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ABSTRACT

The article describes experiments performed on JET over the past two years dedicated to

characterising ELM-averaged power exhaust (based on time-averaged divertor power deposition

profiles), with an emphasis on unfuelled, Type-I ELMy H-mode. Radial energy transport in the

SOL is found to behave differently in the ion and electron channels: the former is dominated by

(neo-)classical ion conduction, i.e. by diffusion of heat due to ion-ion collisions, while the later

appears to be governed by turbulent convection, most likely driven by MHD interchange and/or

drift-Alfven instabilities. Comparison of forward and reversed field experiments indicates that

classical drifts can explain the observed in-out poloidal asymmetry in the heat loads deposited on

the divertor. Whereas the role of ELMs needs further characterisation, a coherent picture of ELM-

averaged power exhaust can be formed by considering the role of collisional heat diffusion in the

highly dissipative SOL turbulence.

1. INTRODUCTION

1.1 MOTIVATION

Power exhaust is to fusion energy what landing is to aviation and what re-entry is to space travel. It

may be less exciting than ignition (or blast-off), but it is no less important for the repeated operation

of the device. In existing tokamaks, power exhaust is only a minor concern for the lifetime of first

wall components, but it will be a critical issue in ITER. In more mundane terms, the exhaust of

power from the core plasma via the scrape-off layer (SOL) and the associated energy fluxes on

divertor plates and main chamber limiters, impose severe restrictions on the design of first wall

components in ITER [Federici01]. Characterisation of power deposition profiles and improved

understanding of SOL energy transport mechanisms are thus high priority tasks for the ITER project.

Indeed, the absence of a credible theory for the radial heat diffusivity χ⊥, especially its functional

dependence on local field and plasma variables, was considered in the ITER Physics Basis [ITER99]

to be the weakest link in the predictive chain, preventing a true coupling of code and theory and

reducing ITER extrapolation to empirical scalings of the power width, λq. This has motivated a

series of JET experiments over the past two years dedicated to the study of power exhaust. Although

these experiments are a natural extension of the work presented at the previous IAEA conference

[Matthews03], they represent significant progress in the understanding of power exhaust on JET.

The aim of the present article is thus threefold: 1) to review the previous JET experiments and the

accompanying modelling activity in the light of more recent findings, 2) to present new experimental

and interpretative work, situating it firmly in the context of previously published results, and 3) to

form a coherent, up-to-date picture of ELM-averaged power exhaust, consistent with all available

JET data. To achieve these goals, the article necessarily consists of a combination of original and

previously published material. An attempt has been made to distinguish between the two as much

as possible, eg. by indicating if a figure has previously appeared in the literature. Nonetheless the

new contributions are generally mixed with previously published material. Original contributions
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include the detailed analysis of reversed field experiments in Section 3, theory-experiment

comparison of electron profile data in Section 4, and the systematic analysis of SOL turbulence in

Section 5.

Whilst an analysis of ELM (transient) power exhaust is highly desirable, the divertor diagnostics

have insufficient resolution to properly decouple the inter-ELM and ELM components of the

deposited heat load. The present article is thus restricted to a discussion of ELM-averaged (steady-

state) power exhaust; the term ELM-averaged denotes a temporal average over the steady-state

(flat-top) phase of an ELMy H-mode discharge. The article is organised as follows: Section 1

introduces the general concepts of power exhaust and gives a brief overview of JET power exhaust

diagnostics. Section 2 is devoted to an improved interpretation of forward field experiments, which

although previously presented, have benefited from more recent results. Section 3 discusses the

most notable of these, namely the reversed field experiments recently performed on JET [Pitts05].

Section 4 reviews the transport of electron thermal energy and its interpretation in terms of turbulent

convection in the SOL. Section 5 aims at constructing a coherent picture of ELM-averaged power

exhaust emerging from the results described in Sections 2 to 4, by considering the interplay between

turbulent and collisional transport of plasma thermal energy in the SOL, while drawing a clear

distinction between the ion and electron channels. This is accomplished via a systematic analysis of

dissipative properties of SOL turbulence. Finally, in Section 6 the main conclusions of the article

are briefly summarised and extrapolated from JET to ITER.

There is now ample evidence indicating that radial energy transport is largest in regions of

unfavourable magnetic curvature, such that power enters the SOL almost exclusively on the low

field, outboard side of the torus. For example, in double null experiments, where the inner and

outer scrape-off layers are separated, nearly all the power arrives at the outer divertor [Pitcher97,

Stangeby00]. This is observed in both L- and H-mode, and for both inter-ELM and ELM phases of

the H-mode [Counsell02, Petrie03]. Such strong in-out asymmetries of energy transport may be

linked to the larger outboard area, outward Shafranov shift and bad magnetic curvature of the

outboard region; they appears to hold over a wide range of spatial and temporal scales.

As a guideline for the rest of the paper, a schematic of energy flow in the SOL is shown in Fig.1;

the meaning of the various mechanisms will be made clear in the course of the discussion. Although

this picture applies to both the inter-ELM phase and the ELM transients, the relative magnitude of

the channels in these two instances may differ substantially. In the plasmas considered in this study,

most of the power enters the SOL during the inter-ELM phase, with an ELM contribution,

PELM/PSOL = ∆WELMfELM/PSOL ~ 0.2 – 0.4 where fELM is the ELM frequency and ∆WELM

the stored energy drop, see Table 1. ELM-averaged power exhaust is therefore composed of a

dominant inter-ELM component and a smaller, but still comparable, ELM component. In terms of

instantenous power fluxes, the peak ELM values exceed the inter-ELM levels by up to two orders

of magnitude.

In the presence of the H-mode transport barrier, with an associated reduction in edge turbulence
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and strong temperature gradients in the pedestal region [Parail02], plasma energy enters the SOL

mainly by radial collisional diffusion (neo-classical conduction and ion orbit loss effects), i.e. the

energy sources are located outside the SOL itself. In contrast, particle sources are spatially distributed

in the SOL, due to recycling at the plasma facing components, both divertor and limiter targets. The

clear spatial separation between the sources and sinks of energy in the SOL, in contrast to the close

interplay of sources and sinks of particles, means that in many ways energy transport poses a

simpler, more tractable problem than mass transport, be it for fuel or impurity ions. This is perhaps

the key explanation as to why our understanding of the former is quickly outpacing the latter.

The transport of energy in the SOL is an essentially three dimensional process in that it involves

three orthogonal directions: parallel||, diamagnetic ∧ and radial ⊥, characterised by the orthogonal

unit vectors e|| = b = B/B, e∧ and e⊥.  The || and ∧ directions define the flux surface, and provided

the system is axis-symmetric (∂/∂φ ~ 0), may be combined into a single, poloidal direction θ with

eθ = eφ × e⊥ and eθ ⋅ e⊥ = 0. This simplification does not change the fact that plasma transport

occurs in three (||, ∧, ⊥) rather than two (θ, ⊥) directions. To first order, the radial extent of the SOL

and the peak heat loads on the divertor and limiter tiles are governed by competition between || and

⊥ transport, i.e. between the rapid transport parallel to the magnetic field and the much slower

transport perpendicular to the local field; to this order, transport in the diamagnetic ∧ direction

mainly affects the in-out asymmetry of the deposited power, i.e. the ratio of power arriving in the

inner and outer divertor legs; the relation between in-out asymmetry and ∧ transport is discussed in

detail in §3.

A key property of any tokamak equilibrium is the direction of its toroidal magnetic field, and

consequently of the vector product B×∇B; since ∇B is always directed towards the major axis, this

product changes sign upon field reversal. In what follows, we define the forward field (fwd-B or

B×∇B ↓) direction such that B×∇B points towards the X-point (that is down in the case of lower

single null plasmas); reversed field (rev-B or B×∇B ↑) direction is defined such that that B×∇B

points away from the X-point. While parallel conduction is largely independent of B×∇B direction,

energy and particle transport in the diamagnetic ∧ direction depends on B×∇B through its influence

on guiding centre drifts (this point will be made clear in Section 3). As a consequence, SOL flows

(both main species and impurity) and divertor asymmetries (density, temperature, pressure, power

and radiation) are highly sensitive to the B×∇B direction. For example, the power threshold for the

L-H transition is substantially higher with B×∇B away from the X-point, such that it is more difficult

to attain the H-mode with a given amount of auxiliary heating [Connor00]. For that reason, most

tokamak experiments are performed in fwd-B configurations, which is also the chosen direction for

the ITER reference scenario. Therefore, investigation of power exhaust in fwd-B plasmas is clearly

the first priority, although operation in rev-B can be extremely useful in advancing our understanding

of power exhaust mechanism, eg. role of classical drifts.

The physics of parallel energy transport in the SOL is generally well understood

[Stangeby00]; in the collisional regime it is well described by a fluid approximation with
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classical Spitzer-Harm-Braginskii heat diffusivities, which in the long mean free path limit are

modified with appropriate kinetic corrections, colloquially known as heat flux limits. In contrast,

perpendicular transport is generally considered to be anomalous, a historical euphemism suggesting

turbulent convection; as was already mentioned, the ITER Physics Basis points out the absence of

a reliable theory of perpendicular heat diffusivity [ITER99]. The search for such a theory is the

primary motivation behind the work described in this article.

1.2 POWER EXHAUST DIAGNOSTICS ON JET

The JET experiments described below were based on a lower single null, high clearance magnetic

configuration with typical inner and outer mid plane wall gaps of ∆Rin = 26cm and ∆Rout = 16cm,

respectively, Fig.2. The main advantage of this configuration is the freedom to slowly shift the

plasma as a rigid-body, either vertically or horizontally [Riccardo01, Fundamenski02]. All plasmas

are identical in shape, with boundary elongation of ~ 1.7, and upper and lower triangularities of

0.16 and 0.24, respectively. Vertical translation is used to characterise the power deposition profiles

on the inner and outer divertors, with strike points located on the lower vertical divertor tiles. Three

types of diagnostics are used to measure deposited power profiles on JET divertor targets: Langmuir

probes (LP), infra-red thermography (IR) and embedded thermocouples (TC). A detailed discussion

of these diagnostics may be found in [Fundamenski04], including their positions in the divertor,

Fig.1 of [Fundamenski04].

The TC method, first described in [Riccardo01], involves slowly lifting the plasma as a rigid-

body, such that the separatrix strike point passes over the thermocouples embedded in the lower

vertical divertor tile. Typically, vertical translations of ~ 15mm/s, lasting 6 seconds are employed

during the flat-top phase of neutral beam heated discharges, when plasma conditions remained

constant. Finite element modelling of the divertor tile then allows a time-averaged (hence, ELM-

averaged) deposited power profile to be extracted. This is done using a variational approach in

which the shape of the profile is prescribed as a skewed Gaussian function and its height and width

are adjusted until an optimal match to the experimental time trace of the thermocouple is obtained.

In this way, the profile of the total deposited power or the heat load on the divertor tile can be

calculated. The method has a lower sensitivity limit of ~ 10mm along the target, determined by the

depth of the thermocouple beneath the tile surface. Since this is comparable to the narrowest deposited

power profile measured on JET, the swept TC method offers an upper limit on the actual ELM-

averaged profile width. Note that a relatively long flat top phase is needed for the vertical sweep,

which rules out TC measurements of the ELM-free H-mode phase.

Infra-red thermography (IR) on JET was discussed in [Eich03]. This method also measures the

total deposited power, but suffers from two major complications: the thermal properties of the tile

surface, including reflections of visible light, and finite pixel size of ~ 7mm along the target, which

limits profile resolution. On JET, due to the tangentially viewing periscopic system, the latter point

is particularly restrictive, with typically only a few pixels per profile. This has been addressed by



5

measuring the instrument function of the periscope optics using an in-situ black body source. The

function was then used to deconvolute the actual profile shape; the resulting TC and IR profiles

agree within measurement errors for both L- and H-mode shots. An example for the natural density,

Type-I ELMy H-mode case (Bφ = 2.5MA, Ip = 2.4T, PNBI = 12MW NBI, unfuelled) is shown in

Fig.3, which is adapted from Fig.5 of [Fundamenski04]. The fluxes represent target loads, qt i.e.

energy fluxes per unit area of the divertor target. To convert these to parallel energy fluxes, q|| in the

plasma, one must multiply by the inclination of the magnetic field lines relative to the target q||/qt ~ 1/sinθ⊥,

with θ⊥ ~ 3-5o for plasmas in this study. Profiles are mapped from the distance along the target, st to

the radial distance upstream (at the outer mid-plane) ru using a net flux expansion factor, Φ = dst/dru,

which was obtained based on an EFIT reconstruction of the magnetic equilibrium. This factor is

found as Φ ~ 4 in the vicinity of the strike point, such that ru[mm-omp] = st[mm-z] / 4, where mm-

omp and mm-z indicate the unit mm measured at the outer mid plane and along the target, respectively.

The profiles are parameterised in terms of two variables: peak heat flux q0 and the integral power

width, defined as λq ≡  ∫qdr /q0. The latter of can be used to define the near-SOL (r / λq < 2 – 3) and

far-SOL (r / λq > 2 – 3) regions, such that plasma power is by definition exhausted primarily via the

near-SOL region. Unless otherwise specified, the term SOL will implicitly refer to the near-SOL

region.

Figure 1 also shows the power profile obtained by lifting the plasma on a shot-by-shot basis; the

deposited profile was then obtained from the change in the ratio of energy deposited on the lower

and upper tiles of the outer divertor, as measured by the thermocouples [Matthews01]. Aside from

errors in plasma positioning, this is the most accurate measurement method, and indicates that the

TC and IR profiles in Fig.3, slightly overestimate the width of the actual ELM-averaged heat load

profile. This is consistent with the measurement constraints of both TC (depth of thermocouple ~ 10mm)

and IR (pixel size ~ 7mm) methods discussed above.

Finally, divertor Langmuir probes are used to measure the plasma flux, Γe and electron

temperature, Te profiles in the divertor. The steady-state electron energy transmission coefficient is

relatively insensitive to plasma conditions and may be taken as γe ~ 5 [Stangeby00]. With this

assumption the electron parallel power flux into the sheath is computed as qLP ~ 5TeΓe. It is essential

to note that Langmuir probes provide the electron power flux, but offer no information on the ion

power flux into the sheath; in other words, qLP ~ qe. Although the collisional assumption Ti = Te is

often invoked to approximate the ion power flux as qi ~ γiTiΓe ~ 2TeΓe, it may underestimate the

ion power flux under low collisionality conditions, when the ion and electron thermal energies

become effectively decoupled. This is the most likely explanation for the difference in magnitude

(by a factor of 4 in highest power discharges) between the total (TC or IR) and electron (LP) power

fluxes in Fig.3, despite a good match in the shape of all three profiles. In contrast, under lower

power, L-mode conditions a good match in both the shape and the magnitude is found (see Fig.2

in [Fundamenski04]). It should be noted that the LP profile in Fig.3, represents only the inter-

ELM electron power, i.e. qLP ~ qe, inter-ELM. Since the voltage sweeping rate of the Langmuir
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probes (100Hz) sets the temporal resolution of the diagnostics at 10ms, while typical ELMs on JET

last less than 1ms, the probes cannot measure electron energy flux during the ELM itself. This point

will be further discussed in Section 2.

To give a sense of scale, the poloidal gyro-radius ρθi evaluated at the outer mid-plane, which

measures the neo-classical banana orbit width ~ 2ρθi, is also shown in Fig.3; the poloidal field at

the outer mid-plane is, of course, larger than the flux surface average, (Bθ/B)omp ~ 0.3 vs. <Bθ/B>

~ 0.1, due to the ~ 1/R dependence of the toroidal field. The poloidal ion gyroradius in Fig.3 was

evaluated for three values of the ion temperature: 100, 300 and 1000eV, which span the range between

the top of the pedestal (Ti, ped ~ 1.1keV) and the upstream separatrix (Ti, sep ~ 100 - 200eV). The

narrow structure in the deposited power profile (~ 2-3mm-omp) is evidently smaller than rqi at the

pedestal (~ 6mm-omp) but roughly equal to ρθi at the separatrix (~ 2-3mm-omp). The ratio of

poloidal and total gyro-radii is small (ρθi/ρi)omp ~ (B/Bθ)omp ~ 3, such that the near-SOL profile

width is comparable to the pedestal ρi ~ 2mm-omp and only three times larger than the separatrix

ρi ~ 0.6-1mm-omp. Since ρi is the smallest length over which radial variations can exist in a

magnetised plasma, this strongly suggests that the dominant radial energy transport process in the

near-SOL is close to the lower (laminar) limit set by collisional ion heat conduction. We can therefore

expect ion collisions to play an essential role in SOL energy transport, at both the inter-ELM and

ELM stages.

2. FORWARD FIELD (FWD-B) EXPERIMENTS: B×∇×∇×∇×∇×∇B TOWARDS THE X-POINT

2.1 EXPERIMENTAL RESULTS

Over the past two years, 22 high clearance discharges dedicated to energy transport have been

performed on JET in the forward field direction for a range of conditions [Fundamenski04]. Parameter

variation included:

• Neutral Beam Injection power, PNBI from 4 to 18MW

• Additional fuelling rate, with a variation of the Greenwald fraction n/nGW ~ 0.3 - 1

• Toroidal magnetic field, Bφ from 1 to 3 Tesla

• Plasma current, Ip from 1.5 to 2.5MA, with a variation of the safety factor, q95 ~ 2.6 - 3.8,

• Mass A and charge Z of plasma ions; both deuterium (D) and helium (He) plasmas were studied,

with 16D and 6He dedicated discharges. Note that the ratio of mass/charge is the same for He++ as

for D+ (A/Z = 2), such that the effects of mass and charge cannot be decoupled.

Both confinement regimes are included in this study with 3 L-mode and 19 ELMy H-mode

discharges. In the latter case, most D plasmas involved Type-I ELMs, while He plasmas  exhibited

the smaller Type-III ELMs; unfortunately, the Type-I ELMy H-mode regime could not be attained

in helium plasmas due to lack of sufficient neutral beam heating power (He0 injection was used).

There was no additional fuelling during the H-mode phase in most discharges, producing the so-

called natural density H-mode operation, in which the plasma density is determined by particle

recycling alone. A detailed analysis of these experiments may be found in [Fundamenski04]; below
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we briefly revisit this analysis in the light of more recent results.

The peak heat loads on the outer divertor, both total qtot (TC) and electron qe (LP), are shown in

Fig.4, where they are plotted vs. the total power to the outer target Pt (TC); this figure is adapted

from Fig.3 of [Fundamenski04]. Inner target heat loads are not shown as these are smaller by a

factor of five; we will return to the issue of in-out asymmetry in the following section. The results

are divided into D and He plasmas, and only unfuelled (natural density) H-mode discharges are

shown; for reference, the L-mode points are also indicated. For D plasmas, qtot ≈ qe + qi increases

faster than linearly with input power, indicating that the SOL power profile becomes narrower with

Pt, since λq ∝ Pt / qtot. It also begins to greatly exceed the electron peak heat load qe as measured by

LP, which increases slower than linearly with Pt; this discrepancy (excess heat load) between the

total and electron values was already noted in connection with Fig.3. We may interpret this excess

heat load as the upper limit on the net ion heat load, qi = qi, inter-ELM + qi, ELM, defined as the sum

of inter-ELM and ELM ion contributions (assuming of course an ion distribution function with

Ti > Te), which may be written as

qtot - qe, LP ~ qtot - qe, inter-ELM ~ qi, inter-ELM + qi, ELM + qe, ELM > qi ~ 2TiΓi.

The neglect of  charge-exchange neutrals and radiation is justified by the fact that these mechanism

are a factor of 100 too small to account for the excess peak heat loads. On the other hand, the role

of energetic particles (both ions and electrons) associated with ELMs is made explicit in the above

formulation. The difference between the excess heat load qtot - qe, LP and the ion contribution qi, is

thus the unknown electron ELM heat load qe, ELM. While this quantity cannot be diagnosed at

present, kinetic simulations indicate that the electron contribution to the ELM deposited power is

typically less than 50%, and may be as little as 20%, i.e. Pe, ELM / (Pi, ELM + Pe, ELM) ~ 0.2 – 0.4

[Bergmann02]. Since the electron pulse during the ELM is deposited more promptly than the ion

pulse, we expect the electron contribution to the peak heat load to be somewhat larger. With ELMs

responsible for roughly a third of the power crossing the separatrix in these shots, Pe, ELM amounts

to < 15% of PSOL. Thus, to first order we may identify the excess power with the ion contribution.

The decoupling of ELM and inter-ELM components is additionally complicated by the fact that

ELMs do not appreciably broaden divertor power profiles (at most by a factor of 2) with respect to

their inter-ELM values [Herrmann03]. The presence of Type-III ELMs in helium plasmas further

complicates the issue, Fig.4. It may thus be argued that excess heat flux qtot - qe, LP observed for

high power deuterium H-modes, is simply a remnant of the larger type-I ELMs; in helium plasmas,

in which only the smaller Type-III ELMs are found, this excess qtot - qe, LP is indeed very small,

Fig.4. In the absence of Type-I ELMy H-mode helium data, this point cannot be conclusively

resolved. As a result, it is difficult to decouple the inter-ELM and ELM contributions as has been

indicated in the schematic of Fig.1. This caveat will be implicit whenever the ion and electron

powers are mentioned below.
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The separatrix ion collisionality, νi
* ≡ L||/λii ∝ L||n/Ti

2, where L|| is the connection length and λii

is the ion-ion collisional mean free path, emerges as the governing parameter for the excess peak

heat load on the outer target qi ~ qtot - qe, LP. This is indicated by Fig.5, where qtot/qe, LP is plotted

vs νi
*. While electrons remain collisional (ν*

e ≡ L||/λee > 30) in all cases considered, ions become

progressively less collisional with input power, down to the levels of marginal collisionality in high

power, unfuelled, deuterium Type-I H-modes (ν*
i < 3); the cubic dependence of the collisionality

on the ion charge is responsible for the high values of ν*
i in helium discharges. Both collisionalities

were calculated using the two-point model estimates of upstream temperatures and density, Te, u,

Ti, u and ne, u, [Stangeby00], based on target LP measurements of Te, t and ne, t, and the peak target

heat flux qtot. Based on the qi ~ qtot - qe, LP assumption, the inferred ion temperature at the outer

target is ~ 300eV at lowest collisionality [Fundamenski02]. Carbon ion temperature profiles,

measured by charge-exchange resonance spectroscopy, indicate that Ti
C6+ varies slowly in the

pedestal region, with Ti, sep
C6+ ~ 0.8Ti, ped

C6+ ~ 700eV [Andrew04]. Provided Ti
D+ ~ O(Ti

C6+), the

inferred target Ti and the estimated separatrix Ti
D+ are comparable, then the hot target ions originate

close to, within one poloidal gyro-radius of, the separatrix.

It should be noted that unlike Fig.4, which contains only unfuelled H-modes, Fig.5 also includes

additionally fuelled H-modes. This shows that the beneficial effect of fuelling in reducing the peak

heat load occurs by increasing the ion collisionality. Since high collisionality implies strong coupling

between ion and electron channels, we expect Ti ~ Te and hence qe, LP ~ qtot under collisional

conditions. This is in fact observed in Fig.5, where for νi
* > 10, the electron and total peak heat

loads are nearly equal (qtot/qe, LP ~ 7/5) as expected from sheath physics, which for Ti ~ Te, predicts

qtot ~ qi + qe, LP ~ 7TeΓe and qe, LP ~ 5TeΓe. Under collisionless conditions (νi
* < 5), the ratio

qtot/qe, LP increases above unity and the ion heat flux begins to dominate, Fig.5. As shown in

the figure, this ratio is strongly correlated with the steepening of the power profile measured

by qtot/qbase, where qbase is the peak heat load extrapolated from the far-SOL (base) profile, i.e. the

excess (ion) contribution determines the integral width of the near-SOL power profile. In JET

H-mode discharges this width has been found to scale as

λq
all ∝ AαZβBφ

-1.03q95
0.6Pt

-0.41ne, u
0.25, α + β = 1.04                            (2.1a)

if all discharges are included, and

λq
H ∝ AαZβBφ

-0.93q95
0.41Pt

-0.48ne, u
0.15, α + β = 1.11                             (2.1b)

if only H-mode shots are retained [Fundamenski04]; the 0.95 flux surface index is included to

differentiate the safety factor from the heat flux, both of which are denoted by q. Both of the

scalings (2.1a) and (2.1b) are dominated by natural density H-modes under attached conditions.
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2.2 THEORIES OF RADIAL ENERGY TRANSPORT

In order to determine the mechanism of radial energy transport in the SOL, the experimentally

obtained scalings (2.1) have been compared with the predictions of all available theories of radial

heat transport. The collection of theories and their labelling are essentially borrowed from

[Connor99]. The interested reader is referred to that study and the citations contained therein, for a

detailed description of the underlying physics of each theory. The scaling of the heat diffusivity χ⊥
with A, Z, Bφ, q95, ne and Tσ and λq, predicted by individual theories is summarised in Table 1 of

[Fundamenski04]. In addition, several theories for λq and χ⊥ not considered in [Connor99] have

also been included in the comparison, involving the collisionless radial lengths:

• Y1: ion gyro-radius, ρi ∝ A0.5Z-1B-1Ti
0.5

• Y2: poloidal ion gyro-radii, ρθi ~ ρi(B/Bθ) ∝ A0.5Z-1Bθ
-1Ti

0.5

• Z1: electron gyro-radius, ρe ∝ B-1Te
0.5 the footprint of direct ion orbit loss on the outer

  divertor target,

• X: direct ion orbit loss, λq
X, see (2.2) below and collisional heat diffusivities,

• A1: classical ion heat conduction, χ⊥
A1 ∝ ρi

2νi

• A2: neo-classical ion heat conduction, χ⊥
A2 ∝ χ⊥

A1(B/Bθ)2 ∝ ρθi
2νi

• A3: classical electron heat conduction, χ⊥
A3 ~ χ⊥

A1(me/mi)
1/2  ∝ ρe

2νe

where νi and νe are the characteristic ion and electron collision frequencies. Because of their

importance in what follows, a brief discussion of these theories is appropriate. The role of the ion

and electron gyro-radii was already mentioned in the context of Fig.3; they determine the smallest

possible radial variation of the ion and electron distribution function, respectively.

Ion orbit loss (IOL) is a well known transport mechanism in diverted tokamak plasmas [Shaing89];

it can be accurately described as neo-classical transport in the presence of the X-point, and involves

the opening out of the ion banana orbits by the change in the field topology in the vicinity of the

separatrix. The loss orbits then terminate at either the inner or the outer divertor target, assuming

the radial distance to the limiter exceeds 2 – 3 poloidal gyro-radii. The topology of the loss orbits

and hence the in-out loss asymmetry is therefore highly sensitive to the direction of the B×∇B drift,

which determines the sense of poloidal rotation of the guiding centre in the banana orbit. In the

past, ion orbit loss has been suggested as a possible explanation of both the L-H transition [Shaing89]

and narrow structures in deposited power profiles [Lingertat97, Fundamenski02].

The effect of field reversal on ion orbit loss is illustrated in Fig.2, which shows the results of a

calculation using the guiding centre Monte-Carlo code ASCOT [Heikkinen01]. The magnetic

equilibria used in the simulations were reconstructed using EFIT for the matching fwd-B and rev-

B pulses, 50415 and 59589 in Table 1. The initial ion launch location is labelled dark grey (blue) if

the orbit terminates at the inner target and light grey (red) if it strikes the outer target. In the fwd-B

direction, Fig.2(a), the outer launch orbits terminated mostly on the outer target, and the inner

launch at inner target. The situation is reversed in rev-B direction, Fig.2(b), where the outer orbits

terminate at the inner target and vice versa. It is evident that the out-in asymmetry of direct ion orbit
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losses is highly sensitive to the B×∇B direction.

For typical JET H-mode conditions, ions lost from the top of the pedestal effectively follow

direct, collisionless orbits in the SOL (ν*
i, ped < 1), while those lost close to the separatrix suffer

multiple collisions in the SOL (ν*
i, sep > 1). It is therefore useful to draw a distinction between

direct ion orbit loss, in which collisions only play a role in the pedestal region (i.e. in the generation

of the scattering of ions onto lost orbits), and collisional ion orbit loss, in which collisions in the

SOL significantly modify the trajectory leading to diffusive radial broadening. This distinction was

made explicit in Fig.1, where only direct IOL bypasses the thermal ion population in the SOL.

Earlier studies showed that the observed JET outer target profiles could be explained by direct ion

orbit loss, provided rather large values of the radial electric field in the SOL (Er
SOL ~ 30-50kV/m)

were assumed [Fundamenski03]. These conclusions were based on simulations of ion orbit loss

using the guiding centre Monte-Carlo code ASCOT [Heikkinen01] in realistic JET geometry with

reconstructed edge and SOL plasma and neutral profiles [Fundamenski02]. Nevertheless one

important feature of these simulations was the assumption of sharp pedestal profiles, such that all

particles were launched with pedestal energies and therefore the SOL plasma did not significantly

broaden the orbits. Hence, despite the inclusion of SOL plasma and neutrals, the simulated

process constituted only direct ion orbit loss. Over thirty ASCOT simulations were performed

with 1.5T < Bφ < 3.5T, 2.6 < q95 <5.2, 3m < R < 6m, A ≤ 12 and Z ≤ 2, to calculate the footprint

of direct ion orbit loss on the outer divertor target in the forward field direction. The result is the

following scaling for target power width [Fundamenski04]:

λq
X = 2.2×A0.35±0.03 Z-0.8±0.06 Bf-0.89±0.04q95

0.88±0.04Ti, ped
0.39±0.1ne, ped

-0.08±0.1(R/3)0.8±0.1   (2.2)

where λq
X is in mm-omp, Bφ the on-axis toriodal field in Tesla, R is the major radius in meters,

Ti, ped the ion pedestal temperature in keV, and ne, ped the pedestal density in 1020 m-3. We note

that λq
X ~ L||

0.85, when the R and q95 scalings are combined. Not surprisingly, λq
X scales roughly

as the poloidal gyro-radius ρθi, i.e. as the banana width. The minor difference can be explained by

topological effects associated with the X-point and collisions with the SOL background plasma and

neutrals. At this stage, the scaling with SOL density and temperature has not been not properly

assessed, but such a study is envisioned in the future.

The final three theories (A1, A2, A3) involve collisional transport. A modern account of collisional

transport in magnetised plasmas, generally referred to as classical and neo-classical transport,

including a derivation of the corresponding radial heat diffusivities, may be found in [Helander02].

The terms classical and neo-classical refer to the cylindrical (ε ≡ r / R → 0) and toroidal (ε > 0)

geometries respectively. In both cases, radial heat conduction can be approximated as a diffusion

process with a radial step taken as the gyro-radius and step time as the collision frequency, i.e.

χ⊥σ ∝ ρσ
2νσ where σ ∈{i,e}. Since the gyro-radius is much larger for ions than for electrons, on

account of their larger mass, collisional heat conduction is also much faster for these species. In this
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approximation, classical and neo-classical transport differ mainly in their radial step size, with ρθi

taking the role of ρi, and enhancing the classical χ⊥i by a factor ~ (ρθi/ρi)
2 ~ (B/Bθ)2. The above

picture neglects the role of collisionality, ν*
i ~ Rq95/νii. When it is included, three separate neo-

classical transport regimes may be distinguished, which in order of increasing ν*
i, are known as

banana, plateau and Pfirsch-Schlueter regimes. In practice, the intermediate (plateau) regime

disappears for ε > 0.2, relevant to the edge plasma, such that neo-classical transport can be effectively

divided into the low collisionality (ν*
i < 1), banana regime and the high collisionality (ν*

i  > 1),

Pfirsch-Schlueter regime [Helander02]. In the former, the collision frequency is much smaller than

the transit, or bounce frequency of the banana orbit, and the simple diffusive picture with radial

step size ρθi applies; the only modification is a factor ft ~ 1.5ε1/2 (ft ~ 0.85 for ε ~ 1/3), representing

the fraction of trapped (banana) particles in the total ion population, such that χ⊥
A2 ~ 1.5ε1/2ρθi

2νii

~ (B/Bθ)2χ⊥
A1.

This regime is unlikely to exist in the SOL for two reasons: 1) as already mentioned, the effect of

the X-point leads to the opening out of banana orbits, i.e. to ion orbit loss, 2) ion collisionality in the

SOL exceeds unity, ν*
i > 1, cf. Fig.5. Consequently, neo-classical transport in the SOL should be in

the Pfirsch-Schlueter regime, in which the ion orbit is frequently interrupted by ion-ion collisions.

This leads to a highly asymmetrical radial heat flux, with an outflow of heat on the outboard, low

field side and an inflow on the inboard, high field side, changing sign at the top and bottom of the

torus, χ⊥
PS ~ 1.6q95

2[ε-1cosθ + O(1)]χ⊥
A1, where q is the poloidal angle (θ = 0 at the outer mid-

plane). When averaged over the flux surface, the two large contributions cancel to the highest order

in ε, leaving a difference of order ε2. This results in the enhancement of the flux surface

averaged value of the heat diffusivity with respect to the classical value by a factor of 1.6q95
2

where q95 ~ <εB/Bθ>95 is the average safety factor on the 0.95 flux surface. The final diffusivity

can be written as χ⊥
A2 ~ 1.6q95

2χ⊥
A1 ~ 1.6ε2<B/Bθ>2χ⊥

A1. Due to the presence of the X-point and

the opening of flux surfaces in the SOL, the above estimate of the Pfirsch-Schlueter diffusivity

obtained for closed flux surfaces could be significantly modified in the SOL. Nonetheless, this

value should serve for the purpose of the cross-theory comparison.

In JET discharges considered here, ε ~ 1/3 and q95 ~ 2.6 are typical, such that the flux surface

average <B/Bθ>95 ~ 8; this should be compared with the outer mid-plane ratio of (B/Bθ)omp ~ 3

obtained from the EFIT reconstruction. Consequently, the banana and Pfirsch-Schlueter enhancement

factors, 0.85(B/Bθ)2
omp ~ 8 and 1.6q95

2 ~ 11, respectively, are roughly equal provided the former is

evaluated at the outer mid-plane. In addition, for a plasma of fixed size, such that ε = constant, both

the banana and Pfirsch-Schlueter heat diffusivities scale identically with plasma and field variables;

for this reason we do not distinguish between these regimes, but retain only the generic neo-classical

form, χ⊥
A2 ∝ χ⊥

A1(B/Bθ)2 ∝ χ⊥
A1q95

2.

We close this brief discussion by ordering the theories of radial heat diffusivity in the SOL in
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terms of increasing complexity:

• Q: χ⊥ = constant,

• Y, Z: collisionless (λq ~ ρσ, ρθσ),

• X: direct ion orbit loss (λq  ~ λq
X)

• A: collisional diffusion (χ⊥ ~ classical, neo-classical)

• B-O: turbulent (MHD interchange, drift-Alfven), charge-exchange and ad hoc

2.3 COMPARISON OF EXPERIMENTAL RESULTS VS. THEORETICAL PREDICATIONS

In order to perform the comparison for such a large number of theories, the power width λθ was

related to χ⊥ using a simplified diffusive model of SOL energy transport, Appendix A of

[Fundamenski04],

λq ~ (χ⊥τ||)
1/2,      τ||

-1 ~ τ||v
-1 + τ||χ

-1,        τ||v ~ L||/cs,        τ||χ ~ L||
2/χ||e                (2.3)

where τ||v and τ||χ are the convective and conductive energy loss times, respectively, and τ|| is the

harmonic average of the two. While the magnitude of λq(χ⊥) in this estimate is at best valid to

within a factor of two, its scaling with plasma, field and ion variables should be captured to a much

higher accuracy. This was in fact demonstrated by comparing λq in the limits of conductively and

convectively dominated parallel transport, λq
v = λq(τ||v) and λq

χ = λq(τ||χ), respectively. The

comparison showed that the scaling of λq(χ⊥) was insensitive to the details of parallel transport. In

addition, the diffusive estimate (2.3) was successfully validated under attached plasma conditions

against the 2-D fluid transport code EDGE2D [Fundamenski04].

The error between the theoretical prediction and experimental λq scaling is shown as a bar chart,

where each bar represents a single theory and different shades represent contributions from different

exponents in the scaling, Fig.6 (or Fig.6(c) of [Fundamenski04]). The figure suggests that three

collisional theories (classical ion A1 and electron A3 conduction and neo-classical ion conduction

A2) give the best match to the experimental data, with A1 a clear favourite, it being the only theory

to satisfy the diagnostic error margin indicated by the dot-dashed line [Riccardo01]. If only the

well known quantities Z(A), B, q95 are considered (the estimates of upstream density and temperature

values carrying significant error bars), the agreement between this theory and the experiment is

even more startling. In short, the best three theories all involve laminar (non-turbulent), collisional

transport with a strong indication that classical ion conduction predominates. The collisional theories

are followed by Bohm (N), endplate MHD interchange (B2, G2), change exchange (M) and the

null model, χ⊥ = constant (Q).

The calculated footprint of direct ion orbit loss (2.2), which roughly follows the poloidal ion

gyro-radius λq
X ~ ρθi, is in very poor agreement with the observed scalings of A(Z), Bφ and q95

(theory X in Fig.6). We will see presently, however, ion orbit loss combined with ion-ion collisions

in the SOL, that is collisional ion orbit loss, offers excellent agreement with experiment.
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The above conclusions, based on the scaling of λq with plasma, field and ion variables, are reinforced

by consideration of the magnitude of λq. This is found to lie between classical A1 and neo-classical

(Pfirsch-Schlueter) collisional A2 predictions, but greatly exceeds the classical electron collisional

A3 prediction,

λq  ~ 2.2×λq
A1 ~ 0.6×λq

A2 ~ 21×λq
A3                                        (2.4)

The ion collisional widths in (2.4) assume parallel convective losses at the upstream sound speed,

λq ~ (χ⊥τ||v)1/2, a fair approximation under low collisionality conditions, which leads to

λq
A1 ~ (ρi

2νiiL||/cs)
1/2 ~ ρiν

*
i
1/2 and λq

A2 ~ (ρθi
2νiiL||/cs)

1/2 ~ ρθin
*

i
1/2; the reduction makes

use of νiiL||/cs ~ νiiL||/vti ~ L||/λii ~ ν*
i. In contrast, the electron collisional width assumes parallel

electron conduction, which is more appropriate to electron energy loss. Thus λq ~ (χ⊥τ||χ)1/2, as

also defined in (2.3), such that λq
A3 ~ (ρe

2νeeL||
2/χ||e)

1/2 ~ ρeν
*
e; here νeeL||

2/χ||e ~ νeeL||
2/vteλee ~

L||
2/λee

2 ~ ν*
e
2. The appearance of the collisionalities ν*

σ in both expressions is indicative of a

random walk, diffusive process.

The classical and neo-classical power width predictions, obtained above, involve only collisional

transport; they implicitly assume that the background plasma flow is quiescent or laminar, and

therefore represent the narrowest possible profiles likely to exist in the SOL under given upstream

conditions. For future reference, we note that they are also the long wavelength (two dimensional)

limit k|| → 0 of the turbulent dissipative scales, which will be discussed at length in §5. Under these

conditions, the electron power width is roughly an order of magnitude smaller than the ion power

width, due to the smaller electron χ⊥e << χ⊥i and faster χ||e  >> χ||i.

With this in mind, a number of important conclusions can now be drawn from (2.4). First, the

observed power profile is much broader than would be expected from the purely laminar

approximation, that is λq >> λq
A3; if we take the range of observed electron profiles as set by the

near-SOL and far-SOL values, λq
e ~ (1-2)λq, then the observed to classical ratio becomes λq

e/λq
A3

~ 20-40 ~ O(30). This alone implies the presence of turbulence in both the near- and far-SOL

regions! Expressing the level of turbulence as an effective radial heat diffusivity, which from (2.3)

can be written as χ⊥e ~ λq
2/τ||χ, we obtain χ⊥e/χ⊥

A3 ~ (λq
e/λq

A3)2 ~ O(103), so that turbulent

convection entirely determines the radial electron energy transport.

Secondly, the total power profile is comparable to the laminar ion approximation, for both classical

and neo-classical expressions: that is, λq ~ 2λq
Α1 ~ 0.5λq

Α2. If we interpret the narrow near-SOL

profiles as an ion contribution, λq ~ λq
i, than the effective radial heat diffusivity χ⊥i ~ λq

2/τ||v ~ 0.01

- 0.05 m2s-1 is comparable to the collisional estimate, χ⊥i ~ 4χ⊥
A1 ~ χ⊥

A2/4. These values only

apply in the near-SOL, and increase to much higher levels up to 1 m2s-1 in far-SOL. This was first

noted in [Fundamenski01], where the radial diffusivity profile was extracted for a JET high power

H-mode using the fluid transport code OSM2/EIRENE, and compared with classical and neo-

classical estimates; the result was χ⊥i ~ O(χ⊥
A2) close to the separatrix. We may conclude that
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while some level of turbulence is evidently present in the near-SOL, and dominates particle,

momentum and electron energy transport, it is far less important for ion energy transport on account

of the larger ion collisional diffusivity – essentially, an instance of the so-called finite Larmor

radius effect, in which fi(x, v) is smoothed radially by ion gyration over the radial extent of ρi. We

will return to this important point in §5.

To obtain a collisional ion orbit loss width, we make use of the discussion following (2.4) and

take the direct ion orbit loss width lqX on the outer divertor plate (2.2) as the diffusive step size

with step time νii
-1 to obtain χ⊥

X ~ (λq
X)2νii. Assuming λq

X = λq
X(τ||v), we arrive at the following

expression for the collisional ion orbit loss width,

λq
X-ν* = λq

Xν*i1/2                                                       (2.5)

An alternative, more ad hoc formulation, involves a transitional expression between λq
A1 and λq

X,

λq
A1-X = 2.4ξλq

A1 + (1-ζ)λq
X,                                             (2.6)

where ζ ≡ ν*
i / (1 + ν*

i) approaches zero for collisionless and unity for collisional conditions, and

the factor 2.4 was chosen to best fit the available JET data. Both expressions offer excellent fits,

within the experimental error of 20%, to the measured power widths, λq  ~ λq
X-ν* ~ λq

A1-X.

The magnitudes of all collisional predictions, including the collisional ion orbit loss estimates

(2.5) and (2.6), measured power widths are compared in Fig.7, where the poloidal gyro-radius

evaluated at the upstream separatrix is also shown. Within the accuracy of the estimate, fair agreement

is found with all collisional estimates, although the collisional ion orbit loss expressions (2.5) and (2.6)

give the best match to the data. These values are intermediate between the classical (ε = 0, χ⊥i ~ q95
0)

and neo-classical (ε > 0, χ⊥i ~ q95
2) predictions, suggesting that ion transport in the near-SOL

involves aspects of both regimes and may scale as χ⊥i ~ q95
k where 0 < k < 2. We will henceforth

refer to this intermediate transport regime as (neo-)classical. Since this regime spans the range set

by classical and neo-classical limits, it includes such effects as collisional ion orbit loss which is

behind the best fit expressions (2.5) and (2.6). Based on both scaling and magnitude comparison,

we can conclude that (neo-)classical transport offers the best match to JET data in the fwd-B direction.

3. REVERSED FIELD (REV-B) EXPERIMENTS: B¥—B AWAY FROM THE X-POINT

In order to further discriminate between direct ion orbit loss and (neo-)classical ion conduction –

only the former being sensitive to the B×∇B direction – dedicated reversed field experiments were

recently performed on JET [Pitts05, Fundamenski05]. The idea of reversing the magnetic field in a

tokamak is not new. Such experiments have been performed in the past on nearly all machines,

including JET [Chankin97]. However, much of this earlier work is concerned with ohmic or
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L-mode plasmas, with a focus on low power, high density regimes [Hutchinson95, Pitcher97,

Stangeby00]. In light of the low ν*
i, sep in ITER and recent improvements in divertor thermography,

it was felt that new JET experiments providing closely matched forward-reversed pairs of H-mode

discharges were desirable. To provide compatibility with fwd-B experiments, the same high clearance

magnetic configuration was used. Both Bφ and Ip were reversed, such that the magnetic helicity

remained constant. The deposited power profiles on the inner and outer divertors were measured

using the same techniques as for the fwd-B experiments (see Section 1).

3.1 EXPERIMENTAL RESULTS

Four good discharges, forming fwd-B/rev-B matched pairs were obtained, one L-mode and three

H-modes at different values of Bφ, Ip and PNBI; these are summarised in Table 1. The discharges are

fairly well matched in terms of power entering the SOL, PSOL = Pheat – Prad, i.e. heating minus core

plasma radiative powers and volume averaged density <ne>; the majority 60 – 90% of this power

crosses the separatrix during the inter-ELM phase as observed from the ratio PELM/PSOL. However,

the ELMs are typically smaller and more frequent in rev-B discharges, with ∆WELM/Wped ranging

from 4 – 9% in fwd-B to 1 – 5% in rev-B. Note that Type-I ELMy H-mode could not be obtained at

2.5MA/2.4T with 14MW of NBI heating due to the higher III-I power threshold in rev-B [Andrew04].

Due to progressive wiring failure, the LP coverage was much poorer at the time of the reversed

field experiments, hence the ~ sign in Table 1 denoting errors of order ± 50% in the saturatiion

current, js and electron temperature, Te. Nonetheless, it is clear that the inner target Te is nearly

doubled by field reversal (from ~10eV to ~20eV), while the outer Te remains in the range ~20-

30eV. The trends in js and Te are discussed in more detail in [Fundamenski05]. The upstream values

of density and temperature,  ne
SOL and Te

SOL, and were predicted using a two-point model estimate

based on total (TC) heat fluxes to the outer target.

The TC-measured, ELM-averaged deposited heat load profiles for the matched pairs of shots of

Table 1 are shown in Fig.8, along with total deposited powers Pt, peak values qpeak and integral

widths λq. The resulting out-in deposited power asymmetry Po/Pi is reduced from ~ 2.65 – 2.2 for

fwd-B to ~ 1.7 – 1.9 for rev-B, with the average value roughly constant at 2.1±0.05. This asymmetry

increases roughly linearly with power into the SOL, PSOL, with a weaker slope for  H-mode plasmas.

Similar behaviour was observed on a large sample (>100 shots) of unmatched fwd-B and rev-B

JET plasmas from the same experimental campaign [Pitts05]. Furthermore, based on matched fwd-

B and rev-B L-mode discharges (2.0MA, 2.4T, PNBI ~ 2 – 8MW) with detailed radiation accounting

using tomographic reconstructions of bolometric lines of sight [Huber05], shows that target power

asymmetries reflect actual changes of power flux into the divertor legs Pdiv = Pt + Prad, div (Pdiv, o/

Pdiv, i ~2.3 for fwd-B vs. ~1.3 for rev-B), rather than simply asymmetry in divertor radiation, as

suggested by a recent review [Pitcher97]. In other words, a significant poloidal component of the

SOL energy flux was shown to depend on the B×∇B direction, in line with conclusions reached on

the basis of reversed field experiments in Alcator C-Mod [Hutchinson95].
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The out-in peak heat flux asymmetry in Fig.8 and Table 1 (both TC and LP) ranges from 5 – 7 for

fwd-B, and 1.7 – 3.7 for rev-B. Although not shown in Fig.8, the ratio of total to electron power in

H-mode, which for fwd-B is in the range 2 – 5, is reduced in rev-B to 1.2 – 1.8. If, as before, we

attribute the excess power to the ions, this suggests the field dependent poloidal energy flux in the

SOL needed to explain the power asymmetries, is mainly carried via the ion channel.

3.2 COMPARISON OF FWD-B AND REV-B RESULTS

To asses the role of field reversal on radial energy transport, the above peak heat load values are

plotted in Fig.9 (or Fig.3 of [Fundamenski05]) vs. the fwd-B scaling qt ~ Pt/λq with λq given by

(2.1a). Within the measurement errors, the outer target rev-B H-mode points do not substantially

differ from the fwd-B scaling, while the inner target and L-mode points are only grossly correlated

with the scaling. We conclude that under low collisionality (attached) conditions, the power width

lq is insensitive to the B×∇B direction. Since this quantity is directly related to the radial (⊥) heat

diffusivity, λq ~ (χ⊥τ||)
1/2, we infer that radial energy transport in the SOL is largely independent of

the B×∇B direction, i.e. the B×∇B direction affects the poloidal (θ) but not the radial (⊥) energy

transport. This observation suggests the role of poloidal classical drifts [Schaffer97, Chankin97],

which we will address below.

As has already been noted, power enters the SOL primarily on the low field side of the torus,

irrespective of the B×∇B direction. This can be explained by: a) larger outboard area, b) Shafranov

shift compressing the outboard flux surfaces, c) bad curvature leading to MHD interchange

instabilities and driving turbulence on the low field side. The curvature effect is evident in the

observed asymmetry of neo-classical ion conduction in the Pfirsch-Schlutter regime, §2; the ion

heat flux is outwards on the low field side and inward on the high field side: q⊥i
PS = -χ⊥i

PS∇⊥Ti

where χ⊥i
PS ~ 1.6q95

2[ε-1cosθ + O(1)]χ⊥
A1, with θ = 0 at the outer mid-plane. These effects, together

with shorter connection length from the outer mid-plane to the outer target, Ro/Ri ~ L||i/L||o ~ 2 predict an

average out-in power asymmetry of ~ 2, in fair agreement with the experimental value of 2.1±0.05.

The change of the out-in power asymmetry with field reversal implies a B×∇B dependent poloidal

energy transport. The origin of this effect may be explained in terms of classical (guiding centre

and diamagnetic drifts) which leads to a net energy flux [Helander02, Chankin97],

qσ ≈ 2.5pσuσ  + 2.5pσvtσρσb×∇Tσ/Tσ,       σ∈{i,e}                                  (3.1)

uσ = u||σb + vE + b×(∇p⊥σ - R)/mσnσωcσ +{(vt||σ
2 - vt⊥σ

2 + u||σ
2)/ωcσ}b×κ×κ×κ×κ×κ

where β = Β/B is a unit vector, κκκκκ = (b⋅⋅⋅⋅⋅∇)b is the curvature vector, vE ~ (1+0.25ρs
2∇2)E×××××b/B ~

E×××××b/B is the electric drift velocity including a finite gyro-radius correction, vt||σ = (T||σ/mσ)1/2 and

vt⊥σ = (T⊥σ/mσ)1/2 are thermal speeds, pσ = nTσ is the static pressure, wcσ = eσB/mσ is the gyro-

frequency, ρσ = vt⊥σ/ωcσ ~ vtσ/ωcσ the thermal gyro-radius, and eσ is the charge (-e for electrons,

+Ze for ions); the parallel drift, related to mirror forces, is usually small in tokamaks and can be
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neglected. The two terms in the energy flux (3.1) represent convective and conductive components,

such that the latter term may be properly termed the drift related heat flux with χ∧σ = 2.5vtσρσ the

diamagnetic heat diffusivity [Braginskii65]. Dominant contributions to the poloidal (strictly speaking

∧) components of (3.1) arise due to E×××××B and diamagnetic drifts, related to radial pressure and

temperature gradients. We write these explicitly as,

qσ∧
E ~ 2.5pσE⊥/B,    qσ∧

∇p ~  2.5(Tσ/eσB)∇⊥p⊥σ,   qσ∧
∇T ~  2.5(pσ/eσB)∇⊥Tσ         (3.2)

Basic vector calculus suffices to show that diamagnetic heat fluxes are very nearly divergence free

inside the plasma, ∇⋅qσ
∇p ~ ∇⋅qσ

∇T ~ 0. As such, they do not affect the energy dynamics of the

plasma, which is determined by terms involving ∇⋅qσ, and can be neglected in most numerical

simulations. This is not to say that these fluxes are fictitious; nor does it imply that they deposit no

energy on the divertor targets. It can be shown that the latter does in fact apply to qσ
∇p, which

forms a closed circuit inside the plasma due to the || pressure gradient in the magnetic pre-sheath

[Stangeby00, Chankin01]. However, the same argument does not hold for qσ
∇T, especially qi

∇T,

since ∇||Ti ~ 0 at the entrance to the pre-sheath, which follows from the sheath energy transmission

coefficient γi ~ 2 – 2.5 [Stangeby00]. Since typically Ti/Te ~ 2 in the SOL, this implies a net energy

deposition on the outer target in fwd-B due to both the E×××××B and conductive diamagnetic drifts. This

point is illustrated in Fig.10, which shows the poloidal components of the three energy fluxes (3.2)

in the forward field direction; all single arrows change sign if the field direction is reversed. In

contrast, the double arrows, indicating the direction of gradients, remain unchanged in field reversal.

It is worth noting the strong shear in the poloidal E×××××B velocity, which is linked to the turbulence

reduction and edge transport barrier formation [Connor99, Connor00]; we will return to this important

point in Section 5.

To first order, we can estimate the radial electric field as E⊥ ~ 3∇⊥Te, which should be evaluated

at the outer target. Writing the poloidal component of the parallel energy flux as qθσ = (Bθ/B)q||σ
with q||σ ~ pσL||/τ||σ and τ||i ~ L||/cs, τ||e ~ L||

2/χ||e, we find

qθi
E/qθi ~ 3∇⊥Te/csBθ ~ 3ρθs/λTe,         qθe

E/qθe ∝ ν*
eρθs/λTe                     (3.3)

qθi
∇T/qθi ~ ∇⊥Ti/cseiBθ ~ ρθs/λTi,        qθe

∇T/qθe  ∝ ν*
eρθs/λTe

where ρθs is the poloidal gyro-radius evaluated at the sound speed. Hence the ratio of the poloidal

components of the drift and parallel heat fluxes can be estimated as the gyro-radius normalised by

the temperature gradient length, λTσ ≡ |∇⊥Tσ/Tσ|-1. Since λq ~ (3 – 5)ρi ~ (1 – 1.5)ρθi in high

power H-modes on JET, with typical λTσ ~ (2 – 3)λq, we can expect ρθi/λTi ~ O(1) and thus a

significant contribution from drift effects for low ν*
i. Using the experimental scaling of λq (2.1(a))

as a rough guide for the λTσ scaling, we find that the field dependence cancels, leaving a positive,

roughly linear, power scaling,
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{qσ∧
E, qσ∧

∇T}/q∧σ ∝ Tσ, u
0.5PSOL 0.5ne, u

-0.2                                   (3.4)

in rough agreement with experiment [Pitts05]. This result offers clear evidence for the guiding

centre drift origin of the (B×∇B dependent) poloidal energy fluxes in the SOL, required to explain

the observed out-in divertor power asymmetries.

The above conclusions have been largely confirmed by numerical simulations of matched fwd-

B and rev-B discharges using the EDGE2D fluid transport code in which classical drift effects have

been included and radial transport coefficients were varied poloidally to increase the energy outflux

on the low field side [Kirnev05, Fundamenski05]. The largely divergence free, diamagnetic drifts

(∇⋅qσ
∇p ~ ∇⋅qσ

∇T ~ 0)  have been excluded from EDGE2D for numerical reasons. The simulations

are able to reproduce the observed in-out power asymmetries with reasonable accuracy, eg. see

Fig.4 of [Fundamenski05], suggesting that the ∧ component of the E×××××B drift, that is (E⊥/B)e∧,

plays a dominant role in the poloidal energy flux in the SOL.

3.3 ASCOT SIMULATIONS OF ION ORBIT LOSS

The strong sensitivity of ion orbit loss to field reversal was already illustrated in Fig.2. In this sub-

section we present a more detailed analysis, also performed using the ASCOT code descirbed in

Section 2.2. The pedestal and SOL plasma profiles were chosen to match the extensively modelled

fwd-B Pulse No: 50401 (2.5MA/2.4T, 12MW NBI), which has the same field, current and heating

power as the 50379/59691 forward/reversed pair. The pedestal width of 15mm-omp was assumed in the

modelling, which is equivalent to 2.5ρθi at the outer mid-plane, with Ti, ped ~ 1.1keV and Ti, sep ~ 400eV.

In the first stage, a series of trace simulations were performed to test the effects of:

• poloidal launch location (outer mid-plane, inner mid-plane or uniform; θ0 = 0, π, 0 – 2π)

• radial launch location (whole pedestal region, ρ0 = 0.95 –1, or separatrix, ρ0 = 1)

• anomalous diffusion (D⊥
an = 0 –1 m2/s)

• radial electric field in the SOL (E⊥
SOL = 0 – 75kV/m)

• toroidal field ripple (the relative change of the toroidal field on JET with the standard 24TF

  coils is ~ 10-3 near the outer mid-plane; Brip/B  = 0 – 10-3).

The results are gathered in Table 2, with the out-in asymmetry of deposited particle fluxes, Γo/Γi,

powers, Po/Pi, and peak heat loads, qo/qi tabulated for both field directions. As expected, all three

quantities, especially qo/qi, are strongly affected by field reversal, irrespective of the parametric

scans described above. The only exception is the case with a very large value of radial diffusivity,

D⊥
an ~ 1m2s-1, in addition to a significant value of the electric field in the SOL, E⊥

SOL ~ 50kV/m.

However, even these somewhat unrealistic assumptions are insufficient to account for both fwd-B

and rev-B data, which provides a strong indication that direct ion orbit loss in not dominant in these

experiments.

The results of Table 2 merit a few remarks. First, we note that Po/Pi is not sensitive to either i-i

or i-n collisions. Second, it is clear that it increases with E⊥
SOL for fwd-B and decreases with
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E⊥
SOL for rev-B, consistent with the direction of the E×××××B drift. Third, as expected from Fig.2, the

asymmetry is a strong function of the poloidal launch location, with Po/Pi >> 1 for outboard launch

and Po/Pi << 1 for inboard launch. Fourth, in the case of pure outboard launch, Po/Pi is only weakly

sensitive to E⊥
SOL. Finally, we consider the effect of additional radial diffusivity mechanisms, i.e.

D⊥
an and Brip,

• D⊥
an = 1m2s-1, E⊥

SOL = 0: Po/Pi ~ 2 in agreement with purely geometrical predictions,

• D⊥
an = 1m2s-1, E⊥

SOL = 75kV/m: Po/Pi ~ 5 for fwd-B and ~ 1.5 for rev-B indicating strong

influence of the E×××××B drift;  this result is notable in that (Po/Pi)fwd-B > (Po/Pi)rev-B as observed

in experiment, suggesting that additional radial diffusion is needed to explain the observed

asymmetry.

• The toroidal field ripple at the level of Brip/B ~ 10-3 has little effect, irrespective of the value

of E⊥
SOL.

In the second stage, self-consistent simulations were performed with three values of E E⊥
SOL: 0, 45

and 75kV/m; this range of E⊥
SOL is motivated by earlier studies, which indicated that E⊥

SOL ~

50kV/m is required to match the narrow profiles on the outer target observed at JET

[Fundmanenski03]. The resulting heat load profiles on both targets are shown in Fig.11 (or Fig.5 of

[Fundamenski05]), including the peak heat loads qpeak and the power widths λq. We first note that

only the E⊥
SOL = 75kV/m case yields ion peak powers in excess of 5MW/m2 as measured for this

shot. It is therefore necessary to consider the effect of field reversal on the simulated power deposition

profiles, primarily for the 45 and 75kV/m cases. This effect is quite dramatic, with the outer profiles

drastically broadened by a factor of 5 – 6 and peak values reduced by comparable amounts. The

asymmetry qo/qi changes from 3.3 – 8.7 for fwd-B to 1.1 – 0.54 for rev-B, for the 45 and 75kV/m

cases. This behaviour is in sharp contrast to experiment where peak values change at most by a

factor of two, and little broadening of λq is observed, Fig.8 and Fig.9. We are thus led to conclude

that direct orbit loss is not responsible for the observed target profiles. Instead, (neo-)classical ion

transport, including the effects of collisional ion orbit loss, discussed in §2, is the most likely

explanation for the observed data. As has been noted in §2, this does not rule out ion orbit loss as

such, but only collisionless losses of hot ions from the top of the pedestal. The simulations further

suggest that ion-ion collisions in the SOL are required to modify the loss ion orbit and produce

profiles and asymmetries more in line with the experiment. This results in Pfirsch-Schlutter-like

radial diffusion of heat with an intermediate dependence on q95, which we defined as (neo-)classical.

To summarise the section, we note that the field reversal experiments lead to three main

conclusions:

•B×××××∇B direction affects the polodial power flow in the SOL and hence the power flow into

the divertor

• the direction, magnitude and scaling of this poloidal power flow can be explained by classical

drift-related heat fluxes (mostly E×××××B, with a possible contribution from B×××××∇Tσ); this

conclusion is supported by numerical simulations using the EDGE2D code.
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• radial transport is largely independent of the B×∇B direction; in terms of determining the

dominant power exhaust mechanism in the SOL, this key finding weighs heavily in favour of

collisional transport, namely (neo-)classical ion conduction, which is independent of B×∇B

direction, and rules out direct ion orbit loss which exhibits a strong B×∇B dependence. This

conclusion is confirmed by detailed ASCOT simulations of direct ion orbit loss under realistic

JET conditions, which cannot explain the experimental variation of deposited profiles with

B×∇B.

4. INTERPRETATION OF ELECTRON PROFILE MEASUREMENTS IN THE SOL

Whereas the results reported in Section 2 and 3 are based on total (ion + electron) divertor power

profiles (characterised by λq), most previous studies dedicated to characterising SOL plasma profiles

have relied on Langmuir probe measured electron power or pressure profiles (characterised by

λq
e), with the ultimate aim of identifying the mechanisms governing radial energy transport in the

SOL. These studies, which were necessarily restricted to the electron channel, may be divided into

two categories: the first relied on λq
e measured in the upstream SOL and pedestal regions, while the

second were based on λq
e corresponding to divertor target ne and Te profiles. We will refer to these

as the upstream and downstream approaches, respectively. In this section, we consider these in

turn, comparing the results in each category with available theories of radial heat diffusivities.

The upstream approach was used to analyse pressure electron profiles from two large machines:

AUG [Kim01] and JET [Kallenbach04]. We begin with the AUG study, which was by far more

extensive. It was based on the 2-D fluid transport code SOLPS5, which was used to match the

upstream profiles of both L and H-mode discharges with n/nGW ~ 0.35 - 0.8 and νe
*~ 4-50. The

following expressions were obtained in terms of engineering, plasma and dimensionless variables

[Kim02],

χ⊥ = 0.23×Bφ
-2.31±0.65Ip

-1.1±0.29PSOL
1.14±0.12<ne>0.58±0.23                        (4.1)

χ⊥ ∝ Bφ
-1.83±1.04Bθ

-0.41±0.47Te
1.12±0.26ne

1.11±0.26n0
0.62±0.24

χ⊥ = 1.1×105×χB×β1.45±0.26νe
*0.68±0.12S-2.2±1.64(n0/ne)

0.51±0.24

where χ⊥ is the SOL heat diffusivity in m2s-1, Ip in MA, PSOL in MW, <ne> and n0 (the neutral

density) in 1019 m-3, S is the magnetic shear, and χB ∝ Te/B the Bohm diffusivity. Although, the

authors do not compare their results with all available theories, this comparison may be obtained

based on the set of theories of §2. Since the diffusivities χ⊥ themselves are extracted, these may be

compared directly with theoretical predictions. The error between the theoretical and experimental

scalings with respect to {ne, Te, q95, Bφ} is shown as a bar chart in Fig.12, similar to Fig.6, where

each bar represents a single theory and different shades represent contributions from different

exponents in the scaling. The root-mean-square error is ~ 0.6 for theories {K2, G2, F, L1, K1, G1,

B1, B2}, and ~ 0.8 for {A1, A3, N}, and rises rapidly for the rest; here G2 denotes endplate MHD
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interchange, G1 MHD interchange, F drift wave, L sheath modes, K1 and K2 the drift Alfven

modes at low and high collisionality, and B1 and B2 endplate MHD interchange with λp and λn.

The study of fuelled (fGW ~ 0.7 - 1), type-I ELMy H-modes on JET (νe
* ~ 8 - 40) using the

EDGE2D fluid transport code finds [Kallenbach04],

χ⊥ ∝ Bφ
-1.3±0.5Pheat

0.9±0.5<ne>0.5±0.5                                          (4.2)

roughly consistent with the AUG result, despite a weaker Bφ scaling. Broadly speaking both studies

suggest that upstream pressure profiles are governed by electrostatic turbulence, driven by MHD

interchange (B1, B2, G1, G2), drift and/or drift-Alfven (F, K1, H2) and sheath resitive (L1) modes.

The downstream approach was used to examine divertor Langmuir probe profiles from three

tokamaks: COMPASS-D (ohmic, L-mode, νe
*~0.2-3), Alcator C-Mod (ohmic, νe

*~20-370), and

JET (ohmic, L, H-mode, νe
*~10-100) [Connor99, Counsell99]. In all cases, a simplified SOL model

was used to relate LP-measured target λq
e to the heat diffusivity χ⊥, following the method outlined

in Section 2. Comparison with theory focussed on scaling with respect to {ne, PSOL, q95, Bφ} since

variation of the plasma species was in general unavailable. For νe
* > 10, five theories emerge as

noticeably better than the rest, error < 0.2: {D, O, J, J3, M, Q} for C-Mod, and {D, M, O, J, J3}

for JET, where D denotes collisionless MHD interchange near βcritical, O the collisionless skin

depth, J drift with collisionless skin depth, M charge-exchange and Q the null model, χ⊥ = constant.

The fact that both JET and C-Mod suggest the same subset of theories, increases the credibility of

these results. Once again, the results point to MHD interchange and drift-Alfven instabilities, but

suggest divertor target electron power profiles may also be influenced by charge-exchange and

skin depth effects.

Let us summarise the electron energy transport results. As expected from (2.4), where we saw

that λq ~ 20×λq
A3 and hence χ⊥ ~ O(103)×χ⊥

A3, comparison of scaling results indicates that the

observed electron pressure profiles are indeed governed by turbulent convection. Among the leading

candidates for the turbulent drive, MHD interchange instabilities are expected to be strongly active

in the SOL region, while the drift-Alfven instabilities are expected to predominate in the pedestal

region (and might affect the near-SOL by turbulence spreading in to the SOL and subsequent

damping).

5. TURBULENT VS. COLLISIONAL ENERGY TRANSPORT IN THE NEAR-SOL

The conclusions reached in Section 4, are entirely consistent with current understanding of turbulent

transport in the SOL [Itoh99, Scott01]. The existence of substantial fluctuations of density and

electric potential in the scrape-off layer is a well established experimental fact [Huggill00,

Stangeby00]. Relative fluctuations are much larger in the SOL than in the core plasma (> 50% in

SOL vs. than < 10% in the core), and are generally consistent with the experimental finding that

fluctuation levels increase with minor radius. In addition, they often persist even under H-mode
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conditions, although this is only widely established for the far-SOL, since diagnosing the near-SOL

region in high power discharges poses substantial diagnostic challenges [Erents00]. Finally, the

overall level of fluctuations is highly intermittent, as observed in radially propagating filaments or

blobs; the level of intermittency typically increases with radius and is larger in the far-SOL.

The origin of SOL turbulence can be traced to the absence of either ergodic or closed flux

surfaces outside of the separatrix. The formation of the plasma sheath on open field lines at the

divertor targets gives rise to the so-called sheath resistivity. Consequently, the presence of the

sheath impedes parallel return currents needed to maintain flux tube charge neutrality in the presence

of the magnetic and thermodynamic gradients, and the ensuing charge-dependent drifts. Insufficient

return current leads to a local charge imbalance, which in turn produces radial E×××××B drift of individual

plasma filaments. Each open flux tube in the SOL is thus subject to a destabilising outward drift,

which tends to be stronger in regions of unfavourable magnetic curvature. Somewhat surprisingly,

this obvious fact is often obscured, if not misrepresented, in the topical literature. For example, it is

often suggested that SOL turbulence originates in the pedestal region, which could be misconstrued

to mean that the SOL plays only a passive, perhaps even a stabilising role in the propagation of

pedestal induced disturbances. The latter is clearly not true. While a perturbation originating in the

pedestal region (eg. drift-Alfven driven turbulence) can propagate into and dissipate in the SOL,

the SOL plasma itself can and does produce a range of turbulent activity (eg. MHD interchange

instabilities) irrespective of the pedestal dynamics. To draw an analogy with hydrodynamics, the

SOL is subject to both pressure gradient driven (Rayleigh-Taylor) and velocity gradient driven

(Kelvin-Helmholtz) instabilities.

In short, the bad curvature region of the SOL is not in equilibrium in the sense of ideal MHD, i.e.

the balance of thermal and Lorentz forces, j×××××B = ∇p, is impeded both by the finite parallel resistivity

of the relatively cold (<100eV) SOL plasma and the resistivity of both the inner and outer target

Langmuir sheaths. The SOL plasma is thus inherently unstable to a range of MHD modes, first

among which are interchange instabilities driven by magnetic curvature and radial pressure gradients

[Hazeltine92]. As a result, we expect to find quite intense turbulent activity in the SOL, as is indeed

observed in experiment. Since parallel losses to the divertor targets rapidly remove the thermal

energy from the SOL plasma, we also expect SOL turbulence to be much more dissipative than

turbulence in regions of closed field lines [Scott01]; here the term dissipative signifies decay of

kinetic energy associated with turbulent eddies. The large radial electric fields in the near-SOL

form a strong poloidal velocity shear (zonal flow) in a relatively narrow region of order λq, ripping

apart the larger eddies due to vorticity effects and self-regulating the level of turbulence [Itoh99,

Diamond05]. Finally, the SOL plasma being strongly magnetised, turbulent plasma eddies are highly

elongated along the magnetic field, with the resulting eddy motions, confined to the ⊥-∧ plane. In

short, SOL turbulence should to first order evolve in two dimensions, with the term eddy signifying

an extended plasma filament. We adopt the term filament, which is more suggestive of the 2-D

nature of SOL turbulence, rather than such terms as blob [Krasheninnikov01], avaloid [Antar01],
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burst [Hidalgo03], plasmoid [Fundamenski04a] or front [Ghendrih03] which may be found in recent

SOL literature. It is the radial motion of these filaments, averaged over all scales, which results in

the enhanced convective transport of energy [Biskamp03, Taylor97, Naulin02, Antar01, Rudakov05].

Finally, the formation of large structures in the ⊥-∧ plane (usually referred to as blobs) follows

naturally due to an inverse energy cascade in 2-D turbulence [Biskamp03]. All of these characteristics

(filamentation, intermittency, zonal flow, dissipation, etc.) have been observed in numerical

simulations of SOL turbulence, with different levels of sophistication [Beyer99, Xu99, Naulin02,

Garcia04, Graves05]. The theoretical framework of SOL turbulence thus appears to be well

established and capable of explaining the observed phenomenology.

We may therefore ask how the conclusions reached in Sections 2 and 3, namely that net energy

transport in the near-SOL is dominated by collisional diffusion, can be reconciled with the conclusion

of Section 4 that electron energy transport is dominated by turbulent convection. In other words, is

there an inconsistency between these two conclusions, i.e. laminar transport for ion energy and

turbulent transport for electron energy channels? In this section we show that this apparent

inconsistency is purely illusory, and that the two mechanisms are in fact entirely compatible.

An initial attempt to resolve this apparent contradiction was offered in Section 2, where it was

shown that in order to match the observed target profiles - typically λq/ρi ~ 3×λq/ρθi ~ O(5) while

λq/ρe ~ O(100) - one must assume significant levels of turbulence in the near-SOL, even in the

presence of an H-mode barrier! With this assumption, turbulent convection entirely determines the

radial transport of electron energy in the SOL, χ⊥e/χ⊥
A3 ~ O(103). The same argument can be

repeated for radial particle and momentum transport, which depend on electron-ion collisions.

However, as was also found in Section 2, turbulent convection has a far smaller effect on the radial

transport of ion energy on account of the larger gyro-radius and hence the ion collisional heat

diffusivity, which is determined solely by ion-ion collisions, χ⊥i/χ⊥
A2 ~ O(1). In other words, both

turbulent and collisional transport processes are active in the near-SOL, although the latter are

evidently dominant for the radial transport of ion energy.

In the absence of global SOL turbulence simulations of sufficient resolution to capture both

turbulent and collisional effects, we must necessarily resort to approximate analysis. One possible

route often employed in turbulence theory, is to adopt the phenomenology of the eddy cascade and

consider the evolution of some quantity of interest, in our case of the thermal energy, for a turbulent

plasma filament of arbitrary size; this approximation reduces the problem from one of differential

to that of algebraic analysis. To study the interplay of turbulent and collisional transport, we can

focus on the radial length scale at which the two mechanisms are comparable, which in turbulence

theory is known as the dissipative scale, lσ. The concept of the dissipative scale is briefly introduced

in Appendix A. This scale is especially appropriate to SOL turbulence which, due to parallel losses

to the divertor targets, is highly dissipative in nature.

The analysis in the remainder of the section is systematically developed as follows: The energy

balance for a magnetised plasma filament is introduced in Section 5.1, including the ordering of the
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heat fluxes and loss times in the (||, ∧, ⊥) basis. Filament energy losses in each of these directions

are then discussed in turn in Sections 5.2 – 5.4. Finally, the dissipative scale is derived in Section

5.5 by equating the loss times obtained in Sections 5.2 and 5.3, and applied to the interpretation of

JET experimental results.

5.1 ENERGY EVOLUTION IN THE FILAMENT FRAME OF REFERENCE

Consider a plasma filament consisting of ions and electrons of average density, nσ ~ n temperature,

Tσ and velocity, υ with components, uµ in the rest (lab) frame, where σ ∈ {i,e} is a species index

and µ ∈{||, ∧, ⊥} is a directional index, Fig.13; all filament quantities denote volumetric averages.

We define the size of the filament by three lengths, δ||, δ∧ and δ⊥. Quasi-neutrality and weak parallel

currents are assumed, such that ne ~ ni ~ n, u||i ~ u||e ~ u||. The ratio ϑ ≡ Ti/Te is treated as a free

parameter. The parallel plasma velocity u|| is assumed to be subsonic with respect to the plasma

sound speed cs = [(ZTe+Ti)/mi]
1/2 = ξvti where Z is the ion charge, vti = (Ti/mi)

1/2 is the ion thermal

velocity and ξ ≡ (1+Z/ϑ)1/2; it is written as u|| = Mξvti with the Mach number M = u||/cs treated as

a free parameter.

We are interested in the evolution of the filament energy density εσ ~ n(3/2×Tσ + 1/2×mσu||
2) for

both plasma species. This follows from the energy conservation equation for each species which,

neglecting volumetric sources and sinks, may be written in the divergence form as [Braginskii65,

Huba02],

∂εσ/∂t + ∇||q||σ + ∇⊥q⊥σ + ∇∧q∧σ  + (εσ - ε¬σ)/τie = 0                            (5.1)

q||σ  = q||v,σ  + q||χ,σ = (5/2×Tσ + 1/2×mσu||
2)nu|| - nχ||σ∇||Tσ,

q⊥σ  = q⊥v,σ  + q⊥χ,σ = (5/2×Tσ + 1/2×mσu||
2)nu⊥  - nχ⊥σ∇⊥Tσ,

q∧σ  = q∧v,σ  + q∧χ,σ = (5/2×Tσ + 1/2×mσu||
2)nu∧ - nχ∧σb×∇⊥Tσ

Here qµv, s, qµχ, σ  and qms  denote respectively the µ∈{||, ∧, ⊥} components of the convective,

conductive and total energy fluxes of species σ, while (εσ - ε¬σ)/τie is the collisional ion-electron

energy transfer term, with τie the ion-electron energy equilibration time. The ratio of compressional,

1/2×nσmσu||
2 to thermal, 3/2×pσ energy may be written as, mσu||

2/Tσ ~ (u||/vtσ)2 ~ M2(vti/vtσ)2.

This ratio is negligible for electrons, and small for ions provided M < 0.3. Consequently,

compressional terms will be neglected below (this simplifies, but does not alter the analysis), such

that εσ ~ 3/2×pσ  and qµv, σ ~ 5/2×pσuµ. Classical, collisional heat diffusivities, χµσ have been

derived as [Braginskii65, Huba02],

χ||σ  = c||σvtσλσσ = c||σvtσ2τσσ,   {c||i = 3.9, c||e=3.2}                    (5.2)

χ∧σ  = c∧σvtσλσσ/ωcστσσ = c∧σvtσρσ,      {c∧σ = 2.5}

χ⊥σ = c⊥σvtσλσσ/(ωcστσσ)2 = c⊥σρσ
2/τσσ,   {c⊥i = 2, c⊥e= 4.7}
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where λσσ is the mean-free-path, ρσ ~ vtσ/ωcσ the gyro-radius, ωcσ the gyro-frequency and τσσ the

characteristic collision time for σ-σ Coulomb scattering [Miyamoto87],

τσσ ∝ Zσ
4mσ

1/2Tσ
3/2n-1                                                    (5.3)

Two ordering hierarchies emerge: the ordering of collisional times,

τie : τii : τee : τei ≈ Zi
-2(mi/me) : (mi/me)

1/2Zi
-3ϑ3/2 : 1 : Zi

-1                       (5.4)

and the ordering of heat diffusivities,

χ⊥σ : χ∧σ : χ||σ  ~ (ωχστσσ)-2 : (ωχσtσσ)-1 :  1                                (5.5)

where, for typical JET near-SOL conditions, ωceτee ~ (mi/me)
1/2ϑ-3/2ωciτii ~ O(104). The strong

anisotropy of transport in the SOL is apparent from (5.5), which indicates that collisional heat diffusion

is many orders of magnitude faster in the parallel direction than cross-field: χ⊥e/χ||e ~ O(10-8)!

Analogous to Appendix A, we replace all spatial gradients by the inverse size of the filament,

∇µ → δµ
-1 such that equation (5.1) may be re-written in the zero dimensional form,

(∂/∂t + τ||s
-1 + τ⊥σ

-1 + τ∧σ
-1)εσ  + (εσ - ε¬σ)/τie = 0                              (5.6)

where τµσ are characteristic energy transport (or loss) times. The ion-electron equipartition time is

much longer than the ion-ion and electron-electron collision times (5.4), τie >> τii >> τee, and will

consequently be neglected. The typical time scale of parallel and collisional times for L|| = 30m,

n = 1019 m-3 and 10eV < Te < 1000eV are shown in Fig.1 of [Fundamenski04a], in which the

hierarchy of collisional times (5.4) is clearly visible.

As sketched out in Appendix A, the derivation of the dissipative scale requires that we circumvent

the non-linear advection terms by adapting the frame of reference moving with the filament in the

⊥-∧ plane, in which the velocities u⊥ = u∧ = 0 and the convective terms q∧v, σ = q⊥v, σ = 0 in (5.1)

vanish. Of course, the SOL radial profiles are measured in the lab frame of reference. Only radial

filament motions will effect these profiles, since the diamagnetic motions merely distribute the

energy within the flux surface. The effect of radial filament velocity, u⊥ ≠ 0 on the lab frame SOL

profiles is briefly considered below. The effect of diamagnetic velocity, u∧ ≠ 0, including the distortion

of the filament by velocity shear, ∇⊥u∧ ≠ 0, will be addressed in §5.4.

The radial power width in the lab frame in the absence of radial energy convection, u⊥ = 0, was

obtained as (2.3). When outward radial filament motion is included, u⊥ > 0, this expression must be

replaced by,
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λq ~ u⊥τ|| {1 + (1+ 4[χ⊥/u⊥
2τ||])

1/2}/2                                          (5.7)

which reduces to λq ~ u⊥τ|| in the absence of heat diffusion (χ⊥ = 0) and to λq ~ (χ⊥τ||)
1/2 in the

absence of convection (u⊥ = 0). The effective (ensemble average) velocity in the near-SOL can be

inferred from a measured profile width as u⊥ ~ λq/τ|| ~ which is in the range of 10m/s for typical

JET near-SOL conditions; normalised to the sound speed this gives u⊥/cs ~ 10-4. Since λq ~ O(λq
A1),

cf. (2.4), this is comparable to the classical diffusion velocity u⊥
A1 ~ λq

A1/τ||v  ~ ρi /(τiiτ||v)1/2 ~ 10m/s or,

normalised to the sound speed, u⊥
A1/cs ~ (ρi /L||)ν

*
i
1/2 ~ 10-4. These values are much smaller than

those typically observed in the far-SOL for intermittent filament (blob) and ELM propagation:

u⊥ ~ 1km/s, u⊥/cs ~ 10-3 – 10-2 [Goncalves03, Boedo05, Fundamenski04a]; these higher values

are also predicted from sheath limited models and from curvature driven turbulence codes under

low collisionality conditions [Beyer99, Naulin02]. In other words, radial filament motions in the

near-SOL region are relatively slow in comparison with the far-SOL and appear to be governed by

diffusive motions. We are therefore justified in assuming u⊥ ~ 0.

Assuming further that the dominant energy loss mechanisms are parallel losses and perpendicular

conduction, a rough estimate of the elongation of the filament may be obtained in (5.1),

δ⊥ / δ|| ~ (χ⊥σ/χ||σ)1/2 ~ (ωcστσσ)-1

which for JET is ~ O(10-4); not surprisingly, we find the filament to be highly elongated parallel to

B, with δ⊥/δ||  comparable to λq/L|| for the SOL as a whole [Stangeby00]; this prediction is confirmed

by the observed parallel correlation lengths of SOL turbulence on JET in the range of tens of meters

[Thomsen02]. The above size ordering, directly yields the ordering of conductive (heat) fluxes,

q⊥χ, σ : q∧χ, σ : q||χ, σ ~ (ωcστσσ)-1 : O(1) :  1                                     (5.8)

and the energy loss times,

τ⊥σ : τ∧σ : τ||σ ~ O(1) : O(1) :  1                                            (5.9)

which are seen to be comparable. To derived the dissipative scale, it is therefore necessary to examine

the filament energy losses in all three directions, which is done in the next three sub-sections.

5.2 ENERGY DISSIPATION BY PARALLEL LOSSES

The parallel energy loss time in (5.6) may be estimated by applying ∇|| → δ||
-1 to (5.1),

τ||σ ~ 3/5×(τv||
-1 + τχ||σ

-1)-1                                            (5.10)

τv|| ~ δ||/u|| ~ δ||/Mξvti,       τχ||σ ~ 5/2×δ||
2/χ||σ
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where τv|| and τχ||σ are the convective and conductive energy transport times for the filament

[Fundamenski04a]. The first accurate derivation of χ||σ as stated in (5.2) was performed by Spitzer

and Harm [Spitzer53], hence χ||σ
SH = c||svtσ

2τσσ. As expected, the small electron inertia results in

more efficient electron heat conduction, as is evident from the ratio of ion and electron parallel heat

dissusivities,

χ||i
SH /χ||e

SH ≈ 1.2×(mi/me)
-1/2Zi

-3ϑ5/2 ~ O(10-1)                        (5.11)

Implicit in the above derivation was the assumption of short λσσ as compared to both the size of the

system L|| and the parallel gradient scale length, in this case δ||. This is compactly stated as ν*
σ >>

1 in terms of the filament collisionality, ν*
σ ≡ δ||/λσσ ∝ δ||n/Tσ

2 which is mass independent. Hence,

ν*
i/ ν

*
e = (Ti/Te)

-2 = ϑ-2                                                 (5.12)

which yields 0.1 < ν*
i/ ν

*
e < 1 for typical SOL conditions (1 < ϑ < 3), i.e. the ions are less collisional

by virtue of being hotter. As the collisionality is reduced below unity (ν*
σ < 1), we expect the

conductive energy fluxes to saturate at some fraction of the half-Maxwellian free streaming (FS)

flux [Chapman58], q||χ, σ
FS ~ 0.8×nTσvtσ. We thus write the flux limited value of the conductive

energy flux as q||χ, σ
FL ~ ασnTσvtσ, where ασ is some constant of order unity. There are at present

no universally valid expressions for ασ, which are known to depend both on plasma parameters and

local gradient lengths. Below, we adopt αi ~ 1 and αe ~ 0.2 as nominative values suggested by kinetic

simulations [Cohen94]; although it has been suggested that larger values, αi ~ 3 and αe ~ 0.45, may be

more appropriate for transient response (the results of the analysis are only weakly sensitive to the

particular choice of αi and αe within this range of values).

A transitional estimate of χ||σ which reduces to the appropriate expressions in the low and high

collisionality limit is offered by the harmonic average form [Stangeby00],

χ||σ = χ||σ
SH / (1 + |q||χ, σ

SH/q||χ, σ
FL|) ~ c||σvtσ

2τσσ / (1 + ν*
σ

c/ν*
σ)               (5.13)

where ν*
σ

c = c||σ/ασ is the critical collisionality at which kinetic corrections to the Spitzer-Harm

expressions become important. Based on c||σ and ασ given above we find ν*
i
c ~ 4 and ν*

e
c ~ 16.

The kinetic corrections to parallel heat conduction as measured by the normalised collisionality

ν*
σ/ν*

σ
c are thus comparable for ions and electrons under typical SOL conditions  (Ti/Te = ϑ = 2)

irrespective of the level of collisionality.

The ratio of conductive and convective times may be obtained by combining (5.2), (5.3), (5.10)

and (5.13),

τχ||σ/τv|| ~ 5/2×(Mξ/c||σ)×(vti/vtσ)×(ν*
σ + ν*

σ
c)                                 (5.14)
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which is a linear function of both M and ν*
σ. The ratio vanishes as M Æ 0 (conduction dominates),

but approaches a finite value as ν*
σ → 0 (conduction dominates only below some critical Mach

number Mc
σ). Conversely τχ||σ/τv|| → ∞ as either M or ν*

σ → ∞ (convection dominant for sufficiently

large M or ν*
σ). The transition condition may be found as a surface in the M, ϑ and ν*

σ space

(assuming Z = 1 for simplicity). Writing (5.14) separately for ions and electrons,

τχ||i/τv|| ~  5/2×(Mξ/3.9)×(ν*
i + 4)                               (5.15)

τχ||e/τv|| ~  5/2×(Mξϑ1/2/3.2)×(me/mi)
1/2×(ν*

e + 16)

the critical Mach numbers Mc
σ may be found be setting τχ||σ/τv|| to unity. The solution is shown

graphically in Fig.14, where Mc
σ is plotted as a function of ν*

σ for different values of ϑ. In the

range (1 < ϑ < 10; 1 < ν*
σ < 100) we find 0.01 < Mc

i < 0.3 and 0.3 < Mc
e < 3. As expected,

convection is found to be always more important for ion energy transport, Mc
i << Mc

e; for subsonic

flows parallel convection is much smaller than parallel electron conduction.

5.3 ENERGY DISSIPATION BY PERPENDICULAR LOSSES

We next consider the radial energy loss time associated with classical heat conduction, χ⊥σ and

mass diffusion, D⊥ obtained from (5.1) by applying ∇⊥ → δ⊥
-1,

τ⊥σ ~3/5×(τv⊥
-1 + τχ⊥σ

-1)-1                                            (5.16)

τv⊥ ~ δ⊥/v⊥
D,       τχ⊥σ ~ 5/2×δ⊥

2/χ⊥σ

where χ⊥σ  is given by (5.2) and v⊥
D ~ D⊥(∇⊥n)/n; the larger ion gyro-radius, ρi/ρe = (ϑmi/me)

1/2

>> 1, gives rise to much faster ⊥ ion conduction,

χ⊥i / χ⊥e  ≈  0.43(mi/me)
1/2ϑ-1/2 > O(10)                                  (5.17)

Since radial mass diffusion occurs via electron-ion collisions, it follows that [Miyamoto87],

D⊥ ~ ρe
2/τei ~ ρe

2/τee ~ χ⊥e / 4.66                                    (5.18)

χ⊥i  : χ⊥e  : D⊥ ~  2.33(mi/me)
1/2 : 4.66 : 1

The energy flux carried by classical radial diffusion, 5/2×nTσv⊥
D ~ 5/2×Tσ(D⊥∇⊥n) is thus small

compared to both electron and ion conductive fluxes, or τv⊥ > τχ⊥e >> τχ⊥i and can be neglected in

(5.16), such that τ⊥σ ~3/2×δ⊥
2/χ⊥σ.

5.4 ENERGY DISSIPATION BY DIAMAGNETIC LOSSES, INCLUDING VELOCITY SHEAR

According to (5.8), the parallel and radial heat fluxes are comparable. This is confirmed
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experimentally in the strong effect of field reversal on the net poloidal energy flux, qθ which is

composed of the drift related energy flux, q∧ and the parallel energy flux, q||; since only the former

is sensitive to the B×∇B direction and is therefore responsible for the observed change in qθ we

infer that the poloidal projections of q∧ and q|| are comparable, see §3. In the context of the filament

energy balance, we therefore the expect energy loss time in the ∧ direction, τ∧σ ~ δ∧
2/χ∧σ where

χ∧σ = 2.5vtσρσ is the diamagnetic heat diffusivity, to be comparable to the parallel loss time (5.10);

this result has already been anticipated in (5.18). Since, we are primarily interested in energy transport

normal to the flux surface, we are justified in neglecting the ∧ direction in the following analysis,

by setting u∧ = q∧ = 0, thereby reducing the problem to two dimensions (||, ⊥). This approach is

commonly adapted in SOL modelling where the || and ∧ directions are combined, and treated by a

single, poloidal co-ordinate θ; the (θ, r) co-ordinates are ubiquitous in both fluid [Ronglien99,

Chankin01, Bonnin03] and turbulence [Xu98, Beyer99, Naulin02, Nashimura04] codes. The essential

point for the present analysis, is that all three co-ordinates (||, ∧, θ), and their related fluxes, refer to

position and transport within the flux surface.

From the point of view of turbulence, a more important quantity is the radial gradient of the

diamagnetic velocity, ∇⊥u∧. This is largest in the near-SOL region where strong radial electric

fields are present; in §3 the E-field was estimated as E⊥ 
~ 3∇⊥T

e 
~ 3T

e
/λ

Te
, where λ

Te
 ≡ |∇⊥T

e
/T

e
|−1 is

the electron temperature gradient length evaluated at the outer target, which is typically somewhat

larger than the power width λ
Te

 ~ (2 – 3)λ
q
. The resulting E×××××B velocity is mostly in the diamagnetic

direction, and can be estimated as u
E 
~

 
u∧ ~ E⊥/B ~ 3T

e
/Bλ

Te
 ~ 10km/s or u∧/c

s
 ~ 0.1 for typical JET

near-SOL conditions; it has been already discussed in the context of the classical drift effects in the

SOL, §3 and Fig.10. The radial gradient of this velocity,

∇⊥u∧ ~ u∧/λ
Te

 ~ 3T
e
/Bλ

Te

2                                                  (5.19)

produces a stretching or shearing of the filaments, which reduces the radial correlation length of

turbulence and the associated time-averaged radial fluxes. This mechanism has been demonstrated

in turbulence simulations and is almost certainly responsible for the formation of the edge transport

barrier; it is also the most likely explanation for the reduction of radial transport in the near-SOL,

where the velocity shear ∇⊥u∧ is strongest.

Following Appendix A, we define the shearing or eddy turn-over time, τ
u
 ~ δ∧/∆u∧ ~ δ∧/δ⊥ ⊥u∧

as the time taken to stretch the filament in the diamagnetic direction to twice its original size.

Assuming a background electric field, this time becomes τ
u
 ~ (δ∧/u∧)(λ

Te
/δ⊥). It should be compared

with the parallel loss time τ
||
 ~ δ

||
/u

||
, cf. (5.10). Their ratio measures the relative importance of the

two effects,

τ∇u
/τ

||
 ~ (δ∧/δ

||
)(u

||
/u∧)(λ

Te
/δ⊥)                                               (5.20)
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Shearing effects dominate when τ∇u
/τ

||
 < 1. To evaluate this further we consider the case of convective

losses, u
||
 ~ c

s
 and u∧ ~ 0.1c

s
, such that δ∧/δ

||
 <  0.1(δ⊥/λ

Te
). If we assume the filaments are smaller

than the profile width, δ⊥/λ
Te

 < 1, we find δ∧/δ
||
 < 0.1 for the largest filaments in the near-SOL.

Considering fully elongated filaments, δ
||
 ~ L

||
 ~ 50 m [Thomsen02], this translates into δ∧ < 5m,

which is comparable to the poloidal extent of the SOL, L∧ ~ 2πr
sep

 ~ 6m. In other words, plasma

eddies in the near-SOL are not only highly elongated in the parallel direction and resemble 1-D

filaments, but also effectively stretched in the diamagnetic direction, such that they begin to

approximate 2-D plasma sheets,  flattened within the flux surface; this change in the eddy topology

is common in both fluid and MHD turbulence. The smaller the radial extent of the 1-D filament in

comparison to the radial gradient length of the electric field, the faster is it stretched into such a 2-D

plasma sheet. As a consequence, we expect only weak gradients within the flux surface itself, at least

in the near-SOL region, which justifies the neglect of u∧ and q∧, and the choice of radial diffusion as

the dominant collisional loss mechanism.

5.5 THERMAL ENERGY DISSIPATIVE SCALES

In the previous sections we obtained expressions for the dissipative times due to energy losses in

the ||, ∧ and ⊥ directions. We are now ready to derive the dissipative scale l⊥σ based on the balance

of ⊥ and || losses of thermal energy of species σ in the filament frame of reference.  These are

comparable when

Θσ ≡ ∇⊥q⊥σ/∇
||
q

||σ = τ
||σ/τ⊥σ ∼ 1                                            (5.21)

We could of course consider all three effects discussed above: parallel loss §5.2, radial diffusion

§5.3 and diamagnetic shear §5.4, and define corresponding dissipative scales by equating each of

these in turn. However, in the light of the discussion in §5.4, we will restrict ourselves to considering

the balance of radial and parallel losses alone; the inclusion of diamagnetic transport does not

substantially change the results of the analysis, while greatly complicating the algebra. In other

words, we will adopt (5.21) as the definition of l⊥σ which measures the smallest coherent structures

in energy density and/or the smallest (radial) gradient length in the filament frame; the subscript ⊥
indicates that l⊥σ measures a radial length. Using (5.10), (5.16) and (5.21) yields an estimate of the

dissipative scale for species σ,

l⊥σ  ~
 (2/3×χ⊥στ

||σ)1/2 ~ ρσ(2/3×c⊥σN⊥σ)
1/2                                     (5.22)

where N⊥σ = τ
||σ/τσσ is the average number of ⊥ diffusive steps per || transport time of species σ. In

other words, l⊥σ is equal to ρσ multiplied by some factor of order N⊥σ
1/2 which leads to collisional

broadening. The parametric dependence of this and other related expressions are discussed in more

detail in Appendix B. On physical grounds, both l⊥σ and/or λ
Tσ ≡ |Tσ/∇⊥Tσ| cannot be smaller than
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ρσ, which follows directly from the assumption of strong magnetisation of the plasma, min(ω
cστσσ,

ω
cστ

||σ) >> 1 (the velocity distribution, fσ(v) and all its moments, including the energy εσ, are quickly

(~ω
cσ

−1) broadened over a radial extent of the gyration, that is over ρσ). We will therefore replace

(5.22) by,

l⊥σ / ρσ ~
  max{1, (2/3×c⊥σN⊥σ)1/2} ≥ 1                                 (5.23)

Since we are ultimately interested in the ratio of ion and electron dissipative scales,  l⊥i
/l⊥e

, we

combine (5.23) with the ratio of ion and electron gyro-radii ρ
i
/ρ

e
 = (ϑm

i
/m

e
)1/2 ~ 60×(T

i
/T

e
)1/2 ~

O(102) for D+, and plot the result vs. electron collisionality in Fig.15. The interval, 1 < ν*

e
 < 103, has

been chosen to span the range of ν*

i
 = ν*

e
ϑ−2 of Fig.14. For typical JET near-SOL conditions, shown

as a shaded region in Fig.15, l⊥i
 exceeds l⊥e

 by roughly an order of magnitude, l⊥i
/l⊥e 

~ 7-20 ~ O(10).

Similar values are found for Alcator C-Mod [LaBombard97] and ITER [ITER99]: (l⊥i
/l⊥e

)C-Mod

 
~ 4-

20 and (l⊥i
/l⊥e

)ITER

 
~ 8-20.

We can now rewrite the balance of radial and parallel losses of thermal energy in the filament

frame of reference (5.21), using (5.10) and (5.23), as

Θσ ≡ ∇⊥q⊥σ/∇
||
q

||σ = τ
||σ/τ⊥σ = (l⊥σ/δ⊥)2                                       (5.24)

which scales as the inverse square of the filament size δ⊥ normalised to l⊥σ. In other words, collisional

diffusion is negligible for filaments much larger than the dissipative scale; its relative importance

increases quadratically as the filament size is reduced. Consequently,

Θ
i
/Θ

e
 = (l⊥i

/l⊥e
)2 ~ O(102)                                               (5.25)

and the ion to electron ratio of the relative strength of radial and parallel thermal energy loss

mechanisms is found to be independent of the scale considered, being determined solely by the

square of the ratio of their dissipative scales, see Fig.15. For estimated JET near-SOL conditions,

(5.25) predicts Θ
i
/Θ

e
 ∼ 50-400 ~ O(102). Therefore, irrespective of the size of the filament considered,

collisional losses of thermal energy by radial heat conduction are always much larger for ions than

electrons. This is the anticipated result in light of χ⊥i
/χ⊥e

 >> 1, however, by including the details of

parallel transport and performing a sensitivity study to several plasma variables, it has now been

established for a wide range of near-SOL conditions, including those relevant to JET and ITER.

We have seen above that collisional effects only become important at filament scales δ⊥ 
comparable

to l⊥σ. As we consider filaments of progressively smaller size, this condition will first be satisfied

for the ions, since l⊥i
 >> l⊥e

. At the scale δ⊥ ~ l⊥i
, the ion thermal energy evolution is affected by ion-

ion collisions (classical χ⊥i
), Θ

i
 ∼ 1, while the electron thermal energy remains largely unaffected

by electron-electron collisions (classical χ⊥e
), Θ

e
 ∼ Ο(10−2). Consequently, the perpendicular ion



32

energy transport is dominated by collisional heat diffusion, while electron energy transport is still

governed by turbulent convection in the ⊥-∧ plane. In other words, collisional diffusion dominates

the radial energy transport of ions, and turbulent convection that of  electrons. If a finite level of

turbulent convection is included, u⊥ > 0, the radial fluxes of thermal energy and the resulting power

profiles, involve both collisional and turbulent contributions, but due to (5.25), their ratio is always

bigger for ions.

To relate the above conclusions to the experimental results presented in Sections 2 to 4, we need

only note that the typical power widths measured in the JET near-SOL are in fact comparable to the

ion dissipative scale, λ
q
 ~ O(l⊥i

). Therefore, the conclusions of the previous paragraph should be

directly applicable to JET plasmas discussed in this study. With the value of u⊥ 
~ 10m/s inferred in

the near-SOL, we can conclude that turbulent radial convection is much weaker than collisional,

(neo)-classical ion heat conduction, i.e. collisional diffusion dominates the radial transport of ion

energy in the near-SOL. This is the key result of the analysis presented in this section.

We close the section with a brief summary and an overview of this analysis. It was shown in

Sections 5.2-5.4, that the energy evolution of a SOL turbulent filament is influenced by three

processes: parallel loss to the targets, radial heat diffusion and poloidal velocity shear. The latter is

the most difficult to quantify; it generally leads to filament break up (or flattening into a 2-D plasma

sheet) and thus a redistribution of thermal energy within the flux surface, with little effect on average

radial profiles. The dissipative scale, l⊥σ, defined as the scale at which parallel and radial energy

losses from an filament of arbitrary size are comparable, is roughly equal to the diffusive length for

each species, l⊥σ ~ ρσν*

σ
1/2, such that l⊥i

 >> l⊥e
, Fig.15. The ion dissipative scale is therefore

comparable to the measured SOL power width λ
q
 ~ O(λ

q

A1) ~ O(l⊥i
), while l⊥e

 is an order of magnitude

smaller. As such, radial heat conduction due to ion-ion collisions is at least comparable to turbulent

convection of ion thermal energy for typical SOL turbulence scales, but has little effect on the

transport of particles, momentum or electron thermal energy. In contrast, heat diffusion due to

electron-electron collisions is much smaller than turbulent convection of electron thermal energy.

In other words, for the level of turbulence implied in the near-SOL of JET H-modes, collisional

(conductive) and turbulent (convective) transport processes are dominant for ions and electrons,

respectively. This is made possible by the fact that under typical JET near-SOL conditions, electrons

are collisional (ν
e

* ~ 25), but are effectively thermally decoupled from the ions (ν
ie

* ~ 0.5).

Consequently, the ion and electron energy transport can proceed by separate channels and be governed

by largely independent mechanisms. The same cannot be said for the transport of mass and, to a

lesser extent momentum, which are intimately linked for both species via the quasi-neutrality

condition resulting in the ambipolar flux constraint.

With these conclusions, a general picture of inter-ELM energy transport in the SOL emerges in

which SOL turbulence in the near-SOL is reduced by poloidal velocity shear (vorticity), but is not

entirely suppressed. The turbulence level is low enough and the radial gradients steep enough, for

(neo-)classical ion conduction to dominate the radial ion energy transport. Turbulence simulations
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have demonstrated this self-regulating reduction in radial transport, although an exhaustive treatment

of collisional, dissipative effects in SOL turbulence codes is still lacking at present.

CONCLUSIONS

Significant progress has been made in understanding power exhaust mechanisms on JET under

ITER-relevant conditions. Analysis of measured ELM-averaged divertor power deposition profiles

for a range of plasma conditions in both forward and reversed toroidal field direction, suggests that

near-SOL poloidal energy transport (i.e. transport of thermal energy within the flux surface) is

governed largely by classical physics: in the parallel (||) direction by classical heat conduction and

convection, in the diamagnetic (∧) direction by classical (guiding centre and diamagnetic) drifts. In

contrast, near-SOL radial energy transport (i.e. transport of thermal energy normal (⊥) to the flux

surface) is determined by a combination of collisional and turbulent processes, with transport of

ion energy as the dominant channel. Comparison of the JET experiments with theories of radial

heat diffusivity suggests that ELM-averaged radial energy transport is dominated by (neo-)classical

ion conduction, including collisional ion orbit loss; the term (neo-)classical denotes an intermediate

regime between classical and neo-classical (Pfirsch-Schlueter) diffusion, which reflects the change

of magnetic topology at the separatrix. A similar experiment-theory comparison for both upstream

and downstream electron power profiles on JET and AUG, indicates that electron energy transport

in both machines is dominated by turbulent convection, most likely driven by MHD interchange

and drift-Alfven instabilities.

The co-existence of turbulent convection for electron energy and collisional conduction for ion

energy can be reconciled by considering the phenomenology of SOL plasma turbulence, including

its dissipative properties. Such analysis allows us to form a coherent picture of ELM-averaged

power exhaust which may be summarised as follows: the growth of strong radial electric fields and

poloidal velocity shear in the near-SOL during the inter-ELM H-mode phase results in a strong

reduction of radial turbulent convection in that region. As the strength of the H-mode barrier increases,

ion and electron collisionalities are reduced and the relative importance of poloidal drift effects

increases. Based on the measured profiles, we infer that ion-ion collisions compete with turbulent

convection as the dominant transport mechanism in the near-SOL. Since radial heat diffusion is

much faster for ions than for electrons – a direct consequence of the larger ion gyro-radius – the

role of electron-electron collisions and electron heat diffusion is negligible. These effects can be

expressed in terms of the relative magnitude of SOL dissipative scales, which are defined as the

radial lengths at which the convective and collisional fluxes are equal. The ion dissipative scale is

found to be comparable to the measured target power profiles, while the electron scale is roughly

an order of magnitude smaller. This explains why collisional effects play an important role in ion,

but not in electron radial energy transport.

It is at present not possible to clearly differentiate between inter-ELM and ELM contributions to

ELM-averaged power deposition profiles on JET. The difficulties include: 1) insufficient diagnostic



34

accuracy, 2) little, if any, profile broadening due to the ELMs, 3) insufficient power to achieve

Type-I ELMs in He experiments, and 4) a strong correlation between collisionality and ELM size.

Until these problems can be overcome, it is difficult to confidently isolate specific ELM contributions.

For example, the excess heat load and peaked profile shape in Type-I ELMy H-modes may be

explained by either inter-ELM energetic ions or energetic ions and electrons associated with the

ELMs. Likewise, the beneficial effect of fuelling in reducing the peak divertor heat load can be

accounted for either by the increase in the ion collisionality and its effect on inter-ELM transport or

by the related reduction in the ELM size. Further experiments and simulations are required to

clarify the above issues.

The results of this study may be used to predict ELM-averaged power exhaust on ITER, by

extrapolating from the JET results using the best-fit empirical scalings and leading candidate theories.

Thus, extrapolating from JET Pulse No: 50397 (16MW NBI, 2.5MA/2.4T) using expressions (2.4) to

(2.6) and expected separatrix values on ITER (n
e,sep 

= 3×1019 m-3, 2T
e,sep 

= T
i,sep 

= 400 eV, ν*

i,sep 
~ 1.1),

we find an integral power width of λ
q

ITER ~ 3.7 ± 1.1mm mapped to the outer mid-plane, which is

comparable to ρθi
 evaluated at the separatrix. Due to the low separatrix ion collisionality, we expect

the peak heat load to be dominated by the excess contribution, q
tot

 – q
e,inter-ELM

, which in Section 2 we

identified with the energetic ion component. Since JET results are based primarily on natural density

H-modes under attached divertor conditions, the above estimate of λ
q

ITER should be viewed as the

power width at the entrance to the ITER divertor throat, eg. at the height of the X-point

[Fundamenski04]. We expect this profile to be significantly broadened by ion-ion and charge-

exchange collisions in the dense plasma in the V-shaped ITER divertor, where partially detached

operation is essential, such that target λ
q

 exceeds the ITER design value of 5mm [Kukushkin02,

ITER99]. It is worth noting that existing modelling of ITER divertor operation neglects all effects

associated with classical drifts in the SOL. Based on the work reported here, we anticipate that

these effects will increase the poloidal power flow into the outer divertor and thereby reduce the

degree of detachment in that leg. It thus appears timely to revisit these simulations with the effect of

classical drifts included. Finally, the analysis and conclusions of Section 5 remain valid for ITER with an

anticipated ratio of ion and electron thermal energy dissipative scales in the range of (l⊥i
/l⊥e

)ITER

 
~ 8-20.
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APPENDIX A: THE CONCEPT OF THE DISSIPATIVE SCALE

The dissipative scale is a well established concept in hydrodynamic turbulence theory. It can be

traced to Kolmogorov’s phenomenology of turbulence [Kolmogorov41], a clear account of which

may be found in [Kadomtsev65, Tennekes72, Frisch95, Biskamp03]. In this picture, a turbulent

flow is represented as a collection of different sized coherent structures (traditionally called eddies,

whirls or vortices), which interact through the non-linear, advective term in the Navier-Stokes

equation; this interaction leads to the distortion and eventual break-up of larger into ever smaller

eddies, a process known as the Richardson

eddy cascade. The range of scales at which these interactions dominate forms the inertial range. If

kinetic energy is injected at the largest scales, say by stirring the fluid, the energy is then transported

by non-linear interactions to ever smaller scales throughout the inertial range; when the eddies

become sufficiently small, their kinetic energy is converted into thermal energy (or dissipated) by

viscous heating associated with inter-particle collisions. The scale at which collisional and inertial

effects are comparable is known as the dissipative scale lν, and determines the smallest scale at

which coherent structures (eddies) can exist in the flow.

The dissipative scale lν was derived by Kolomogorov on dimensional grounds for the highly idealised

case of fully developed, incompressible, homogenous, isotropic, three dimensional turbulence. At

this scale the inertial u⋅⋅⋅⋅⋅∇u and viscous ν∇2
u terms in the Navier-Stokes equation,

∂u/∂t + u⋅⋅⋅⋅⋅∇u = −∇p + ν∇2
u                                               (A.1)

are comparable; here u is the velocity and ν the kinematic viscosity. Their ratio defines the Reynolds

number Re = τν/τu
, where τ

u
 and τν are the characteristic advective and collisional (viscous) times.

For a eddy of size δ, these may be estimated by replacing the gradient by the inverse of the eddy

size (∇→ δ−1), such that τ
u
 ~ δ/u and τν ~ δ2/ν, and Re = Re(δ). The dissipative scale can thus be

defined as,

Re(lν)  ~ 1     ⇒    lν ~ ν/uν                                                (A.2)

where uν 
is a characteristic velocity at the scale δ = lν. Since Re > 1 in the inertial range (δ > lν),

dissipative effects may be ignored throughout most of the eddy energy cascade. With no dissipation

taking place in the inertial range, all the energy injected at large scales is transported to the dissipative

scale. The rate of energy injection per unit mass ε can therefore be written as ε  ~ u2/(δ/u) ~ u3/δ ∼ uν
3/lν

[Tennekes72, Frisch95], which by (A.2) yields
 
an expression for lν in terms of ν and ε,

lν ~ ν/uν ∼ (ν3/ε)1/4                                                      (A.3)
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In this simple formulation lν depends only on the collisional interactions (ν) and the kinetic energy

injected into the system at the largest scales (ε), not on the details of the flow pattern (u).

Consequently, lν can be calculated entirely within the eddy frame of reference, which circumvents

the non-linear advection terms and substantially simplifies the analysis (from differential to algebraic

equations); in this frame, τ
u
 represents the eddy turn-over time (in which the eddy is destroyed by

velocity shear) and τν the viscous time (in which momentum diffuses out of the eddy volume). The

dissipative scale lν 
also determines the smallest gradient length likely to exist in the fluid; as a

result, the power spectrum of turbulent fluctuations E(k), which scales as k−5/3 in the inertial range,

falls off more rapidly for k > kν ∼ lν
−1 [Frisch95].

In the above formulation, kinetic energy dissipation occurs via collisional diffusion of momentum

out of the eddy volume. Similarly, one could formulate dissipative scales for a passive scalar, such

as a tracer concentration or the fluid temperature. In the latter case, the thermal energy dissipation

(reduction of eddy stored energy) occurs via collisional heat diffusion out of the eddy volume, and

the kinematic viscosity ν is replaced by the heat diffusivity χ.

If the flow is two, rather than three dimensional, the conservation of vorticity provides an additional

invariant and leads to a positive (larger to smaller scales) cascade of enstrophy and an inverse

(smaller to larger scales) cascade of kinetic energy [Tennekes72, Frisch95]. The inverse energy

cascade results in formation of large scale structures which terminate at some system related scale.

The injection of kinetic energy at rate ε is accompanied by the injection of enstrophy at rate εΩ, both

occurring at the same length scale. On dimensional grounds, similar to those employed to derive

(A.3), the enstrophy dissipation length is found as

lΩ ~ (ν3/εΩ)1/6                                                           (A.4)

while the power spectrum of turbulent fluctuations E(k) in the enstrophy cascade scales as k−3.

Despite these differences, the concept of a dissipative scale is equally applicable to both two and

three dimensional turbulence.

In the context of magnetised plasma turbulence, which can be treated as quasi two-dimensional

with advective motions in the ⊥-∧ plane, see Section 4, the dissipative scale defines some

perpendicular length at which collisional and interial forces are equal. In the SOL, where the strongest

gradients occur normal to the flux surfaces, we expect the dissipative scale to define the smallest

radial gradient length, λψ ≡ |ψ/∇⊥ψ|, where ψ ∈ {n,T
e
,T

i
}. It is worth noting that the SOL has the

structure of a thin, elongated boundary layer with λψ << L
||
, and such that we expect SOL plasma

eddies to correspond to highly elongated filaments [Biskamp03, Taylor97, Naulin02, Antar01,

Thomsen02]. When averaged over all scales, filament motions in the ⊥-∧ plane result in a net radial

flux of particles and energy. In addition to collisional diffusion, parallel losses to the divertor targets

and diamagnetic velocity shear also produce an effective dissipation mechanisms. The SOL
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dissipative scale must therefore account for losses in all three magnetic directions, although we

expect || and ⊥ losses to dominate.

For the purpose of characterising power exhaust, which is the topic of the present article, we are

primarily interested in the transport of thermal energy (heat) rather than kinetic energy or momentum.

In the ⊥-∧ plane, thermal energy is both convected by turbulent motions and conducted (diffused)

by collisions. However, due to a strong dependence of the Coulomb collision cross-section on

temperature, thermal energy cannot be treated simply as a passive scalar embedded in the flow.

Instead, temperature should be treated as an active scalar, which somewhat complicates the analysis.

As mentioned previously, the heat diffusivity χ replaces the kinematic viscosity ν as the relevant

collisional diffusivity, such that the dissipative scale lν 
becomes lχ. This scale now determines the

smallest radial temperature gradient length likely to exist in the plasma. Since χ⊥i
 >> χ⊥e

 on account

of the larger ion gyro-radius, we expect this scale to be much larger for ions than electrons.

APPENDIX B: PARAMETRIC ANALYSIS OF THE DISSIPATIVE SCALE (5.22)

Below we investigate the parametric dependence of (5.22). Using (5.10), N⊥σ can be written as a

product of two terms

N⊥σ = 3/5×(τχ||σ/τσσ)×(1 + τχ||σ/τ
v||

)−1

                                          (B.1)

The first term τ
||σ/τσσ, which can be interpreted as the average number of ⊥ diffusive steps per ||

conductive time  N⊥
χ

σ, is found from (5.10) and (5.13) as

N⊥
χ

σ = τ
||σ/τσσ =  ν

∗
σ

2×(1 + ν*
σ

c/ν*
σ)/c

||σ                                       (B.2)

This reduces to ν∗
σ/ασ ∝ Tσ

−2 and ν∗
σ

2/c
||σ ∝ Tσ

−4, for ν*
σ << ν*

σ
c and ν*

σ >> ν*
σ

c, respectively; here

we made use of (5.12) to make the Tσ dependence explicit. The ratio of electron and ion steps,

N⊥
χ

e
/N⊥

χ
i
, is thus found as 5×ϑ2 ~ 5-50 and 1.2×ϑ4 ~ 1.2-100 in the two limits, with the range of

values for 1 < ϑ < 3 indicated.

The second term in (B.1) represents the convective contribution to || energy loss and has already

been formulated in (5.14). Inserting (5.14) and (B.2) into (B.1), gives the final expression

N⊥σ = 3/5×ν∗
σ×{c

||σσ(ν*
σ

 + ν*
σ

c)−1
  
+ 5/2×Mξ(v

ti
/v

tσ)}−1                           (B.3)

ν*
σ

c = c
||σ/ασ,     ξ = (1 + Z/ϑ)1/2,    v

ti
/v

tσ = (T
i
/Tσ)1/2(m

i
/m

e
)−1/2

which depends on three dimensionless parameters: ν*
σ, ϑ and M. We now consider the three

asymptotic limits of (B.3):

• the collisional, conductive limit (M << Mc
σ, ν*

σ 
>> ν*

σ
c) in which (B.2) reduces to 3/5×N⊥

χ
σ

as found in (B.2),
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N⊥σ = 3/5×ν∗
σ

2/c
||σσ ∝ Τσ

−4                                                 (B.4)

• the free-streaming, conductive limit (M << Mc

σ, ν*

σ 
<< ν*

σ
c) in which (B.2) once again applies,

but now yields

N⊥σ = 3/5×ν∗
σ/ασ ∝ Τσ

−2                                                  (B.5)

• the convective limit (M >> Mc

σ), which based on Fig.14 only applies for ions in the SOL; in

this limit (B.1) reduces to

N⊥σ = 3/5×ν∗
σ{5/2×Mξ(v

ti
/v

tσ)}−1                                           (B.6)

∴N⊥i = 6/25×ν∗
i
/Mξ  ∝ Τ

i

−2/M(1 + Z/ϑ)1/2

In short, N⊥σ increases monotonically with the filament collisionality ν*

σ: quadratically in the

collisional conductive limit (M << Mc

σ, ν*

σ 
>> ν*

σ
c) and linearly in the conductive, free streaming

(M << Mc

σ, ν*

σ 
<< ν*

σ
c) or convective (M >> Mc

σ) limits. The ratio N⊥e
/N⊥i  in the three asymptotic

limits is shown in Table 3; since electron transport is firmly fixed in the conductive regime (M <

Mc

e
, Fig.14), the electron convective limit (M >> Mc

e
) has been omitted from Table 3.

Based on the asymptotic behaviour of N⊥σ, (B.4)-(B.6), we expect l⊥σ/ρσ to increase monotonically

with ν*

σ for all values of ϑ and M: linearly for (M << Mc

σ, ν*

σ 
>> ν*

σ
c) and as a square-root for (M

<< Mc

σ, ν*

σ 
<< ν*

σ
c) or (M >> Mc

σ), see Fig.A.1.

The expression (5.23) is plotted in Fig.A.1 for a range of ν*

σ  
over a range of 1 < ϑ (=T

i
/T

e
) < 10

and 0.01 < M < 1. The electron ratio l⊥e
/ρ

e
 is largely insensitive to both ϑ and M in this range,

increasing from ∼1 for ν*

e 
∼ 0.1 to ∼30-100 for ν*

e 
∼ 103. Similarly, l⊥i

/ρ
i
 is insensitive to ϑ but is

noticeably reduced with increasing M, increasing from ∼1 for ν*

i 
∼ 1-3 to ∼20-200 for ν*

i 
∼ 103.

Finally, we find l⊥i
/ρ

i
 < l⊥e

/ρ
e
 provided that ν*

σ 
< 30. Although l⊥σ/ρσ depends on ν*

σ along with two

other parameters (ϑ, M), the ratio (l⊥i
/ρ

i
)/(l⊥e

/ρ
e
) depends on only three parameters (ν*

e
, ν*

i
, M) or

(ν*

e
, ϑ, M), since the two collisionalities are related via (5.12), i.e. ν*

e
 = ϑ2ν*

i
. For ν*

e
 ~ 0.1, (l⊥i

/ρ
i
)/

(l⊥e
/ρ

e
) ~ 1 for all ϑ and M. As ν*

e
 increases, (l⊥i

/ρ
i
)/(l⊥e

/ρ
e
) decreases uniformly with little effect of

ϑ and M, until ν*

e
ϑ−2 = ν*

i
 ~ 1. Thereafter, (l⊥i

/ρ
i
)/(l⊥e

/ρ
e
) remains roughly constant at its ν*

i
 ~ 1 value

for moderate Mach numbers, with some decrease close to sonic velocities. For estimated JET near-

SOL conditions (10 < ν*

e 
< 30, 1 < ϑ < 3, 0.03 < M < 0.3), we find (l⊥i

/ρ
i
)/(l⊥e

/ρ
e
) ~ 0.07-0.3.

The ratio of dissipative un-normalised scales l⊥i
/l⊥e

, plotted in Fig.15, exhibits qualitatively similar

behaviour, with a few marked dfferences:

• l⊥i
/l⊥e

 > 1 over the entire range of ν*

e
, ϑ and M

• For  ν*

e
ϑ−2 = ν*

i
 < 1, l⊥i

/l⊥e
 does not approach a common value but increases as ~ϑ1/2 at fixed ν*

e
,

with little effect of M.

• The value of l⊥i
/l⊥e

 at ν*

e
ϑ−2 = ν*

i
 ~ 1 decreases less than linearly with ϑ

• For  ν*

e
ϑ−2 = ν*

i
 > 1, l⊥i

/l⊥e
 stays roughly constant at its ν*

i
 ~ 1 value for moderate Mach

numbers, with a mild decrease close to the sonic boundary.
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For estimated JET near-SOL conditions, shown as a shaded region in Fig.15, we find l⊥i
/l⊥e 

~ 7-20

~ O(10), such that l⊥i
 exceeds l⊥e

 by roughly a factor of ten, which is less than the ratio of the gyro

radii ρ
i
/ρ

e
 ~ O(102), but still much larger than unity.

APPENDIX C: LIST OF SYMBOLS

C.1 SPECIAL SYMBOLS

〈⋅〉 volume average

||, ∧, ⊥ parallel, diamagnetic and radial directions

C.2 GREEK SYMBOLS: σσσσσ ∈∈∈∈∈ {i,e} IS A SPECIES INDEX

ασ free streaming multiplier (for species σ)

χ
||σ parallel heat diffusivity

χ
||σ

SH Spitzer-Harm parallel heat diffusivity

χ⊥σ radial heat diffusivity

χ⊥ total (ion + electron) radial heat diffusivity

χ⊥i

PS Pfirsch-Schlueter radial ion heat diffusivity

χ∧σ diamagnetic heat diffusivity

χ
B

Bohm diffusivity, χ
B
 ~ T

e
/B

δ||, δ∧, δ⊥ size of the eddy (filament)

εσ filament energy density, εσ ~ n(3/2×Tσ 
+ 1/2×mσu

||
2)

ε = a / R aspect ratio

ε energy injection rate per unit mass

εΩ enstrophy injection rate per unit mass

φ, θ, r toroidal, poloidal and radial directions

Φ net flux expansion factor, Φ = ds
t
/dr

u

γσ sheath energy transmission coefficient

Γ
o
/Γ

I
outer/inner deposited particle fluxes

κκκκκ = (b⋅⋅⋅⋅⋅∇)b curvature vector

λ
q

integral power width, λ
q
 ≡  ∫ qdr /q

0

λ
q
all, λ

q
H power width regressing with all data /only H-mode shots

λ
q
X-ν* collisional IOL width, as defined by (2.6)

λ
Tσ temperature gradient length,

λσσ mean-free-path,

λ
q
v = λ

q
(τ

||v
) convectively dominated parallel transport width

λ
q
χ = λ

q
(τ

||χ) conductively dominated parallel transport width

µ ∈{||, ∧, ⊥} directional index

νσ characteristic collision frequency
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νσ
* collisionality, νσ

* ≡ L
||
/λσσ

ν*

σ
c = c

||σ/ασ critical collisionality

ϑ ≡ T
i
/T

e
ion-to-electron temperature ratio

θ⊥ field line inclination angle at the target

θ
0

poloidal launch location

Θσ defined by (5.21)

ρθi
poloidal ion gyro-radius

ρθs
poloidal gyro-radius evaluated at the sound speed

ρ
0

radial launch location

ρσ thermal gyro-radius σ ∈ {i,e} species index

τ
ie

ion-electron energy equilibration time

τσσ characteristic collision time for σ-σ Coulomb scattering

τµσ characteristic energy transport (or loss) time

τ
u

shearing or eddy turn-over time, τ
u
 ~ δ∧/∆u∧

τ
||v

 and τ
||χ convective and conductive energy loss times,

τ
||

harmonic average of the two

τ
u
,τν characteristic advective and collisional (viscous) times

ω
cσ gyro-frequency for species σ

ξ defined by ξ ≡ (1+Z/ϑ)1/2

ζ transitional variable, ζ ≡ ν*

i
 / (1 + ν*

i
)

C.3 LATIN SYMBOLS: BOLD CAPITALS REPRESENT THEORIES OF RADIAL ENERGY

TRANSPORT

a minor radius

A atomic mass of main plasma ions

A1 classical ion heat conduction, χ⊥
A1 ∝ ρ

i

2ν
i

A2 neo-classical ion heat conduction, χ⊥
A2 ∝ χ⊥

A1(B/Bθ)
2  ∝ ρθi

2ν
i

A3 classical electron heat conduction, χ⊥
A3 ~ χ⊥

A1(m
e
/m

i
)1/2  ∝ ρ

e

2ν
e

B1, B2 endplate MHD interchange with λ
p
 and λ

n

Bφ toroidal magnetic field

B
rip

toroidal field ripple

c
s

plasma sound speed

D collisionless MHD interchange near β
critical

D⊥
an anomalous diffusivity

e
|| 
= b, e∧, e⊥ parallel, diamagnetic and radial unit vectors

eσ electric charge (−e for electrons, +Ze for ions)

E⊥
SOL radial electric field in the SOL
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f
t

trapped fraction

f
ELM

ELM frequency (Hz)

F drift wave

G1 MHD interchange

G2 endplate MHD interchange,

I
p

plasma current

J drift with collisionless skin depth

K1 drift Alfven: low collisionality

K2 drift Alfven: high collisionality

L, L1 sheath and sheath-resistive modes

L
||o

/L
||i

connection lengths from the outer mid-plane to the outer/inner target,

L
||

generic connection length

L∧ poloidal extent of the SOL

lν dissipative scale

l⊥σ radial dissipative scale

M Mach number, M = u
||
/c

s

Mc

σ critical Mach number

M charge-exchange

nσ plasma (filament) density

n
e,u

, n
e

SOL upstream (SOL) plasma density

n
e,t

target plasma density

n
0

neutral density

n/n
GW

Greenwald fraction

N⊥σ average number of ⊥ diffusive steps per || transport time

N⊥
χ

σ average number of ⊥ diffusive steps per || conductive time

N Bohm scaling

O collisionless skin depth

pσ = nTσ static pressure

P
heat

heating power

P
NBI

Neutral Beam Injected power

P
rad

radiated power

P
div

power entering the divertor

P
rad,div

power radiated in the divertor

P
ELM

ELM power = ∆W
ELM

f
ELM

P
SOL

power entering the SOL

P
t

target deposited power

P
o
/P

i
outer / inner target deposited powers

Q null model, χ⊥ 
= constant,
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q
||

parallel energy flux

q
0
 , q

peak
peak target heat load

q
o
/q

i
outer/inner deposited peak heat loads

q
tot

 ≈ q
e
 + q

i
total heat load = electron + ion heat loads

qσ∧
E as defined by (3.2)

qσ∧
p as defined by (3.2)

qσ∧
T as defined by (3.2)

qµv,σ µ component of the convective energy flux

qµχ,σ µ component of the conductive energy flux

qµσ µ component of the total energy flux

q
||χ,σ

FS free streaming (FS) parallel heat flux

q
95

safety factor at 95% poloidal flux surface

r
u

radial distance at the outer mid-plane

R major radius

R
o
/R

i
major radius of outer/inner mid-plane

∆R
out

, ∆R
in

outer/inner mid-plane wall gaps

Re = τν/τu
Reynolds number

s
t

distance along the target

S magnetic shear

Tσ plasma (filament) temperature

Tσ,u
, Tσ

SOL upstream SOL temperature

Tσ,t
target temperature

u plasma (filament) velocity

uν characteristic velocity at the scale δ = lν

v
tσ thermal speed, v

tσ = (Tσ/mσ)1/2

v
t||σ, v

t⊥σ parallel and perpendicular thermal speeds

v
E
 ~ E×b/B electric drift velocity

∆W
ELM

stored energy drop due to an ELM

X direct ion orbit loss, λ
q

X

Y1 ion gyro-radius, ρ
i

Y2 poloidal ion gyro-radii, ρθi

Z1 electron gyro-radius, ρ
e

Z atomic charge of main plasma ions

C.4 TERMINOLOGY
classical χ⊥i

 ∝ q
95

0

neo-classical χ⊥i
 ∝ q

95

2

(neo-)classical χ⊥i
 ∝ q

95

k  with 0 < k < 2
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near-SOL SOL region with r / λ
q
 < 2 – 3

far-SOL SOL region with r / λ
q
 > 2 – 3

fwd-B forward toroidal field (B×∇B ↓) direction

rev-B reversed toroidal field (B×∇B ↑) direction

LP, TC, IR Langmuir probes, thermocouples, infra-red camera
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Figure 1: Schematic of power exhaust mechanisms in a
diverted tokamak. The time series indicates that the
indicated channels apply both to the inter-ELM phase
and the ELM transients. This figure was adapted, with
some modifications, from Fig.7 of [Fundamenski04].

Figure 2(a): Results of ASCOT modelling of ion orbit loss
in fwd-B. The initial launch location of ions has been
labelled blue (black) if the orbit terminates at the inner
target and red (grey) if it strikes the outer target.

Figure 2(b): Same as Fig.2(b), but in rev-B. Figure 3: A comparison of TC (solid line), IR (dot-dash
line) and LP (dashed line) measured steady-state power
deposition profiles at the outer target for a 2.5MA/2.4T
discharge for 16MW Type-I H-mode. The IR profiles have
been averaged over the ELMs. The scale of the electron
heat flux (LP) is four times smaller in the high power
case. Also shown is are the profiles obtained for a 12MW
Type-I H-mode (same field and current), using the shot-
by-shot TC method. For comparison the poloidal gyro-
radius at the outer mid-plane is shown for three values of
the ion energy. The figure was adapted, with some
modifications, from Fig.2(b) of [Fundamenski04].
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Figure 4: Steady-state total (TC) and electron (LP) peak
heat loads for D and He plasmas as a function of power
entering the SOL. The TC values increases faster than
linearly with Pt. The excess power, which we identify with
the ion contribution, qi = qtot - qe, becomes more
pronounced in D in high power H-modes. This figure was
adapted from Figure 3 of [Fundamenski04].

Figure 5: Ratio of total to electron peak heat loads, qtot /
qe, and total to base heat loads, qtot / qbase, as a function
of the ion collisionality at the upstream separatrix. The
anticipated ITER value is indicated by the vertical dashed
line.
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estimated measurement error, while the dashed line the
average over all theories. The figure was adapted from
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Figure 7: Ratio of theoretical (neo-classical) and
experimental λq values for: neo-classical and classical
ion conduction, A2 and A1, two collisional orbit loss
estimates, X-n* and X-A1, and the polodal gyro-radius,
ρθi.
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Figure 8: Target power deposition profiles obtained using
the TC analysis for matched pairs of fwd-B and rev-B
shots, see Table 1. The horizontal axis indicates vertical
distance along the tile. Deposited powers, peak heat loads
and integral power widths are tabulated.

Figure 9: Comparison of outer target, total peak heat
loads: best fit to all fwd-B data (2.1a) vs. the experiment,
for both field directions and both targets. The figure was
adapted from Fig.3 of [Fundamenski05].

Figure 10: Schematic of poloidal components of classical drift related energy fluxes (3.2) in the
edge and SOL plasmas: convective E×B flux, diamagnetic ion convective and conductive fluxes.
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Figure 11: ASCOT modelling of (direct) ion orbit loss
outer and inner target heat loads for 2.5MA/2.4T/12MA
JET shot, with variation in field direction (fwd-B vs. rev-
B) and Er, SOL (kV/m). The peak heat loads qpeak (MW/m2)
and power widths λq (mm-omp) are tabulated. The figure
was adapted from Fig.5 of [Fundamenski05].

Figure 12: Similar to Fig.6, for the error between
theoretical and experimental exponents of c^ scaling with
Te, ne, q95 and Bf obtained from SOLPS analysis of AUG
plasmas, (4.1).

Figure 13: Plasma filament schematic: the size δµ and
loss times τµ are indicated, where µ∈{||, ∧, ⊥} are the
three magnetic directions. The envelope denotes a surface
of constant electric potential. The gyration orbits of ions
and electron are also indicated. The drawing is not to
scale, since δ|| >> δ∧, δ⊥ and ρi >> ρe. The filament need
not be linear but follows the magnetic field lines,
approximating a magnetic flux tube.

Figure 14: Critical Mach number Mc
σ is given by (5.15)

with τχ||σ/τv|| ~ 1, as a function of ν*
σ  for different values

of ϑ = Ti/Te.
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Figure A.1: Thermal energy dissipative scale normalized by the gyro-radius, l⊥σ/ρσ plotted
vs. the collisionality ν*

σ for both ions and electrons, for different values of ϑ = Ti/Te and
Mach number M.

Figure 15: The ratio ion and electron thermal energy dissipative scales l⊥i/l⊥e plotted vs.
electron collisionality ν*

e for different values of ϑ = Ti/Te and Mach number M. The typical
range of ν*

e values for Alcator C-Mod, JET and ITER is indicated.
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Pulse Bx∇∇∇∇∇B Mode I
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SOL n
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SOL f
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P
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W
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∆∆∆∆∆W/W
ped

50415    ↓ L 2.5 2.4 2.7 3.3 4.4 2.7 ~2 3.9 ~10 18 63 2.32 - - - 1.65 -

59589    ↑ L 2.5 2.4 2.7 3.3 5.3 4.0 ~4 ~5 ~25 ~25 81 3.5 - - - 1.53 -

50397    ↓ H-I 2.5 2.4 2.7 6.5 15.6 9.5 ~2.5 4.0 ~8 25 97 1.78 12 330 4 5.6 0.06

59691    ↑ H-III 2.5 2.4 2.7 6.2 14.2 11.0 ~6.5 ~7 ~25 ~25 98 4.4 ~30 ~50 1.5 3.9 0.01

56707    ↓ H-I 1.5 1.45 2.7 5.0 10.2 6.7 ~1.8 2.2 ~8 34 78 1.46 10 200 2 2.2 0.09

59592    ↑ H-I 1.5 1.45 2.7 4.0 9.4 6.3 ~2.5 ~6 ~20 ~20 84 3.0 ~40 ~50 2 2.3 0.02

56709    ↓ H-I 1.5 2.2 4.2 3.9 9.8 7.2 ~1.5 1.8 ~10 35 102 0.96 20 100 2 2.6 0.04

59697    ↑ H-I 1.5 2.2 4.3 3.9 11.9 8.8 ~5 ~9 ~20 ~20 109 3.7 20 100 2 2.1 0.05

Table 1: Summary of matched pair discharges; all plasmas are D+, NBI heated; units: Ip (MA), B (T), P (MW), ne
(1019 m-3), T (eV), js (105 A/m2), fELM (Hz), ∇WELM (kJ), Wped (MJ); also used L|| [m] = 50×(q95/2.6).~

i-i i-n θθθθθ
0

ρρρρρ
0

D⊥⊥⊥⊥⊥
an E⊥⊥⊥⊥⊥

SOL    Γ   Γ   Γ   Γ   Γ
o
/ΓΓΓΓΓ

i
    q

o
/q

i
P

o
/P

i

0 0 0-2π 0.95-1 0 0 0.37, 5.62 0.27, 12.71 0.32, 15.32

1 0 0-2π 0.95-1 0 0 0.55, 7.18 0.30, 22.26 0.36, 26.73

1 1 0-2π 0.95-1 0 0 0.65, 6.81 0.34, 15.41 0.41, 18.58

1 1 0-2π 0.95-1 0 10 0.90, 4.21 0.39, 12.49 0.47, 15.02

1 1 0-2π 0.95-1 0 20 1.29, 2.63 0.50, 9.55 0.60, 11.53

1 1 0-2π 0.95-1 0 75 5.17, 0.56 1.09, 5.03 1.31, 6.08

1 1 0 1 0 0 9.06, 1.24 6.73, 1.46 8.15, 1.76

1 1 π 1 0 0 0.10, 20.34 0.12, 22.65 0.15, 27.23

1 1 0 0.95-1 0 0 2.22, 2.93 0.91, 7.47 1.10, 8.99

1 1 0 0.95-1 0 75 4.66, 0.81 0.94, 5.40 1.13, 6.50

1 1 0-2π 0.95-1 1 0 2.11, 1.66 1.55, 1.73 1.88, 2.09

1 1 0-2π 0.95-1 1 75 12.85, 0.26 3.83, 1.19 4.61, 1.42

1 1 0-2π 0.95-1 B
rip

0 0.67, 6.43 0.44, 15.72 0.53, 18.90

1 1 0-2π 0.95-1 B
rip

75 5.26, 0.57 2.22, 4.66 2.69, 5.63

Table 2: ASCOT trace run results: ni
ped = ni

sep = 1.5e19 m-3; Ti
ped = 1 keV; Ti

sep = 168eV (omp); Maxwellian f(E,α)
with local (ni, Ti) For 2D (ni, Ti) SOL plasma (JET 50401); ∆ped = {0, 15} mm-omp; Er

core = neo-classical. Results are
listed for (fwd-B, rev-B).
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N⊥⊥⊥⊥⊥e
/N⊥⊥⊥⊥⊥i

M << Mc

e
, ννννν*

e 
>> ννννν*

e

c M << Mc

e
, ννννν*

e 
<< ννννν*

e

c

M << Mc

i
, ννννν*

i 
>> ννννν*

i

c 1.21×ϑ4 19.5×ϑ4/ν*

e

M << Mc

i
, ννννν*

i 
<< ννννν*

i

c 0.31×ϑ2ν*

e
5×ϑ2

M >> Mc

i
0.78×M(1+Z/ϑ)1/2ϑ2ν*

e
12.5×M(1+Z/ϑ)1/2ϑ2

Table 3: Ratio of average number of electron and ion radial steps per || transport time, in the three asymptotic limits
(B.2) - (B.4).


