
R.G.L. Vann, R.O. Dendy, S.D. Pinches, S.E. Sharapov
and JET EFDA contributors

EFDA–JET–PR(05)09

Frequency Splitting in JET:
Theory and Observation



.



Frequency Splitting in JET:
Theory and Observation

R.G.L. Vann1, R.O. Dendy1, 2, S.D. Pinches3, S.E. Sharapov2

 and JET EFDA contributors*

1Department of Physics, University of Warwick, Coventry CV4 7AL, U.K.
2EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK

3Max-Planck Institut für Plasmaphysik, EURATOM-Assoziation, Boltzmannstra1/4e 2, D-85748 Garching, Germany
* See annex of J. Pamela et al, “Overview of JET Results ”,

 (Proc.20 th IAEA Fusion Energy Conference, Vilamoura, Portugal (2004).

Preprint of Paper to be submitted for publication in
Physics of Plasmas



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



1

ABSTRACT

The Berk-Breizman augmentation of the Vlasov-Maxwell system is widely used to model self-

consistent resonant excitation and damping of wave fields by evolving energetic particle populations

in magnetic fusion plasmas. It is shown here that frequency splitting phenomena displayed by

MagnetoHydroDynamic (MHD) oscillations in the Joint European Torus (JET) can be explained

by a slow change in time of the Berk-Breizman model parameters. Fully nonlinear self-consistent

numerical implementation of this model enables us to construct a rigorous link between the tokamak

observations and the classical nonlinear phenomenology of bifurcations, period doubling and the

transition to chaos.

1. INTRODUCTION

Energetic Particles (EPs) play an important role in the plasmas of magnetically-confined nuclear

fusion experiments (1). Sources of EPs include Neutral Beam Injection (NBI) heating, Ion Cyclotron

Resonance Heating (ICRH) and fusion-produced alpha-particles. It is critical to the success of any

future fusion reactor both that the kinetic energy of these EPs is contained within the plasma

sufficiently long to sustain the fusion process and also that the presence of these particles does not

destabilize the plasma (2; 3). Alfvén eigenmodes are of particular interest as an example of collective

wave modes that may be resonantly excited by EPs (4). In this paper we concentrate on an observation

shown in Figure 1 of a toroidal Alfvén eigenmode (TAE) undergoing frequency splitting observed

in Pulse No: 40332 at the Joint European Torus (JET).

This observation has been interpreted in terms of period doubling bifurcations (5). It is widely

accepted that the Berk-Breizman augmentation of the Vlasov-Maxwell system (6) (henceforth "the

VM(BB) model”) provides a physically motivated paradigm for the interactions between energetic

particle populations and high frequency MagnetoHydroDynamic (MHD) modes in tokamaks.

Recently, for example, a fully nonlinear numerical implementation (7-10) of the VM(BB) model

has demonstrated that the frequency sweeping phenomenon known as chirping emerges naturally

(11; 12) from the VM(BB) model with fixed parameters in a specific range. Thus the intrinsic time

evolution exhibited in chirping does not require or reflect time evolution in the system parameters.

Instead it reflects the intrinsic time evolution of a nonlinear system that has fixed parameters.

The following questions naturally arise. First, can the fully nonlinear VM(BB) model display

frequency splitting that resembles, to some degree, the behavior seen in tokamaks? Does frequency

splitting in the model occur for fixed or time-varying parameters? What are the links between

observed frequency splitting and the classic nonlinear phenomenology of bifurcations, period

doubling and the transition to chaos?

In the present paper we demonstrate for the first time that frequency splitting, arising from

period doubling bifurcations, sometimes separated by regions of chaos, can occur naturally as the

parameters of the VM(BB) model are slowly varied. This is in contrast to the frequency sweeping

result (11; 12) which occurs for fixed parameters. Within the VM(BB) model, bifurcation
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phenomenology can be seen most clearly when field amplitudes are considered. In addition to time

traces and frequency spectra, therefore, we also construct figures that display the evolution of peak

field amplitude with model parameters. We quantify the region in VM(BB) parameter space for

which this behavior arises, and in particular relate it to previous results (7) that categorized the

periodic, multiply periodic, and chaotic regimes of the VM(BB) system. The structure of the VM(BB)

model is such that, additionally, we can relate frequency splitting phenomenology to the self-

consistent evolution of the energetic particle distribution function in velocity space. We shall show

that the key physics is determined by the extent to which particles are captured by, trapped in, and

released from the potential well of the excited mode.

2. ANALYSIS OF FREQUENCY SPLITTING DATA IN JET PULSE No:40332

Figure 1 shows the power spectrum of a family of TAEs in JET Pulse No:40332, previously

considered in Ref.5. The raw signal is from an external magnetic pick-up coil sampled at 1 MHz.

The power spectrum is constructed from Fast Fourier Transforms (FFTs) of Hanning data windows

that are each 4096 time steps in length. The greyscale is effective across two orders of magnitude.

Each TAE begins life as a single mode which later develops sidebands. The TAEs are excited via a

combination of NBI and ICRH heating. The different TAEs have toroidal mode numbers in the

range 5-12 and frequencies that are Doppler-shifted due to plasma rotation. In the model analysis

below, we concentrate on a single excited mode. To analyse the experimentally observed structures

in more detail, the slow frequency drift of the modes (due to a slow change in the properties of the

background plasma) is compensated for as follows: for each of the data windows (i.e. at each

discrete time step) we pick out the power maxima as a function of frequency; we then test to see if,

as time varies, there exist pixels corresponding to maxima which are connected, either side-to-side

or diagonally. All connected structures of this type that have at least 100 elements are shown in

Fig.2. The best resolved structure has been highlighted in bold; its frequency defines a function of

time which we shall refer to as ωref (tn), where tn is the time coordinate of the n-th pixel. The

frequency coordinate of the original power spectrum Fig.1 at each time step is then mapped according

to ω(tn) 7 → ω(tn) (ωref (t0) = ωref (tn)). The result of this procedure is shown in Fig.3. This enables

the power spectrum to be compared at di®erent times on the same frequency scale. Figure 4 shows

two cuts through the transformed power spectrum Fig.3 at t = 12:40s and t = 12:45s. We note that

each of the dominant peaks in panel (a) has developed sidebands in panel (b).

3. FREQUENCY SPLITTING IN THE VM(BB) MODEL

The VM(BB) system self-consistently models the resonant nonlinear coupling between energetic

particles and the wave modes they excite. It is based on the one-dimensional electrostatic bump-on

-tail model, with particle distribution relaxation and background electric field damping. We cast the

model as follows (7), in terms of the particle distribution f(x, v, t) and the electric field E(x, t):
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(1)

 (2)

Here F0 denotes the combined particle source and loss function, νa the particle relaxation rate, γd

the combined effect of all background damping mechanisms that act on the electric field, and f0 the

spatial mean of f. Spatial lengths are normalised to the Debye length λD; velocities to the thermal

speed νth; time to the inverse plasma frequency ωp
-1 ≡ λD/νth; and E to mevth

2/eλD. Central to the

present paper is an interpretive code (8) which uniquely solves the fully nonlinear VM(BB) system

without employing analytical approximations. It allows direct numerical solutions of the fully

nonlinear self-consistent VM(BB) system across the entirety of (γd; νa) parameter space for any

F0(v). Application of this code (7) for a particular F0(v) shows how the behavior of the VM(BB)

system depends on its parameters. Our first objective here is to investigate how far the conceptually

simple physics basis of the VM(BB) model captures the observed phenomenology of frequency

splitting in JET.

For both the simulations described in this paper, we initiate using a bump-on-tail distribution

   F0 (v) = Fbulk + Fbeam (3)

where

  (2π)1/2 Fbulk = (η/νc) exp (-ν2/2ν2
c) (4)

(2π)1/2 Fbeam = [(1 - η)/νt] exp [-(ν - νb)2/2v2
t (5)

and we choose η = 0.9, νc = 1.0, νb = 4.5, and νt = 0.5. The results presented below are not dependent

on this specific choice of parameters; they are quoted for the sake of reproducibility. We note, however,

that this choice of distribution has a small proportion of particles in the energetic tail and that the beam

is well separated from the bulk. Space is taken to be periodic with period L = 2π/4/k0 where k0 = 0.3.

The simulations are initialised with f(x, ν, t = 0) = F0(ν)(1 + α cos(k0 x)) where α = 0.001; the initial

electric field is provided by Poisson’s equation E(x, t = 0) = (α = k0) sin(k0 x).

Previous work (7) has classified how the system’s behavior depends on the parameters (γd, νa).

Specifically it has been shown that, for different values of (γd, νa), the system may be damped,

steady state, periodic or chaotic. Let us now study how the system proceeds from steady state (i.e.

the field is a single mode with constant amplitude) to chaos. This is achieved by choosing a cut in

(γd, νa) parameter space, where one end corresponds to steady state and one to chaotic behavior.

Simulations are then performed where we travel slowly along the cut, at a rate sufficiently slow that

the results are independent of the speed of travel. The cut chosen is the straight line segment γd = 1.0,

δf

δt

δf

δx

δf

δv
Ev+ + = - νa (f - F0)

δE

δt
+ ν (f - f0) dv = γdE
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0.022 ≤ νa ≤ 0.05: with γd unchanged as we move along the cut, νa = 0.05 and νa = 0.022 correspond

to steady state and chaotic system behavior, respectively. It is found that it is possible to move through

some sections of parameter space more quickly than through others; intervals that are rich in bifurcations

must be traversed slowly. We have therefore performed two numerical simulations, travelling along

sections of the same cut at two different speeds: (a) νa = 0.06 - 10-7t and (b) νa = 0.0265 - 10-8t. The

second simulation therefore provides a more detailed picture of the end of the cut corresponding to

smaller νa, in the chaotic regime. Each simulation ran until t = 5×105 and took approximately 120

hours running in parallel on four processors each capable of 5.2 GFLOPS.

During each simulation we record the (complex) component of the electric field in the first

spatial mode E1(t) = ∫ E(x, t) exp(-ik0x)dx.

Spectra |E1(ω)| of the electric field component E1(t) are shown in Fig.5. These spectra are

generated by linearly interpolating the simulation time series onto a regular temporal grid with

spacing ∆t = 0.1, taking windows of 4096 points, applying a Hanning windowing function, and

then performing a Fast Fourier Transform (FFT) on each of these windows. The results shown in

Fig.5 use a greyscale scheme across five orders of magnitude.

To examine the spectra in detail we take cross-sections of Fig.5 at different fixed values of νa; a

selection is shown in Fig.6. The first plot (a) (νa = 0.05) confirms that the system is dominated by

a single mode; the Fourier spectrum is of the shape one would expect for a single mode of frequency

ω0 viz. E1(ω) ˜ ω/(ω2
0 - ω2). The second plot (b) (νa = 0.045) shows the appearance of distinct

sidebands; the envelope of the spectrum is still dominated by the central mode. The third plot (c)

(νa = 0.04) corresponds to a regime of complex behavior; there is no clear structure to the spectrum.

Structure returns in plot (d) (νa = 0.03) although here there are a much larger number of significant

side-bands. Moreover, the envelope of the maxima in ω behaves as exp (-|ω - ω0|). Between plot

(d) and plot (e) (νa = 0:0245) there is a period-doubling bifurcation, which corresponds to a halving

of the distance between sidebands. The consistency in sideband separation between plot (e) and

plot (f) (νa = 0.02375) implies that there is no period-doubling bifurcation between these values of

νa. There is however a period doubling going from plot (f) to plot (g) (νa = 0.023). Plot (h) (νa =

0.022) corresponds to the chaotic regime.

4. THE BIFURCATORY ORIGIN OF FREQUENCY SPLITTING

The VM(BB) model defined by Eqs.1 and 2 can be said to capture frequency splitting in JET Pulse

No: 40332 insofar as, for example, Fig.5 resembles Fig.3; see also Ref.5 which uses an analytic

approximation to the fully nonlinear VM(BB) model deployed here. The results in the preceding

section suggest that the classic nonlinear phenomenon of period doubling bifurcation lies at the heart

of the observed plasma behavior. This conjecture is strengthened by the following analysis, which

provides a rigorous account of the role of period doubling bifurcations in the fully nonlinear model.

A period doubling bifurcation is a global bifurcation that occurs when a periodic orbit becomes

unstable and the system moves to a nearby periodic orbit of double the length; this new orbit

˜

˜
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traverses twice around in a neighborhood of the original orbit before joining back on itself. Such

orbit splitting can manifest itself in the splitting of extrema in the time series of macroscopic

quantities, such as |E1(t)|  in the VM(BB) system considered here. For example, if we write a(t) =

|E1(t)|, and consider a projection of the system onto the (a, a) plane, then extrema in a correspond to

the Poincaré section a = 0. This motivates the diagrams shown in Fig.7, which plot extrema in time

of |E1(t)| as functions of νa, by inverting the mapping t → νa for the two simulations (a) and (b).

Since the bifurcation sequence proceeds from right to left with decreasing νa, let us discuss Fig.

7 in that direction. For values of νa > 0.046, the system is dominated by a single mode. The parameter

range over which a steady state is observed is extensive: 0.1 > ν > 0.046, although for the sake of

clarity it is not shown on this diagram. Despite the mode amplitude being nearly constant in this

range, small fluctuations render it visible in this plot of extrema. At νa = 0.046 the time series

develops a well separated maximum and minimum. The behavior in the interval 0.044 > νa > 0.038

is complex, and appears to display regions of chaos alternating with regions of order. In the relatively

large interval 0.038 > νa > 0.025, the time series is periodic with two maxima and two minima in

each cycle. Bifurcations are then observed at νa = 0.025 and νa = 0.0236. The onset of chaos occurs

at νa = 0.0228. It appears that a rapid quantitative change in system behavior occurs at νa = 0.0239.

However, this is only a change in the size of the orbit, and no qualitative change (such as a change

in the number of extrema) occurs; this does not constitute a bifurcation. The analysis of the VM(BB)

model from this perspective establishes the quantitative correspondence between the evolving Fourier

spectrum (Fig.6) and the nonlinear systems plot of bifurcations (Fig.7).

CONCLUSIONS

The results presented in this paper suggest that key aspects of the frequency splitting observed in

JET Pulse No:40332 are captured by the VM(BB) model in its fully nonlinear self-consistent form

(Eqs.1 and 2) as implemented in the code of Refs. 7; 8. Our results also provide strong support for

the conjecture that period doubling bifurcation underlies the observed plasma phenomenology.

This follows both from analysis of the power spectrum of the dominant mode as it evolves in time,

and from a non-linear systems approach to plots of field extrema. These results open the way to

relating observations of frequency splitting to the two key model parameters (γd, νa) of the VM(BB)

system, subject to signal-to-noise constraints.
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Figure 2: Connected structures defined by pixel-by-pixel
analysis of the power spectrum shown in Fig.1. The
structure highlighted in bold provides the basis for the
frequency map by which Fig.3 is obtained.

Figure 1: Experimental observation of TAEs in JET Pulse
No: 40332 undergoing frequency splitting. The slow
frequency drift is due to slow variation of macroscopic
plasma parameters. Logarithmic greyscale plot of the fast
Fourier transform (FFT) across two orders of magnitude.
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Figure 3:Transformed power spectrum of JET Pulse No:
40332. Frequency has been nonlinearly stretched to
eliminate the slow frequency drift using a map based on
the structure identified in Fig.2. Time is unaffected by this
map. This transformation allows cross sections
corresponding to different times (as in Fig.4) to be
compared on the same frequency axis. Logarithmic
greyscale across two orders of magnitude.
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Figure 4: Cuts through the transformed power spectrum
shown in Fig.3 at times (a) t = 12.40s and (b) t = 12.45s.
Panel (a) displays four distinct modes. Panel (b) shows
that side-bands have formed beside the dominant modes.
It is not clear whether only a small number or many
significant sidebands are formed. From t = 12.45s until
at least the end of the observation there is no qualitative
change in the power spectrum. The feature at 408kHz in
panel (a) is an unrelated mode.
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Figure 5: Field spectra |E1(ω)| as a function of time for the two simulations (a) and (b) described in the text. Plot (a)
shows, as νa decreases, the transition from a single mode, through a region of complicated behavior, to a significant
interval with a number of modes with well-defined spacing, to a region where separate modes are indistinguishable.
Plot (b) shows details that cannot be observed in plot (a). It shows two period doublings, at νa = 0.0250 and νa =
0.0236. At νa ≈ 0.02284 either a further period doubling or transition to chaos occurs. Cross sections of these plots
are shown in Fig.6. (Greyscale plots over five orders of magnitude)
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Figure 6: Cross sections through Fig.5 showing power spectra for various values of the model parameter νa. The
bifurcation sequence is discussed in Section IV.
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Figure 7: Plots of extrema in the electric field energy A(t) observed in the solution of the VM(BB) system as a function
of particle relaxation rate νa (the parameter γd is fixed at unity) for the two simulations (a) and (b) described in the
main text. The splitting of extrema corresponds to bifurcations in the time series A(t). Plot (ii), which corresponds to
simulation (b) carried out at high time resolution, is a magnification of a section of plot (a); it shows the bifurcation
path of the system to chaos through a series of bifurcations.
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