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ABSTRACT

The radial electric field Er, and particularly its gradient, has been invoked by various theories and

empirical models as a crucial parameter for determining the transition to high confinement regimes,

such as the onset of an Internal Transport Barrier in the plasma core and of the H-mode pedestal at

the plasma edge. Following a recent absolute calibration of the charge exchange diagnostic system,

we have evaluated the uncertainty on the calculated Er. Starting from the neoclassical moment

approach of Hirshman and Sigmar, simple approximations have been used to reduce the full matrix

calculation to a set of analytical formulas, adapted for the 2D toroidal geometry of JET to describe

all collisionality regimes (banana, banana-plateau, Pfirsch-Schlüter), and to include a calculation

of the error bars on Er. Here we compare this analytical calculation with the results of the JETTO

and NCLASS codes. Specifically, we assess how different approaches to treat numerically certain

input plasma parameters for this calculation (ion density and effective charge profiles) can yield

very different results for Er. This is particularly clear for the plasma edge, where the contribution of

the toroidal rotation velocity to Er becomes small and comparable to the poloidal velocity and

pressure components: hence uncertainties in the ion density profiles dominate the calculation of Er.

On the other hand, excluding such edge and core regions of the plasma (where the typical scale

lengths become comparable to the ion poloidal Larmor radius), we find a striking similarity in the

shape of Er in L-mode and ITB plasmas, and we demonstrate the role of prompt fast ion losses

when comparing H-mode plasmas with forward and reversed ion ∇B-drift direction. Our analysis

points clearly to the need for routine measurements of the poloidal velocity and Er if detailed

comparison with code predictions and empirical scaling laws are to be made for studies and modelling

of improved confinement regimes.

1. INTRODUCTION.

The radial electric field Er, and particularly its gradient ∇Er, has been invoked by various theories

and empirical models as a crucial parameter for determining the transition to high confinement

regimes, such as the onset of an Internal Transport Barrier (ITBs) in the plasma core [1,2] and of the

H-mode pedestal at the plasma edge [3]. Various classic examples of these studies are given in the

review papers indicated in Ref.[4]. Hence, it is crucial to obtain detailed and accurate measurements

of the time-and-space evolution of Er(r,t), with an assessment of their uncertainty, for validating

such model calculations, if reliable predictions of improved confinement regimes are to be made.

The radial electric field is not directly measured in the JET tokamak [5] at the present time, and for

a long time it has been routinely computed mixing the contribution of different ion species: the

measured carbon toroidal rotation, the computed deuterium pressure gradient (from the measured

ion temperature and computed deuterium density), and the computed neoclassical mass-averaged

ion poloidal velocity. This approach contradicts the fact that Er(r,t) is an overall property of the

plasma, common to all ion species, hence it should be computed independently for the main and the

impurity ions, to check the consistency of the numerical results. Some earlier measurements of the
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edge radial electric field were indeed performed in JET to assess its importance in the L-to-H mode

transition [6], but have not been routinely repeated since the hardware and views were changed.

Based on the neoclassical moment approach of Hirshman and Sigmar [7], an analytical formulation

was initially developed in Ref.[8] to reduce the full matrix calculation to a set of readily tractable

equations. The validity of this approach for the JET tokamak was verified by comparing the inferred

deuterium toroidal rotation velocity with that obtained from the Doppler shift in the frequency of

radially localised magneto-hydrodynamic modes [9]. This analytical formulation was extended to

all collisionality regimes (banana, banana-plateau and Pfirsch-Schlüter) to include the 2D geometry

of the JET flux surfaces, averaging over the ion orbit width. Furthermore, following up from a

recent absolute calibration of the JET Charge eXchange (CX) diagnostic system [10], we have also

included an analytic calculation of the error bar on the 3D radial electric field profile Er(r,t).

In this paper we compare the results of this analytical calculation with the results of the JETTO

[11] and NCLASS [12] codes for various typical JET plasma scenarios: L-mode, ELMy and ELM-

free H-modes (with normal and reversed ion ∇B-drift direction), and ITB with a deeply and

moderately reversed safety factor profile. In particular, we assess how different approaches to treat

numerically certain input plasma parameters for this calculation (essentially the ion density and

effective charge profiles) yield rather different results for Er. This is particularly clear for the plasma

edge, where the contribution of the toroidal rotation velocity to Er becomes small and comparable

to the poloidal velocity and pressure components, with significant implications for testing theories

that associate the L-H transition to the edge values of Er and ∇Er.

This paper is organized as follows. Section 2 gives a rapid overview of the core CX system in

JET, with particular focus to its absolute calibration, and Section 3 briefly describes the JETTO and

NCLASS codes. In Section 4 we overview the neoclassical moment approach of Ref.[7] and how

we have adapted and extended it to the specific JET case following up from the methods described

in [8,9]. Section 5 presents the comparison between various model calculations for the ion poloidal

velocity, whose role is particularly important in determining the radial electric field where steep

pressure gradients exists, such as at the plasma edge (L-to-H mode transition) and towards mid-

radius (ITB formation). In Section 6 we present in details the error analysis we have adopted here,

focusing specifically on the contribution of the uncertainty in the raw data when taking their gradients,

and on the use of different numerical approaches to fit, inter- and extra-polate the “raw” input data.

Section 7 presents the comparison between the JETTO and NCLASS code calculations and the

results of our analytical formulation for a reference JET plasma undergoing the L-to-H-mode

transition, to estimate the differences in the resulting Er(r,t) due to the different choices for numerical

treatment of the input data profiles, and compare these differences with the uncertainties in Er(r,t).

Sections 8 and 9 present the results of our analysis for the two groups of JET operating regimes we

have analysed here, the L-to-H mode transition in the conventional tokamak scenario (with a monotonic

safety factor profile) and the ITB formation in the advanced tokamak scenario (non-monotonic safety

factor profile), respectively. Finally, in Section 10 we discuss these results and present our conclusions.
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2. OVERVIEW OF THE CORE CX SYSTEM AND ITS ABSOLUTE CALIBRATION.

In this paper, the charge-exchange diagnostic provides the measurements of the ion temperature Ti,

of the carbon toroidal rotation VφC and of the carbon density nC profiles over the radial interval

2.9<R(m)<3.8, where R is the plasma major radius along the midplane. It is important for the scope

of this paper to briefly discuss the issue of statistical and systematic error on these measurements,

but the issues related to the spatial resolution of the measurements will however not be considered

here. A complete description of the method used for the absolute calibration of the JET core CX

diagnostic and its results is given in [10]. The ion temperature and toroidal velocity are determined

from the Doppler broadening and the Doppler shift of the C6+ charge-exchange line (5290.54Å),

respectively. The error on Ti(r,t) is only of statistical nature, being related to the result of the multi-

Gaussian fit used to analyse the features of the C6+ line. On the other hand, the error in VφC(r,t) has

two components: a statistical one resulting from the multi-Gaussian fit and a systematic one linked

to the uncertainty in the angle between the line of sight and the toroidal direction at the intersection

volume between the neutral beam injection (NBI) trajectory and the line of sight. The carbon

concentration at this position is calculated from the measured emissivity of the CX line using

knowledge of the CX cross-section and the fast neutral density in this observation volume due to

the injected beam ions, deduced from a beam attenuation code. The error on nC(r,t) is hence the

combination of a statistical error, related to the measured emissivity of the CX line as determined

from the spectral fit, and of a systematic error. For the latter, we do not consider the uncertainties of

the fast neutral densities in the intersection volume as determined by the beam attenuation code,

but only the uncertainty in the position of this volume. Overall, following the detailed calibration

work presented in Ref.[10], it was determined that the absolute error σ is σ(nC)≈0.3nC,

σ(VφC)≈0.15VφC and σ(Ti)≈0.05Ti.

3. OVERVIEW OF THE JETTO AND NCLASS CODES.

JETTO [11] is a 1.5 dimensional transport code solving equations for the plasma current, the ion

density, the electron and ion temperature and the ion toroidal velocity. In addition JETTO uses the

effective charge ZEFF=∑iniZi
2/ne and an average charge state for impurities to estimate the electron

density and the impurity concentration. The toroidal velocity appearing in JETTO equations is thus

a quantity mass density averaged over the main and impurity ion species in the plasma. JETTO has

been coupled to NCLASS [12] for the computation of neoclassical transport coefficients. NCLASS

follows the formulation of Hirshman and Sigmar [7] and solves a matrix for plasma flows within

and across magnetic surfaces derived from the parallel and radial force balances for plasmas with

multiple ion species. A very important difference in the treatment of impurities between JETTO

and NCLASS is that, as indicated previously, JETTO uses an average charge state for impurities,

while NCLASS treats each impurity charge state separately. To combine the two codes it has been

chosen to split the effective charge in JETTO between neighbouring states for input to NCLASS

and then collapse the resulting NCLASS output to a set of effective quantities that conserve the
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sum over the charge states. The advantage of using JETTO and NCLASS together is that one can

then take into account realistic plasma equilibria and geometries and avoid many of the

approximations that are used to derive simple analytic expressions for neoclassical quantities.

4. ANALYTIC TREATMENT OF NEOCLASSICAL MOMENT APPROACH.

The radial electric field Er(r,t) is computed from the force balance equation

1
Zen (r, t)

dp(r, t)
dr

Er (r, t) = + sign (Bφ)Vθ(r, t)|Bφ(r, t)|-Vφ(r, t)Bθ(r, t),

         

 (1)

where the pressure (p), density (n), charge (Ze), atomic mass (Amp) and rotation velocities (toroidal,

Vφ, and poloidal, Vθ) are all species dependent quantities, Bφ and Bθ are the toroidal and poloidal

magnetic field, respectively, and r is the radial coordinate along the plasma minor radius. Note that

the toroidal magnetic field is a signed quantity, negative in the standard JET operating configuration

(counter-clockwise when viewed from above the plasma midplane). Since Er is an overall property

common to all the ion plasma species, using in Eq.(1) quantities for the main (deuterium, D) and

the impurity (carbon, C) ion species must give the same result, within the error bar of the measurement

and calculation. The condition ErC≈ErD has been verified for all the discharges analysed here, giving

2×|ErD-ErC|/|ErD+ErC|<15%, comparable to the uncertainty in the calculation of Er (see Section 5).

This condition is a basic consistency check of the calculation: if ErC≠ErD within the error bars, then

there must for sure be an error in the calculation. The condition ErC≈ErD is not a standard result, in

the sense that by using different ion density and ZEFF profiles one can easily get ErC≠ErD, i.e. with

the difference larger than the error bar on the calculated radial electric field. To evaluate Eq.1, we

have used the CX measurements of the carbon density nC, of the ion temperature TC=TD=Ti, of the

carbon toroidal velocity VφC, and of the magnetic field, using the Motional Stark Effect (MSE)

diagnostic to measure the safety factor profile q(r), hence evaluate Bθ.

In this work we start from the neoclassical moment approach of Hirshman and Sigmar [7],

which is derived for plasmas composed of electrons, one main ion species (deuterium) and only

one impurity ion species, carbon in our case. This approach involves solving matrixes for plasma

flows within and across magnetic surfaces derived from the parallel and radial force balances for

plasmas with two ion species, which requires the use of heavy computational tools. An analytical

approach to compute the various neoclassical coefficients determining the deuterium toroidal velocity

VφD and the carbon and deuterium poloidal velocities VθC and VθD has been developed by various

authors using different simplifications for the plasma geometry and the physics terms to be included.

The clear advantage of such analytic approaches is that they make it possible to investigate in

greater details and with much more “experimental” control certain aspects of the full-matrix

neoclassical formulation, without having to rely on heavy and often cumbersome computational

tools, which may become somewhat difficult to interpret and understand at times.
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Following Ref.[7] and starting from the general results of Ref.[8], the differential toroidal rotation

velocity between the deuterium (computed) and carbon (measured) ∆Vφ=VφD-VφC is given by:

υthDρθD

4LTD

3Bφ
2

<B2>

ZDTC

ZCTD

LTD

LpC

LTD

LpD
∆Vφ = - sign(Bφ) 1 -

Bφ
2

<B2>
1 - ,1 --( ( () ) )K2  (2)

where the (r,t) dependency has been dropped for clarity. Here vth and ρθ are the ion thermal speed

and poloidal gyroradius, respectively, B is the total magnetic field, taken as B=(Bφ
2+Bθ

2)1/2 (thus

neglecting for simplicity the diamagnetic, radial and vertical components), and the brackets <>

indicate flux surface averaging. The pressure scale length Lp is related to the temperature and

density scale lengths LT and Ln by 1/Lp=1/LT+1/Ln. Here 1/LX=d(lnX)/dr, thus the scale length is

negative for a quantity that decreases with the minor radius. We wish to point out here that the use

of the term sign(Bφ) in Eq.(2) and below allows us to apply the same formulation for all pulses with

the same plasma helicity, i.e. sign(BφIp)=constant, which is the usual JET operating scenario. A

more complex analytic formulation can also be derived for a non-constant plasma helicity, i.e.

when the directions of the plasma current and toroidal magnetic field are independently reversed.

Equation (2) has been obtained by neglecting the electron contribution to the viscous and friction

forces and the impurity viscous force compared to the friction force between the impurity and the

main ion species. Defining the impurity strength parameter α=(nCZC
2/nDZD

2), the parameter K2 is

given as function of α and β=(6.75AD/AC)2/[7.5+(2αAC/AD)1/2] as:

K2 = (µ00µ11 - µ01)/D,2
                                                       (3a)

D = µ00 [µ11 
+   2 + α(1-β)-µ01].2

                                           (3b)

The coefficients µij entering the calculation of K2 are those for the main ion species, but these are

species-dependent quantities (hence the superscript s below) given by the general relation:

Gµij, s

(1 + 2.92ν
*
µij, s /µij, s

)(1 + µij, s / µijs
 / ωts / τs / 6)

µij, s = BA PL PL

BA

PS  .                         (4)

This formulation provides a clear and simple analytic format for the transition between the various

collisionality regimes, indicated by the acronyms BA (banana), PL (plateau) and Pfirsch-Schlüter

(PS), using a Padé approximation of the different mij coefficients as function of the normalised ion

collision/bounce frequency ν*. Using µ01=2.5µ00-k01, and noting that Eq.(4) also applies to k01,

the µ00, µ11 and k01 coefficients for the main ion species (here deuterium) are given by:

0.53 + α

SD

3.02 + 4.25α

2.23 + α(5.32 + 2.4α)
µ00, D = , µ00, D = 1.77 , µ00, D = ,BA PL PS

3/2

            (5a)
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1.39 + 3.25α

SD

15.18 + 26.97α

2.23 + α(5.32 + 2.4α)
µ11, D = , µ11, D = 5.76 , µ11, D = ,

3/2
BA PL PS

            (5b)

0.71 + α

SD 

12.43 + 20.13α

2.23 + α(5.32 + 2.4α)
k01, D = , k01, D = 5.32 , k01, D = ,BA PL PS

3/2                 (5c)

The µij coefficients for the impurity ion species (here carbon) and electrons can be obtained from

those for the main ion species with the substitution α→1/α for the impurities and α→ZEFF for the

electrons. In Eq.(4) G=FTRAP/FCIRC is the trapped/circulating ion fraction, FTRAP≈√ε(1.46-0.46ε)

in the large aspect ratio limit (FTRAP+FCIRC=1), where ε=r/(R0+r) is the normalised local minor

radius (R0 being the position of the magnetic axis), and

1

nS 
ZS 

e

dpS

dr
Xs = -VφS 

Bθ ,                                               (6a)

 
4π2 AS

ZS

XS

υthsBθ

d log(RBθ)

dr

d log(XS)

dr
Ss = 1 ρθs- - ,                        (6b)

ASTi
3

neZs
2logΛs

τs = 6.6 × 10-2 logΛs = 17.3-log (ns) + 1.5log (Ti) - 3log (Zs),,               (6c)

ωtD B G / 1.46

2τ
D
υ

thD

v*= 2.83 + α1 + α
1 + 7 (1 - F

CIRC
)∇B

AC

AD

2

22             (6d)

In Eq.4 S≈[0.8-1.2] is the orbit squeezing parameter [13], which applies only to the BA regime,

ωt=vth/q/R is the ion thermal transit time frequency, τ is the ion slowing-down time and ν* has been

generalised here to include its trapped particle scaling [14] and all ion/electron, ion/ion and ion/

impurity collisions; R=R0+r is the plasma major radius, and the numerical factors in Eq.6(c) are

evaluated for the temperature in units of [keV] and the density in units of [1020m-3]. Note that the

definition of ν* adopted here is rather different from the most common one, ν*X=qRε-3/2/τD/vthD,

but the two correspond in the large aspect ratio limit when only ion-electron collisions are included.

Starting from Ref.[8], the neoclassical formulation of Vθ depends on the collisionality parameter

K1 and on the temperature and pressure scale lengths as (ρφ being the ion toroidal gyroradius):

K1 = µ01 / Dˆ2 + α (1 - β)  ,                                                   (7)

υthD ρφD

2L
TD

VθC = - sign (Bφ) K1

|BBθ|

<B2>  ,                                        (8a)
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υthD ρφD

2LTD LpD LpCZD 
TC

VθC = - sign (Bφ) K1 K1 + 
LTD LpDZD 

TC
1

|BBφ|

<B2>

3K2

2  . (8b)

Alternatively, by neglecting the contribution of the ion and impurity pressure scale lengths to the

poloidal velocity, a different approach can be used to derive the neoclassical coefficient kNEO, so

that Vθ≈kNEO∇T, as recently introduced by Tokar in Ref.[15]. Here a Padé approximation of kNEO

as function of ν*X was considered. Hence, alternative expressions for VθC and VθD were obtained

as:

υthsρφS

2LTS

VθS     = - sign (Bφ) kS
NEO

 
(∇T)

 ,                                          (9a)

0.061 + v*X ε
3/2    v*X - 0.703

0.222 + v*X ε
3/2    v*X + 0.302

ks
NEO

 = 1.83 .s

s

s

s

 .                                  (9b)

The neoclassical theory used to derive Eqs.2-9(b) is expected to break-down when the scale lengths

are much shorter than the main ion poloidal gyroradius, L’s<<ρθD. This typically occurs in the high

magnetic shear region at the plasma edge or in the core of plasmas with a deeply reversed q-profile,

where ρθD≈L’s even for flat (density, temperature) profiles since Bθ→0 over a large region (i.e., not

only on the magnetic axis). A practical spatial limit for the validity of the neoclassical theory in the

plasma core is then to take the ion banana orbit width, δBAN≈qρθ/√ε, and linearly extrapolate the

results towards the magnetic axis for all points 0<r≤δBAN.

The validity of Eq.(2) was first experimentally verified on the Doublet III-D tokamak (DIII-D)

[16]. Direct measurements of the ion toroidal rotation velocities were performed using CX

recombination spectroscopy of the main ion species, He2+, and of the impurity ion species C6+ and

B5+ in DIII-D helium plasmas with a monotonic q-profile [17]. The right hand side of Eq.(2) was

computed from the measured profiles and showed a very good agreement with the measurement of

∆Vφ, the only significant discrepancy arising in the high magnetic shear region at the plasma edge.

The validity of this approach for the JET tokamak was successfully verified in Ref.[9] by comparing

the inferred deuterium toroidal rotation velocity with that obtained from the Doppler shift in the

frequency of radially localised magneto-hydrodynamic modes.

It is important to note here that for comparison with codes such as JETTO and NCLASS,

flux-surface averaging of Er, Vφ and Vθ is needed. This operation can be treated analytically (but

for the flux surface expansion towards the X-point) using the original straight-field line approximation

of Merezkhin [18], adapted here to include the plasma elongation and triangularity, following from

the derivation presented in Ref.[19]. This method is valid up to x≈0.95 for low-βθ plasmas in the

limit of low edge triangularity δ95, such that δ95/κ95=O(ε(x)) and βθ=O(√ε(x)), where x=√ψN is
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our radial coordinate, ψN being the normalised poloidal flux The validity of this analytical treatment

of the flux-surface averaging is checked by comparing its results with the JETTO ones for the flux-

surface averaged radial profiles of ne, Te, Ti and Bθ. The transformation between the “real toroidal”

and the “analytic circular” flux-surfaces is obtained as (R,Z)→[R0+∆SHAF(x), J(x)r(x)]. Here the

Jacobian J(x) of the transformation between a “true toroidal” flux surface and its geometrical

approximation using an ellipse distorted by triangularity, with the centre displaced by the Shafranov

shift ∆SHAF is J(x)=[1+κ2(x)]1/2[1+2δ(x)/π]/√2. Hence, flux-surface averaging of a quantity X

whose profile is a function of R is obtained using the geometrical factor J2/(2J2-1)1/2, so that

<X>=X*[J2/(2J2-1)1/2]. All data presented in the following sections are to be considered as flux-

surface averaged values.

A second point to discuss here is the radial averaging of Er(x,t) over the ion orbit width, which is

not considered in JETTO nor NCLASS. Following from the analysis of Ref.[20], in the usual case

of a monotonic q-profile the trapped ions have all banana orbits with guiding centre on a given

flux-surface: the banana orbit width is δBAN≈qρθ/√ε~3÷10cm. However, for the case of a non-

monotonic q-profile, an important fraction of the trapped ion orbits is represented by non-standard

potato ones, whose width much exceed that of the typical banana orbits. Continuing and extending

the work of Ref.[20], the width of a potato orbit can be analytically estimated as:

2qυ⊥

R0 Ωφ
δPOT ≈ R

0
δBAN ,≈= R0

2/3 2/3 1/35/64q ρθ

R0

16R0

ρθ

ε   

q  ,                         (10)

where v⊥=√2vth is the ion velocity perpendicular to the toroidal magnetic field, Ωφ=ZeBφ/Ampc is

the ion cyclotron frequency, and typically we have that δPOT≈20(ε/q)δBAN for δBAN>r. To obtain

an analytic treatment of the averaging over the ion orbit width, we have considered that all banana

(and potato) orbits have the same width for ions whose guiding centre lies on a given flux-surface,

hence neglecting the formal and very complex averaging over the exact ion velocity distribution

function. Again following up Ref.[20], we have empirically estimated the potato/banana orbit fraction

as:

FPOT

FBAN ε + |s|
q (r = δBAN) ,≈ qMIN

|   ε - s
0 
|

q(x = 0.95) - qMIN

|q(r = δBAN) - qMIN|
 ,                          (11a)

FPOT + FBAN ≈ 2 FTRAP ,
|qMIN - q (r = δBAN)|

|qMIN - q (r = δBAN)|  ,                                  (11b)

δORB = ,
FPOT δPOT + FBAN δBAN 

FPOT + FBAN
 ,                                            (11c)

where qMIN is the minimum in q(x), s(x)=(r/q)(dq/dr) is the local magnetic shear (s0 being the
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value on-axis), and δORB is the effective ion orbit width used for the radial averaging of Er(x,t) and

its components. Note also that FPOT+FBAN=FTRAP for a monotonic q-profile, where qMIN≈q(r=δBAN).

5. EVALUATION OF THE ION POLOIDAL VELOCITY.

The radial electric field Er(x,t) given by the force balance equation, Eq.(1), contains the contribution

of the toroidal (Vφ×Bθ), poloidal (Vθ×Bφ) and pressure gradient (∇p/neZ) components. The toroidal

component is typically the dominant one since |Vθ/Vφ|≈o(|Bθ/Bφ|) and, moreover, the neoclassical

poloidal and pressure gradient components often almost cancel out each other, leaving a resulting

negligible net contribution to Er(x,t). However, this is not always the case towards the plasma edge,

typically for x>0.9, where we often find that |Vθ/Vφ|≈O(|Bθ/Bφ|) because of the large reduction in

the toroidal velocity due to a much smaller momentum input, and similarly may not be the case if

Vθ(x,t) is anomalous (i.e. non-neoclassical), for instance at the ITB location. The carbon poloidal

rotation velocity profile VθC(x,t) is indeed directly measured in many machines over the entire

plasma cross-section, see as examples the results of Ref.[17], but this is not yet the routine case in

JET due to certain difficulties with the present diagnostic setup, and indeed a new diagnostic system

is currently being installed to correct these problems. In the following we have therefore decided to

use the neoclassical value of Vθ(x,t). Hence, it is paramount to assess such neoclassical calculations,

using the complete NCLASS formulation in comparison with the simplified analytical treatments

provided by Eqs.8(a), 8(b) and/or Eqs.9(a), 9(b).

Figures 1(a) and 1(b) show the flux-surface averaged <VθC> and <VθD> calculated over the

entire plasma cross-section using the same JETTO input profiles (with no orbit width averaging) at

two time points during the L-mode and H-mode phase, respectively. We notice that the Vθ calculated

using NCLASS and Eqs.8 (a), 8 (b) are similar to each other in the L- and H-mode phase, with only

small differences in the plasma core, for x=√ψN<0.2, and at the plasma edge, for x>0.9, where

<VθC> from NCLASS is large and negative, particularly in the H-mode phase. The differences

for x>0.9 cannot be related exclusively to the treatment of the edge flux-surface geometry, and

are thus indicative of further terms which are not properly captured by the analytic treatment

of Eqs.8(a), 8(b). Further differences also arise when considering the various methods for

inter/extrapolating the input data, as described in Section 7. Figure 1(b) also shows that the

calculated <VθD
∇T>=<kNEO,D∇T> is very different from the other two, notably in its sign.

This difference is particularly significant in the H-mode phase (and similarly applies to the L-mode

and ITB plasmas we have analysed) because of the different pressure scale lengths for the main and

impurity ion species. We conclude that the simplified approach of Ref.[15] may not be completely

adequate to capture the essential features of the neoclassical calculation of Vθ. On the other hand,

Fig.1 convincingly shows that the intuitively simpler (computationally much faster) analytical

formulation developed here indeed reproduces sufficiently well the complete NCLASS calculations.

Since it has not yet been convincingly demonstrated that indeed VθC(x,t) is neoclassical, the use

of such value for computing Er(x,t) is obviously introducing an error which is difficult to quantify,

particularly at the plasma edge where we can clearly have that |Vθ/Vφ|≈O(|Bθ/Bφ|) due to the low
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toroidal momentum input. Hence, all the results presented in the following sections have to be

taken with the caveat of having used the neoclassical value for Vθ(x,t), therefore the calculated

radial electric field Er(x,t) is obviously to be intended purely as the neoclassical one.

6. ERROR ANALYSIS.

An accurate and systematic error analysis is needed in order to assess the validity and the possible

applications of the various models proposing the spatial and temporal evolution of the radial electric

field as a crucial parameter for the transition to high confinement regimes. Here we estimate the

total uncertainty on the neoclassical calculation of Er(x,t) using a Gaussian propagation of the

errors on the measured quantities which enter the formulation presented in Section 4. Note that for

our error analysis we assume that the spatial grid x=√ψN where the measurements are made is

known exactly a-priori, i.e., to be free from errors. Typical values for the statistical absolute error σ
on the magnetic field and safety factor profiles are σ(Bφ)≈0.05Bφ (due to uncertainties in the current

in the main toroidal field solenoid) and σ(q)≈0.1q, giving for the poloidal field σ(Bθ)≈0.12Bθ; on

the electron density profile σ(ne)≈0.1ne in the plasma core and σ(ne)≈0.3ne at the plasma edge, for

x>0.85; on the carbon density and toroidal rotation velocity, ion temperature and effective charge

profiles σ(nC)≈0.3nC, σ(VφC)≈0.15VφC, σ(Ti)≈0.05Ti, and σ(ZEFF)≈0.2ZEFF, respectively. The error

on the deuterium density profile nD(x) depends on σ(ZEFF), σ(ne) and σ(nC) through conservation

of the local charge neutrality (see also Section 7) ΣiZini(x)=ne(x) and of ZEFF(x)=∑ini(x)Zi
2/ne(x),

if used, given nC(x), ZEFF(x) and ne(x): hence we typically have that σ(nD)≈0.4nD.

In addition to the statistical error, a recent calibration of the CX diagnostic has provided for the

first time the evaluation of the systematic error on nC, hence nD, which are related to the calculation

of the active CX volume [10]. These systematic errors, of the order of σSYST~10% are important to

evaluate the uncertainty on the calculated Er for a single pulse, but obviously can be neglected

when comparing various discharges for which the same absolute calibration applies. The systematic

errors on the CX measurements are shown in Fig.2 for one of the calibration shots, where the labels

in the legend indicate different methods for computing the CX active volume.

To the Gaussian propagation of the uncertainty on the basic plasma measurements, we have

added a “most probable” estimate of the error due to taking the gradients of these data, as in the

calculation of the scale lengths. Consider now a quantity y(x) described by a Gaussian probability

distribution function P[y(x=x1)=y1]=exp[-(y-y1)2/σ2(y1)], where σ(yn) is the uncertainty on the

measured y(x=xn): hence we have that, for instance, P[y(x=x1)=y1±σ(y1)]=(1/e)×P[y(x=x1)=y1].

Therefore the error on the gradient (dy/dx) between the two points x2 and x1 can be defined as:

dy P (y) =

y1 + zσ y1 + zσ

y1 - zσ y1 - zσ x1 ↔ x2

= erf (z)π = 1, σ dy exp 
(y - y1)

2

σ2 (y1)

dy

dx
σ (y1) σ (y2). . (12)
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Here z is given by P[y(x=x1)=y1±(z+ε)σ(y1)]=0 for ε=o(z). Since erf(z)≈1 with d[erf(z)]/dz≈0 for

z≥3, we can now consider the practical cases z=1→3: hence the error on taking the gradient between

two points is approximately √π*√erf(1→3)≈1.63→1.77 larger than the usual geometric error, and

overall can account for up to approximately 25% of the total error on Er. This probabilistic approach

to evaluate the error on the gradient is conceptually different from the result obtained by taking the

Gaussian propagation of the errors on the two y-points, σGAUSS(dy/dx)=[σ2(y1)+σ(y)]1/2. As an

example, consider the case σ(y2)≈σ(yn): we have that σ(dy/dx)/σGAUSS(dy/dx)≈√π√erf(3)/√2≈1.25.

Hence the error on the gradient, as defined in probabilistic terms by Eq.(12), is generally larger

than that given by the Gaussian propagation of the errors on the two data points [y1,y2]. Only in the

case of locally poor raw measurements such that σ(y1)>>σ(y2) we have that the probabilistic error

is less then the Gaussian one, σ(dy/dx)/σGAUSS(dy/dx)≈1.77[σ(y2)/σ(y1)]1/2<1, but obviously this

situation is not one that should be considered as ideal for further detailed theoretical and modelling

analysis. The advantage of using Eq.(12) to determine the error on the gradient, instead of the more

common Gaussian propagation, is that we can give the correct weight to the probability of a certain

gradient to occur between two points, which allows us to avoid unphysical results in our error

analysis.

Simplified analytical expression for the statistical error on the computed deuterium toroidal

rotation velocity, carbon and deuterium poloidal rotation velocity and radial electric field are thus

given by:

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]TFBKVVVV CDCD ∇−++−+= 22

1
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In Eqs.13(a)-13(e) XXX /)()( σσ =  indicates the relative statistical error on the quantity X and:
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The systematic error on the computed VφD, VθC and VθD, ErC and ErD is obtained by substituting

σSYST(nC)→σ(nC), σSYST(nD)→σ(nD) and σSYST(T)→σ(T) in Eqs.(13,14), with

σTOT=(σ2+σ2
SYST)1/2.

7. E-FIELD//NCLASS COMPARISON FOR A REFERENCE L-TO-H MODE PLASMA.

The steady-state L- and H-mode phases of Pulse No: 57819 have been chosen here for a detailed

comparison between the JETTO and NCLASS codes and our analytical formulation (referred to

with the label “E-field” in the following), and for a systematic assessment of the difference in

Er(x,t) resulting from the various constraints on the processing of the raw input data. Note that

JETTO and NCLASS use by default the same input data, which can also be used by E-field for a

direct comparison allowing the separation between the role of input profiles and that of the analytical

approximation employed by E-field. Figure 3 shows the main plasma and magnetic field data for this

discharge: note Ti≈Te. The various profile quantities were computed using spline fit interpolation, and

nD was obtained using the measured nC and ne and conservation of local charge neutrality, ne=nCZC+nDZD.

A possible source of uncertainty in determining Er(x,t) comes from the fact that the input data

for the neoclassical calculation are measured on different spatial and temporal grids, and thus need

to be inter- and extrapolated onto the same (x,t)-grids. This is done in E-field using either linear,

spline or cubic (with Hermite polynomials) fitting routines, with the constraint that the fitted values

are within the s-confidence level of the measurement. The fitting routines implemented in JETTO

and NCLASS do not use a similar constraint, hence these often produce different input data profiles.

The differences resulting from the application of these methods are demonstrated in Fig.4, which

shows various input plasma data and computed neoclassical quantities for the H-mode phase of

Pulse No: 57819, for which the CX measurements were available in the region 3.15<R(m)<3.8. As

expected, there is no difference between the cubic, spline and linear fitting methods when

interpolating over the range of the CX measurements. Conversely, we notice the clear differences

between these three methods when extrapolating the CX data towards the magnetic axis (R=2.93m)

and the plasma boundary (the last closed flux surface from the equilibrium reconstruction is located

at R=3.98m), with clear implication on the computed VφD, VθC and VθD, hence Er(x,t). The choice

of the fitting method can in principle affect the resulting Er at the plasma edge and in the plasma

core due to the complex dependency of Er(x,t) on the temperature, density and pressure gradients.

Hence, for the Er calculations presented in Sections 8 and 9, we have first considered all the three

fitting methods indicated above, then chosen a reference one, and have only accepted the result if
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the difference in Er when using the other two methods is below the estimated total error:
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Here ErX and σ(ErX) are the values of Er and σ(Er) evaluated using the reference choice of numerical

method (subscript 1), and the other two alternative choices (subscripts 2 and 3), respectively.

Two additional constraints for fitting and inter/extrapolating the ion density profiles may be given

by conserving the local charge neutrality, ∑iniZi=ne, and the effective charge ZEFF=∑iniZ
2
i/ne, which

can be directly measured via Bremsstrahlung or constructed using a-priori knowledge of all the ion

and impurity density profiles. It must be noted here that in the framework of the neoclassical theory

of Ref.[7], only carbon and deuterium should be considered in determining ZEFF, whereas the

Bremsstrahlung measurements include the contribution of all impurity species, mainly Be, He and

H for the JET plasmas considered here. As an illustration of the differences that may arise when

using additional impurities to evaluate the ion density profiles, we have compared two approaches.

First, we use the measured ne and nC and local charge neutrality nCZC+nDZD=ne to deduce the nD

profile. Second, we consider the ZEFF profile from Bremsstrahlung, then include only Be, He and H

keeping a fixed ratio for Be/C, He/C and H/D as given by the spectroscopic and Da/Ha measurements

in the divertor and at the plasma edge (measurement of the radial profiles of these ratios are not

available), and compute the nC, nD and ne profiles to conserve the local charge neutrality. With this

approach, we have now obtained an ne(x,t) consistent with ZEFF from Bremsstrahlung which,

however, does not necessarily match the measured ne(x,t) (using LIDAR and interferometer). With

this approach, nD is typically ~20% lower in magnitude, with no significant change in the shape of

the profile, whereas the nC profile can vary by more than ~50%, particularly just inside the edge

pedestal region due to the presence of Be (and He to a minor extent). Figures 5(a) and 5(b) show a

comparison of the deuterium and carbon density profiles obtained using these two methods for the

L- and H-mode phase of Pulse No: 57819, which clearly illustrate the differences in the resulting

nC and nD profiles. In the following, due to the rather arbitrary choice of keeping a fixed ratio for

the Be/C, He/C and H/D profiles because of lack of spatially resolved measurements, we have used

the measured ne and nC (from the absolutely calibrated CX measurements) and we have imposed

the local charge neutrality ne=nCZC+nDZD as a constraint to deduce the nD(x,t) profile. The JETTO

code computes the ion density profiles using local charge neutrality and an input ZEFF, taken from the

Bremsstrahlung data or a user-choice profile. This significantly affects the calculation of the density and

pressure gradients, particularly at the plasma edge, producing a further difference in the output Er(x,t).

A further point to consider here is the radial averaging of the input data, and particularly the role

of the ion orbit width. The JETTO and NCLASS codes do not consider averaging over the ion

banana or potato orbit width, δBAN≈qρθ/√ε and δPOT≈R0(4qρφ/R0)2/3≈20(ε/q)δBAN, respectively,

whose main effects are to slightly shift inwards and largely smooth out the radial gradients in the

temperature, density and pressure profiles. An example of this smoothing over the banana, potato

and effective ion orbit width δORB, as per Eq.11(c), is given in Figs.6(a) and 6(b) for the calculated
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poloidal rotation velocity and toroidal rotation frequency during the L- and H-mode phase of Pulse

No: 57819, respectively. As the reference case without orbit-averaging, we have considered the

results obtained using spline fitting without ZEFF-normalisation of the ion density profiles. During

the L-mode phase, we notice the clear smoothing of the double-hump structure in VθC and VθD in

the plasma core, for 0.2<x<0.4. During the H-mode phase, note the disappearance of the large and

broad peak in VθD around mid-radius, and of the somewhat narrower peak in VθC towards the

plasma boundary. Note also that the orbit-width average value can be globally lower than the non-

averaged one since we have used a “rolling” averaging process. The orbit-width averaged value

computed at an inner radius is used to infer the orbit-width averaged value at the outer radius,

starting from the magnetic axis towards the plasma boundary and then reversing the direction of the

averaging process to remove artificial (i.e., purely numerical) radial shifts in the overall profile.

Figure 7(a) shows the effect of the different numerical schemes used by E-field to calculate Er

for Pulse No: 57819 at t=3.5sec, during the L-mode phase. First, we note the excellent agreement

between ErC and ErD, which proves in principle the validity of the analytic approximations developed

and used here. The choice of the numerical routines for inter/extrapolating is only important in the

plasma core, where the difference between the various Er’s is beyond the typical error bar. For the

case of spline fitting, the effect of the ZEFF-normalisation from Bremsstrahlung is negligible because

of cancellation between the poloidal and pressure gradient component of Er. On the other hand,

orbit-width averaging slightly modify ∇p/n, hence Er, in the plasma core, in the region

δBAN<ρ<2*δPOT, where δBAN~3cm and δPOT~15cm. Similarly, Fig.7(b) shows the effect of the

numerical schemes used by E-field to calculate Er for Pulse No: 57819 at t=7.85sec, during the

steady-state H-mode phase. Here the effect of the different numerical routines used for inter/

extrapolating is less apparent, since the “raw” data profiles are smoother, whereas that of ZEFF-

normalisation of the ion density profile (using the Bremsstrahlung data) is much more evident,

increasing Er by about 40% towards mid-radius. We notice also the different sign of Er at the top of

the pedestal, for 0.8<x<0.9, which is due to a non-exact cancellation between the poloidal and

pressure gradient component of Er. This can have important implications for associating the L-H

transition to changes in Er at the plasma edge.

In summary, we conclude that the use of spline fitting routines for the input radial profiles may

sometimes lead to unphysical results when extrapolating if the second derivative of the raw data

goes through a zero and/or changes sign just before the region where extrapolation is needed. This

is a well-known problem, and care must be taken when using such spline-fitting routines. We find

that averaging over the ion orbit width smoothes out radial gradients, a numerically and physically

sound result. We have also clearly demonstrated the (obvious, but too often underestimated) role of

the ZEFF-normalisation when computing the ion density profiles. This may lead to rather significant

changes in Er due to its pressure gradient component, particularly towards the edge pedestal region

where the usually dominant toroidal component of Er becomes small. The solution to this problem

is not clear: the neoclassical theory presented in Ref.[7], and its implementation in most transport

codes such as JETTO [11] and NCLASS [12], considers only one main ion and one impurity ion
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species, therefore ZEFF from Bremsstrahlung cannot be used in the calculation, but on the other

hand the typical JET plasmas contain a few more ion species than simply carbon and deuterium.

Hence, we have empirically dealt with this difficulty by adding a further term to the error bar on the

ion density profiles and ZEFF, which contributes to about 10% of the total error on Er(x,t):
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To conclude this section, Figs.8(a) and 8(b) show the comparison of the flux-surface averaged ErC

and ErD calculated with NCLASS and E-field at t=4.0sec, during the L-mode phase; Figs.9(a) and

9(b) show ErC and ErD at t=8.1sec, during the steady-state H-mode phase. In Figs.8 and 9 (and in

the following) the label “E-JETTO” indicates that the E-field code was run using the JETTO input

profiles (also used by NCLASS). Hence comparing “E-field” with “E-JETTO” allow us to assess

the role of a different numerical treatment of the input data, whereas comparing”“E-JETTO” with

“NCLASS” elucidates the role of the analytical approximations used here. We used linear fitting

for this E-field calculation, with nD computed from the measured nC and ne profiles using local

charge neutrality, without orbit width averaging (as in NCLASS). Note that the JETTO/NCLASS

standard output is the ion-mass-density averaged, flux-surface averaged radial electric field:
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As demonstrated in Fig.8(b) and Fig.9(b), using E-field we obtain ErC(x,t)=ErD(x,t) within the

error bar in the calculation, thus mass averaging does not affect the value of Er:

Er,CD(x,t)=ErC(x,t)=ErD(x,t).

First, we notice that during the steady-state L-mode phase (Figs.8(a), 8(b)), where the ion density

and temperature profiles are rather flat up to x<0.8, the differences between E-field and E-JETTO

are mainly due to the different fitting of the measured VφC. The NCLASS and E-JETTO values of

Er(x,t) are in very good agreement in the region 0.1<x<0.9, which also indicates the validity of the

analytic treatment of the toroidal flux-surfaces. Conversely, we notice that ∇p≠0 with NCLASS on

the magnetic axis, hence Er becomes (incorrectly) large and negative in the plasma core, and it does

not agree with the E-field and E-JETTO values. The discrepancy in Er at the plasma edge (x>0.9) is

essentially due to the different ZEFF, hence the ion density profiles, which in turn affects ∇p/n.

Second, we notice that during the steady-state H-mode phase (Figs.9(a), 9(b)) the numerical

fitting methods in JETTO/NCLASS do not reproduce well the typical H-mode edge pedestal in the

density and toroidal rotation, around x≈0.9. This, together with the different ZEFF-normalisation of

the ion density profiles (JETTO/NCLASS use the Bremsstrahlung value), affects the edge value of

Er(x,t): Er<0 for 0.85<x<0.95 with E-field due to the pressure gradient component of Er, but Er≈10kV/m

with NCLASS. As for the L-mode phase, Er<0 (incorrectly) on the magnetic axis with NCLASS,

but overall there is an excellent agreement between the E-field and JETTO/NCLASS calculations.
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8. CALCULATION OF Er FOR

A) L-MODE PLASMAS.

Having checked in Section 7 the general use of the E-field code in comparison with JETTO and

NCLASS, we now turn our attention to the analysis of Er for L-mode plasmas so as to build some

understanding of the possible role of Er in the L-H transition, which will be discussed throughout

Section 8B. As an example of a JET L-mode pulse, we consider here Pulse No: 58263, for which

the main plasma parameters are shown in Fig.10: we note that diagnostic PNBI=1.6MW was used to

supplement the main Ion Cyclotron Resonance Frequency (ICRF), PRF=4MW. Figures 11(a) and

11(b) show the input data and the Er profiles calculated at t=20.0sec during the steady-state phase

of the discharge, indicating the broadly general agreement between the E-field and NCLASS results

but for VθD. Here the Er calculation was performed using spline fitting, with nD(x) computed from

the measured nC(x) and ne(x) using local charge neutrality, with no orbit width averaging for a

closer comparison with the NCLASS results. We note in this respect that for the case of low-

temperature (<Ti>≈<Te>≈3keV) L-mode plasmas with a monotonic q-profile, orbit width averaging

does not introduce a significant difference in the Er calculation because the density and temperature

profiles are rather flat and we have as well that δBAN≈3-8cm, δPOT≈10cm, with FPOT/FBAN<0.01.

First, there is a small difference in the toroidal component of Er around mid-radius, which is due

to the different numerical treatment of the input VφC profile. Second, and more importantly, we

notice immediately that the toroidal component of Er goes to zero for x>0.85 since VφC≈VφD→0

because of a negligible momentum input. This implies that the balance between the pressure and

poloidal component becomes the dominant contribution to Er at the plasma edge. Hence different

approaches to compute the nC and nD profiles (conserving charge neutrality with/out ZEFF-

normalisation using the Bremsstrahlung data) will lead to significant differences for the calculated

Er at the plasma edge, as clearly shown in Fig.11(b): <Er,CD>≈-10kV/m with NCLASS but Er≈0

with E-field and E-JETTO, because of a difference balance between the Vθ×Bφ and ∇p/n components

at the plasma edge. With the above-mentioned caveat for the edge region x>0.9, from the analysis

of various JET L-mode pulses we generally infer that Er has a rather flat radial profile in the region

0.2<x<0.85, with Er≈5÷15kV/m (depending on PNBI, hence the toroidal rotation profile), very

rapidly dropping to (possibly) negative values via a steep density gradient at the far edge of the

plasma, -5<Er(kV/m)<0 for x>0.95, where the balance between its poloidal and pressure components

dominates Er.

B) THE L-H MODE TRANSITION.

Having established in Section 8A the main features of Er during steady-state L-mode plasmas, we

now turn our attention to the radial and temporal evolution of Er(x,t) during the L-H transition. To

this aim, we consider here JET Pulse No: 57819, where the L-H transition occurs around t=4.3sec

when PNBI increases from PNBI=4MW to PNBI=8.6MW (Fig.3 shows the main plasma parameters

for this pulse). Figures 12(a) and 12(b) show the profile ErC(x,t) (≈ErD(x,t)), normalised with respect

to the total PNBI+PRF power deposition profile rDEP, for Pulse No: 57819 and the reference L-mode
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Pulse No: 58263 discussed in section 8A, respectively. Here spline fitting was used, with nD(x)

computed from the measured nC(x) and ne(x) maintain local charge neutrality, and ErC was then

averaged over the effective ion orbit width, δORB≈8cm for Pulse No: 58263 and δORB≈12cm for

Pulse No: 57819, respectively. The normalisation of Er with respect to ρDEP is important in order to

take into account possible variations in the shape of Er which would be solely due to a different

momentum input, i.e. not related to an improving (or deteriorating) plasma confinement. Furthermore,

the edge values of the ion density and ZEFF not only affect the magnitude of Er(x,t) and its shape,

but similarly affect ρDEP(x,t), hence the ratio Er/ρDEP becomes less sensitive to the details of ZEFF(x,t)

and n(x,t) than Er(x,t) alone. Here we have computed ρDEP(x,t)=ρNBI(x,t)+ρRF(x,t) using a beam

deposition code [21] for the NBI component and hot-plasma wave dispersion [22] for the ICRF

component, respectively.

For Pulse No: 57819, we notice the clear increase in ErC at the L-to-H transition (indicated by

the black horizontal line) in the region 0.4<x<0.7 over ~200ms, with a subsequent very sudden

transient drop over ~100ms, followed by a steady increase (with no profile broadening) as Vφ and

∇p/n build up in the region 0.25<x<0.75. Conversely, there is no significant difference around the

edge pedestal at the L-H transition, but this result relies heavily on the method used to compute the

ion density profiles. For Pulse No: 58263, we notice the broadly flat Er/ρDEP profile over the region

0.2<x<0.8; again, the fine structure details appearing for x>0.9 depend heavily on the nC and ZEFF

profiles used here. Similarly, we point out that the result Er<0 for x>0.75 is a clear feature of NBI-

dominated plasmas.

C) H MODE PLASMAS WITH NORMAL AND REVERSED ION ∇∇∇∇∇B-DRIFT DIRECTION.

The ion ∇B-drift direction is an important parameter in determining the accessibility conditions for

the H-mode regime. There is clear experimental evidence that the H-mode regime is obtained at a

lower input power level (typically a factor two) when the ion ∇B-drift is directed towards the

divertor than when it is in the opposite direction, i.e. in situations when only the magnetic field is

reversed, but not the plasma current [23]. However, recent JET data have provided evidence that

the H-mode power threshold is similar for the two ion ∇B-drift directions across a range of magnetic

field B(T)=1.2-3.0 and low edge electron density, ne(edge)<2x1019m-3 [24]. These results have

been obtained when reversing both the current and the magnetic field, conserving the plasma helicity.

Hence, the similar power threshold may be related to the different momentum input at the plasma

edge from the beam ions, including possible prompt losses, with clear implications on the edge

values of Vφ(x,t) and ∇p(x,t), hence Er(x,t). It is thus important to assess the difference in Er(x,t) at

the L-H transition and during steady-state H-mode phases as function of the ion ∇B-drift direction.

Figure 13 shows the main plasma parameters for Pulse No: 59624, a typical L-to-H mode pulse

with reversed current and toroidal magnetic field, giving rise to an ion ∇B-drift directed away from

the strike points and the divertor target plates. We note that in JET Bφ and Ip are reversed together,

i.e. the plasma helicity does not change between the reversed (RBE) and forward (FBE, which is

the normal case for JET) B-field case. Figures 14(a) and 14(b) show some of the neoclassical
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collisionality factors entering the calculation of VφD, VθC and VθD for Pulse No: 59624 and Pulse

No: 57819, to elucidate possible differences due the ion ∇B-drift direction. Despite the factor ~2

difference in ν*i∝ε-3/2 in the plasma core and in ν*i∝(B/∇B)2 at the plasma edge, we note that K1(x,t)

and K2(x,t) are very similar and sufficiently independent of the ion ∇B-drift direction, thus indicating

that in both configurations the main and impurity ion species are effectively in the banana regime.

Figure 15 shows the 3D profile ErC(x,t) (≈ErD(x,t)) calculated with the E-field code: this

calculation was performed using spline fitting, with nD(x) computed from the measured nC(x) and

ne(x) using local charge neutrality, with Er normalised with respect to the total PNBI+PRF power

deposition profile, and averaged over the ion orbit width. Following the conventional JET sign

convention for the magnetic topology, a negative Er is now pointing outwards towards large major

radii, as it is the case with forward-B for a positive Er. We notice that the change in the ELM

behaviour at t=4.5sec, from Type-I to Type-III, only significantly affects the magnitude of Er(x,t) in

the region 0.6<x<0.9 due to a change in the scale lengths, reducing its peaking but only marginally

modifying its overall shape. In comparison with Fig.12(a), we note immediately the different shape

of Er(x,t) with the reversed ion ∇B-drift direction, particularly in the region 0.6<x<0.9. With the

reversed ion ∇B-drift direction Er(x,t) has a broadly flat profile over the region 0.3<x<0.7, contrary

to the normal ion ∇B-drift direction, where Er(x,t) has a hollow radial profile towards the plasma

edge, that can be approximated with a quasi-Gaussian shape Er(x)∝exp(-(x-x0)2/WER
2) peaked

around x0≈0.6 with half-width at half-maximum of the order of WER≈0.15.

To assess in further details the possible role of the prompt NBI losses at the plasma edge in the

reverse ion ∇B-drift direction, we have considered two further RBE pulses at higher Bφ and Ip,

Pulse No:59647 with Bφ/Ip=2.4T/2MA and Pulse No: 59644 with Bφ/Ip=3T/3MA, respectively, in

comparison with the reference H-mode FBE Pulse No: 57819 with Bφ/Ip=1.7T/1.4MA, and the

reference L-mode FBE Pulse No:58263 with Bφ/Ip=2.7T/2.5MA. The higher Ip in the last two RBE

pulses improves the confinement of the NBI ions at the plasma edge, hence empirically affecting

the NBI-driven density, temperature and rotation profiles. Note that the high Bφ/Ip RBE pulse

(Pulse No: 59644) shows a dithering L-to-H mode transition. Figure 16(a) shows the main plasma

parameters and collisionality data for the RBE pulses during the (steady-state for Pulse No: 59624

and Pulse No: 59647) H-mode phase, and Fig.16(b) shows the calculated orbit-width (flux-surface

averaged) radial electric field for the three RBE and the two reference FBE pulses. Here Er was

computed using spline fitting, with nD(x) obtained from the measured nC(x) and ne(x) using local

charge neutrality. The result was normalised with respect to the input PNBI+PRF power deposition

profile ρDEP(x) (Pulse No: 59624, t=9.0sec: PNBI=12.0MW; Pulse No: 59647, t=3.5sec:

PNBI=12.1MW; Pulse No: 59644, t=8.5sec: PNBI=13.7MW; Pulse No: 57819, t=8.0s: PNBI=8.7MW,

and t=4.0sec: PNBI=4.0MW, the H-mode and dithering L-H mode reference FBE cases, respectively;

Pulse No: 58263, t=20.0sec: PNBI=1.7MW, PRF=4.0MW, the L-mode reference FBE case). We

notice the clear differences in the Er/ρDEP profile between the RBE and the FBE cases, both in

shape and magnitude, beyond those that can be accounted for by the variation in the input ρDEP(x).
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The FBE discharge at higher plasma current (Pulse No:59644) has the Er/ρDEP more closely

resembling that of the reference FBE pulses (which moreover had both a lower Ip and PNBI). In

particular, we note that at low field/current Er/ρDEP is very flat across the poloidal cross-section,

and that it is negligible at the plasma edge. Conversely, at higher Bφ/Ip the RBE pulse shows a

marked gradient in Er/ρDEP at the plasma edge, around x≈0.9, similarly to the reference H-mode

and L-mode FBE cases, although in the latter case the gradient is not so sharp. We also wish to

point out that indeed for this particular comparison, as indicated in Fig.16(b), the edge values of the

ion density and ZEFF affect the magnitude of Er(x,t), but not its overall shape, and moreover the

same density profiles similarly affect ρDEP(x,t). Hence the ratio Er/ρDEP becomes less sensitive to

the ZEFF(x,t) and n(x,t) used in the calculation than Er(x,t) alone.

In summary, the observations reported here empirically confirm the role of the prompt NBI

losses at the plasma edge in determining the radial electric field profile. This can have important

implications for the L-H transition studies as function of the direction of the ion ∇B-drift, and

clearly points to the need of matching also the plasma helicity when performing multi-machine

comparison studies of the L-H transition. Hence the JET and Asdex-U results [24, 23] that have

been recently reported warrant a further detailed comparison in light of the different plasma helicity

in these studies.

9 CALCULATION OF Er FOR

A) ITB PLASMAS.

In Sections 8A to 8C we have analysed the role of Er(x,t) during the transition to high-confinement

regimes in the conventional tokamak scenario, with a monotonic q-profile, hence positive magnetic

shear s=(r/q)(dq/dr), typically with q0<1. These regimes are characterised by a flat pressure profile

across the core region of the plasma, which is supplemented by a large edge pedestal (hence with

strong pressure gradients) when in H-mode. In this section we focus on the advanced tokamak

scenarios that are used in JET, which are characterised on the other hand by a non-monotonic (or at

least very flat) q-profile with q0≈2, hence a negative magnetic shear in the plasma core. In these

configurations a strong pressure gradient, hence an internal transport barrier (ITB), develops around

mid-radius, which is sometimes supplemented by an additional transport barrier at the plasma edge

when in H-mode [2]. These configurations are precisely those where the neoclassical theory is

potentially expected to break-down, since ρθC,D≈L’s in the plasma core due to the much lower local

current density. As an example of this condition, for a typical steady-state plasma with the ITB

located around x=0.35, we have that the orbit-width averaged <ρθD/LpD>≈2 in the region x<0.2,

and only well outside the ITB foot we have that <ρθD/LpD>≈0.5. The region inside the ITB location

is, strictly speaking, beyond the limits of applicability of the neoclassical theory used to derive VφD

and Vθ, hence Er(x,t). For consistency with the approximations used in the neoclassical theory of

Ref.[7], in the following sub-sections on ITB plasmas we have therefore restricted our analysis

only to those regions where ρθD(x,t)/LpD(x,t)=O(ε).
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B) ITB PLASMAS: HIGH PERFORMANCE ITB WITH LARGE POTATO ORBITS.

As an example of a high performance ITB with large ion temperature gradient ∇Ti we consider

now Pulse No: 61349, for which Fig.17 shows the main plasma parameters and Fig.18(a) and

Fig.18(b) show the input data for the neoclassical calculation of Er(x,t) at t=6.1sec, at the peak time

in Ti(x,t), and at x=0.38 (R=3.35m), the ITB position, corresponding to that of the peak Ti(x,t).

Here Ti(x=0)≈20keV and ∇Ti reaches the value of ~250keV/m around x=0.4, across the position of

the ITB. The data shown in Fig.18 have been computed using spline fitting, with nD(x) computed

from the measured nC(x) and ne(x) using local charge neutrality, and averaging over the effective

ion orbit width δORB(x). It should be noted here that ρθD(x,t)=O(LpD(x,t)) for x<0.2, hence the

neoclassical theory is not strictly applicable in the plasma core. Notice the good agreement in the

shape of the calculated Vθ(x,t), the difference in the region 0.3<x<0.4 being clearly due to the

orbit-width averaging, hence smoothing, of the peak ∇Ti(x) across the ITB foot.

Figures 19(a) and 19(b) show the temporal evolution of Er(x,t) and its components at t=6.1sec

and R=3.35m, around the time/foot of the ITB: we note the slow build-up of the toroidal component

due to an improved confinement after t=6.2sec. Note the importance of a slightly different ion

density profile when comparing the pressure gradient component of Er(x,t) as calculated using

E-field and E-JETTO: the factor ~3 difference in ∇pD/nD around the foot of the ITB around t=6sec

is solely due to the apparently minor differences in nD(x,t) shown in Fig.18(a)/(b), since care was

taken to use in E-field the same numerical scheme used in JETTO//NCLASS to compute the gradients

(3-points derivative with no additional smoothing). The effect of the orbit width averaging (evaluated

using a weighted combination of banana and potato orbits as indicated above) is clear in smoothing

out the various gradients determining the poloidal and pressure components of Er(x,t) around the

foot of the ITB, hence affecting the balance between ∇p/n and Vθ×Bφ. This can change (as

demonstrated here) the ExB shearing rate at the foot of the ITB because of the different ∇p, Vθ and

Vφ profiles, with implications for theories and modelling (see for instance Refs.[4] and the further

references therein) that associate improved confinement in ITB plasmas to turbulence suppression

via the ExB shear.

C) ITB PLASMAS: HIGH PERFORMANCE ITB WITH SMALL POTATO ORBITS.

As a second example of high performance ITB plasmas with large ∇Ti, we now turn our attention

to Pulse No: 58094. This pulse differs from Pulse No: 61349 in that the q-profile is much flatter,

with a lower qMIN. Hence potato orbits are smaller, and there are less of them in Pulse No: 58094

than Pulse No: 61349: as an example, δORB≈28cm across the ITB location in Pulse No: 61349,

whereas it is only δORB≈17cm in Pulse No: 58094. Figure 20 shows the main plasma parameter for

this pulse: here ρθD(x,t)=O(LpD(x,t)) for x<0.2, the ITB is formed at t=6.5sec around x=0.45, and

the plasma later disrupts at t=6.9sec. Figures 21(a) and 21(b) show the main plasma and collisionality

parameters at t=6.6sec and R=3.48m, the position of the foot of the ITB, respectively. Here the

profiles were computed using spline fit, nD(x) was obtained from the measured nC(x) and ne(x)

using local charge neutrality. Figures 22(a) and 22(b) show the components of the calculated Er(x,t)
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at t=6.6sec and R=3.48m, respectively: we note again the clear smoothing of the ∇p/n and Vθ×Bφ
components due to the averaging over the ion orbit width. However, the effect is much smaller that

in Pulse No: 61349, and this is more clearly elucidated comparing the ErC/ρDEP profile, shown in

Fig.23(a) and Fig.23(b) for Pulse No: 61349 and Pulse No: 58094, respectively. In both these plots

the black vertical line around x=0.2 indicate the boundary region for the validity of the neoclassical

calculation, since ρθD(x,t)=O(LpD(x,t)) for x<0.2. On the other hand, the use of the ρDEP(x,t)

normalisation of Er(x,t) improves significantly the accuracy of the results for x>0.8, since Er(x,t)

and ρDEP(x,t) have a very similar dependency on the density and ZEFF edge value. We clearly

notice the sudden drop and then overall increase and broadening of the Er profile at the ITB onset

for Pulse No: 61349: due to the very large ion orbit width, Er(x,t) is also very flat in this case across

the main part of the poloidal cross section. We also notice that the region of large radial electric

field extends progressively towards the plasma boundary as the steady-state ITB develops in time.

On the other hand, due to the much smaller ion orbit width, we notice that the Er/ρDEP profile is

much more peaked in Pulse: 58094, and that the edge region x>0.8 remain characterised by values

of Er(x,t) hovering around Er(x,t)=0 as the ITB develops during the steady-state heating phase. The

two clear drops in the ErC/ρDEP profile for Pulse: 58094 at t=4.0sec and t=5.0sec are linked to the

appearance of the q=3 and q=5/2 surfaces around mid-radius, similarly to Pulse No: 61349 just at

the time of ITB onset. The ITB target q-value is the q=2 surface appearing around mid-radius at

t=6.0sec: this however is not associated to any change in the ErC/ρDEP because the ITB onset,

increasing Er(x=0.5) compensate the drop caused by the appearance of a low-order rational q-surface.

These observations then link empirically the appearance of low-order rational q-surfaces to rapid

transient changes in the Er profile, and are as well in many aspects reminiscent of the proposed q-

comb model for the transport coefficients [25], which has recently been applied to JET data [26].

D)  L-MODE, H-MODE AND ITB PLASMAS.

In this last Section we review and summarise the results we have obtained for the calculated Er(x,t)

during steady-state L-mode (Pulse No: 58263, t=20.0sec), H-mode (Pulse No: 57819, t=8.0sec)

and ITB (Pulse No: 58094, t=6.6sec) phases. Figure 24(a) shows the input plasma data and computed

neoclassical collisionality factors for the three pulses and time slices indicated above, and Fig.24(b)

shows the computed ErC/ρDEP. The background plasma data used for this calculation were processed

using spline fitting, nD(x) was computed from the measured nC(x) and ne(x) profiles using local

charge neutrality (no normalisation using ZEFF from Bremsstrahlung), and averaging over the ion

orbit width. It is immediate to note the striking similarity in the shape of the normalised Er/ρDEP

profile between the L-mode and ITB cases in the plasma core, up to around mid-radius. The H-

mode radial electric field is definitively negative for x>0.85, hovering around Er(x,t)=0 for L-mode

plasmas, and positive for ITB plasmas, although in this case there are very significant error bars.

This comparison clearly demonstrates that for a moderately reversed q-profile, where very large

potato orbits constitute only a minor fraction of the trapped ion orbits, the ExB shear does indeed becomes

an important ingredient in generating and sustaining the ITB through turbulence suppression.
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CONCLUSIONS

In this work we have presented a complete evaluation of the uncertainties affecting the neoclassical

calculation of the radial electric field in JET plasmas, using a comparison between transport codes

such as JETTO and NCLASS and an analytical approximation that specifically includes the basic

features of the JET geometry (plasma elongation, flux-surface averaging) and magnetic equilibrium

(non-monotonic q-profile leading to non-standard orbits such as the potato ones). Starting from the

absolute calibration of the core CX system, we developed an analytical formulation for the error bar on

the calculated Er(x,t), which allows us to consistently assess if different numerical and modelling

approaches can lead to significant differences in Er(x,t), i.e. exceeding the expected uncertainty.

First, the inconsistency intrinsic to the neoclassical theory developed in Ref.[7], i.e. the assumption

of a plasma made up only of electrons, one main and one impurity ion species, may lead to serious

discrepancies in the calculated Er(x,t) when using ZEFF from Bremsstrahlung as a constraint to

normalise the ion density profiles. Second, care should be taken when considering averaging over

the ion orbit motion: for the typical case of a monotonic q-profile with q0~1, we have demonstrated

that such averaging over the ion banana orbit does not modify the resulting Er(x,t). On the other

hand, significant differences arise in ITB plasmas with a deeply non-monotonic q-profile (q0>5,

qMIN~2-3) when large potato orbits are present and need to be considered for averaging Er(x,t).

A question mark on the validity of the neoclassical calculation of Er(x,t) remains, since it has not

been clearly demonstrated whether the poloidal velocity is indeed neoclassical or anomalous. The

neoclassical calculations used in this work demonstrate that in certain experimental conditions |Vθ/

Vφ|≈O(|Bθ/Bφ|). As an example of this, the poloidal component of Er(x,t) becomes important around

the ITB location region due to a non-exact cancellation between the ∇p/n and the Vθ×Bφ components.

At the plasma edge this situation is further complicated by the significant reduction in the toroidal

velocity due to lower momentum input, which in some cases casts some doubts on the sign of

Er(x,t) at the edge pedestal.

Moving now onto the physics results, we demonstrated a striking similarity in the shape of

Er(x,t) in L-mode and ITB plasmas (with a flat q-profile and q0~qMIN~2) in the plasma core and

towards the plasma boundary, although in this region uncertainties in the ZEFF and density profile

and the lack of Vθ measurements (or a convincing experimental validation of the predicted

neoclassical value) prevent a more detailed analysis. This demonstrates as well that when large

potato orbits are not dominant, indeed the ExB shearing rate can play a significant role in generating

and sustaining the transition to higher-confinement regimes through turbulence suppression. We

also demonstrated the role of prompt NBI losses when comparing H-mode plasmas with forward

and reversed ion ∇B-drift direction: the larger the plasma current in RBE pulses, the better the

confinement of NBI ions, the closer is the shape of the edge Er(x,t) to that typical for the FBE case.
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Figure 1(a): The carbon poloidal velocity VθC calculated
with NCLASS and using Eq.8,9(a) for the L- and H-mode
phases of Pulse No: 57819, showing good agreement in
the region 0.3<x<0.8 between NCLASS and the full
analytic approximation of Eq.8.

Figure 1(b): The deuterium poloidal velocity VqD
calculated with NCLASS and using Eqs.8,9(a) for the L-
and H-mode phases of Pulse No: 57819, showing good
agreement in the region 0.2<x<0.9 between NCLASS and
the full analytic approximation of Eq.8, particularly
during the H-mode phase.
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Figure 2: Systematic errors in the CX measurements of
nC, nD and ZEFF for one of the reference calibration pulses:
the various labels in the legend indicate different methods
for computing the CX active volume.

Figure 3: Main plasma parameters for Pulse No: 57819:
here <X> indicates a volume-averaged value, and s=(r/
q)(dq/dr) is the shear in the safety factor profile.
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Figure 5(a): Comparison between the deuterium and carbon
density profiles obtained with/out ZEFF-normalisation from
Bremsstrahlung for the L-mode phase of Pulse No: 57819,
which clearly illustrates the differences in the resulting nC
and nD profiles.
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Figure 5(b): Comparison between the deuterium and
carbon density profiles obtained with/out ZEFF-
normalisation from Bremsstrahlung for the H-mode phase
of Pulse No: 57819, which clearly illustrates the
differences in the resulting nC and nD profiles.

Figure 6(a): Effect of orbit-width averaging on the
computed poloidal rotation velocity and toroidal rotation
frequency profiles during the L-mode phase of Pulse No:
57819: note the clear smoothing of the double-hump
structure in VθC and VθD in the plasma core, for 0.2<x<0.4.

Figure 6(b): Effect of orbit-width averaging on the computed
poloidal rotation velocity and toroidal rotation frequency profiles
during the H-mode phase of Pulse No: 57819: note the
smoothing of the peaks in VθC (at the plasma edge) and VθD
(towards mid-radius), and the slight inward shift of the profiles.
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Figure 7(a): The effect of the various numerical schemes
used by E-field to calculate Er for Pulse No: 57819 at
t=3.5sec, during the L-mode phase. Note the clear effect
in the plasma core of the different numerical routines used
for inter/extrapolating.

Figure 7(b): The effect of the various numerical schemes
used by E-field to calculate Er for Pulse No: 57819 at
t=7.85sec, during the steady-state H-mode phase. We
notice however the different sign of Er at the top of the
pedestal, for 0.8<x<0.9, which is due to a non-exact
cancellation between the pressure gradient and poloidal
components of Er.
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Figure 8(a): Plasma and neoclassical collisionality factors for the comparison between ErC
and ErD calculated with NCLASS and E-field at t=4sec, during the steady-state L-mode phase.
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Figure 8(b): Comparison between the flux-surface averaged ErC and ErD calculated with NCLASS
and E-field at t=4sec, during the steady-state L-mode phase. Note that discrepancy due to the different
fitting of the measured VφC and ZEFF profiles, particularly at the plasma edge and in the plasma core.
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Figure 9(a): Plasma and neoclassical collisionality factors for the comparison between ErC and
ErD calculated with NCLASS and E-field at t=8.4sec, during the steady-state H-mode phase.
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Figure 10: The main plasma parameters for Pulse No:
58263, a typical JET L-mode pulse.
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Figure 11(a): Plasma and neoclassical collisionality factors for the comparison between Er
calculated with NCLASS and E-field at t=20.0sec, during the steady-state L-mode phase.
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Figure 12(b): The 3D profile ErC(x,t) calculated with the
E-field code for Pulse No: 58263, here normalised with
respect to the total PNBI+PRF power deposition profile.
Note the broad and rather flat profile for 0.2<x<0.8,
whereas the fine structures appearing for x>0.85 are not
very reliable due to their strong dependence on the ion
density and ZEFF profiles used in the Er calculation.

Figure 12(a): The 3D profile ErC(x,t) calculated with the
E-field code for Pulse No: 57819, here normalised with
respect to the total PNBI+PRF power deposition profile.
There is no significant difference around the edge pedestal
at the L-H transition, whereas the transient drop in Er
around mid-radius is clearer.

Figure 11(b): Comparison between Er calculated with
NCLASS and E-field at t=20.0sec, during the steady-state
L-mode phase. For x>0.85 Vφ×Bθ≈0 since VφC≈VφD→0,
and the balance between ∇p/n and Vθ×Bφ dominates Er,
whose value is thus largely affected by slightly different
density profiles.
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Figure 14(a): Neoclassical collisionality factors for Pulse
No: 59624, the reversed ion ∇B-drift direction case.

Figure 14(b): Neoclassical collisionality factors for Pulse
No: 57819, the normal ion ∇B-drift direction case.

Figure 15: The 3D radial electric field for the reversed ion
∇B-drift direction pulse (No: 59624). Note that the change
in the ELM behaviour at t=24.5sec, from Type-I to Type-
III, only significantly affects the magnitude of Er in the
region 0.6<x<0.95 due to a change in the scale lengths,
reducing its peaking but only marginally modifying its
overall shape. In comparison with Fig.12(a), we
immediately note here the different shape of Er, particularly
in the region 0<5<x<0.9.

Figure 13: The main plasma parameters for Pulse No:
59624, a JET L-to-H-mode discharge with the ion ∇B-
drift direction directed away from the strike points,
contrary to the standard operating scenario.
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Figure 16(a): Plasma and neoclassical collisionality factors for the Er comparison
between reversed ion ∇B-drift discharges with different values of the plasma current.
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Figure 16(b): The calculated radial electric field for the
three RBE and the reference FBE pulses, normalised with
respect to the input ρDEP(x). We notice clear differences
in the Er(x) profile, both in shape and magnitude: in
particular, the FBE pulse at higher plasma current (Pulse
No: 59644) has the Er(x) more closely resembling that of
the reference H-mode pulse, thus empirically confirming
the role of NBI losses at the plasma edge in determining
Er(x,t).

Figure 17: The main plasma parameters for Pulse No:
61349, an ITB pulse with a deeply non-monotonic q-
profile where ∇Ti reaches the value of ~250keV/m around
R=3.35m, across the ITB position.
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Figure 18(a): Plasma and neoclassical collisionality factors for the Er comparison between
E-field and NCLASS for the ITB Pulse No: 61349, at t=6.1, the time of the peak Ti(x,t).
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Figure 18(b): Plasma and neoclassical collisionality factors for the Er comparison between E-
field and NCLASS for the ITB Pulse No: 61349, at R=3.35m, the position of the peak Ti(x,t).
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Figure 19(a): The profile of Er(x,t) and its components
for Pulse No: 61349 at t=6.1sec, showing the role of
potato orbits: the results are not reliable for x<0.2, since
ρθD(x,t)=O(LpD(x,t)), and have a very strong sensitivity
on the ZEFF and density profiles towards the plasma edge,
for x>0.8.

Figure 19(b): The evolution of Er(x,t) and its components
at R=3.35m, around the foot of the ITB: note the slow
build-up of the toroidal component due to the improved
confinement.

Figure 20: The main plasma parameters for Pulse No: 58094,
a JET ITB pulse with a flat q-profile in the plasma core, hence
smaller potato orbits that those in Pulse No: 61349.
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Figure 21(a): Plasma and neoclassical collisionality factors for the Er comparison between
E-field and NCLASS for Pulse No: 58094 at t=6.6sec, during the ITB phase.
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Figure 21(b): Plasma and neoclassical collisionality factors for the Er comparison between
E-field and NCLASS for Pulse No: 58094 at R=3.48m, the position of the foot of the ITB.
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Figure 22(b): The evolution of Er(x,t) and its components
at R=3.48m, around the foot of the ITB: due to the smaller
ion orbit width, in this case the NCLASS and E-field
calculation are much closer.

Figure 23(a): The 3D radial electric field for the ITB
plasma Pulse No: 61349: note the broad profile due to
the very large ion orbit width in this case, and the rapid
sequence of drop/increase/broadening of Er at the ITB
onset around mid-radius.

Figure 23(b): The 3D radial electric field for the ITB
plasma Pulse No: 58094: here Er(x,t) is much more peaked
than in the comparison Pulse No: 61349, because of the
smaller potato orbits. Note as well the transient drops in
Er(x,t) at thee appearance of low-order rational q-
surfaces around mid-radius.

Figure 22(a): The profile of Er(x,t) and its components
for Pulse No: 58094 at t=6.6sec: note again the clear
smoothing of the ∇p/n and Vθ×Bφ components due to the
averaging over the ion orbit width.
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Figure 24(a): Plasma and neoclassical collisionality factors for the Er comparison between
L-mode, H-mode and ITB plasmas (small potato orbits).
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Figure 24(b): The computed Er(x,t) normalised with
respect to the input power deposition profile to take
empirically into account the different momentum input.
Note the striking similarity in the shape of Er/ρDEP up to
around mid-radius between L-mode and ITB plasmas. The
H-mode radial electric field is definitively negative for
x>0.85, hovering around Er(x,t)=0 for L-mode plasmas,
and positive for ITB plasmas, although in this case there
are very significant error bars.
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