

