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ABSTRACT

A novel method for inverting time-resolved line integrated interferometric plasma density

measurements is described. The method uses singular value decomposition of local density profiles

from Thomson scattering measurements obtained at low sampling rates in the same or equivalent

plasmas to determine a set of orthogonal spatial basis functions which is well adapted to the physical

processes under investigation. The sought-for density profile is expanded into a limited series of

these functions and a solution is calculated by using a simple least-square fit method.

The new method overcomes the difficulties encounter with other methods, such as regularization

methods, which smoothen gradients and depend on the availability of accurate measurements in

plasma edge region. The small number of computations required provides for a fast algorithm. This

method, which combines the high bandwidth of interferometer systems with the spatial accuracy of

Thomson scattering, is applied to invert interferometer measurements in a wide variety of operational

regimes in the TCV and JET tokamaks. In particular, the collisionality dependence of density peaking

observed in ASDEX Upgrade is confirmed in JET H-modes using this method.

1. INTRODUCTION

Understanding and control of particle transport is an important issue for thermonuclear fusion

research since it determines the transport of the reactants and reaction products towards and away

from the core of the plasma. Particle transport studies in plasmas require measurements of density

profiles with high temporal and spatial resolution. In fusion research devices, two different diagnostics

are commonly used to perform these measurements. Interferometer systems provide line integrated

density measurements with high temporal resolution from the phase shift of a laser beam across the

plasma cross section. Thomson scattering systems provide local density measurements by detecting

the scattered laser light from a small volume of plasma. Although Thomson scattering systems

have the advantage of providing local density profiles, their time resolution is limited by the repetition

rate of the laser system and is usually inadequate for resolving fast transport phenomena. In contrast,

interferometer systems have high sampling rates allowing fast changes of the line-integrated density

to be measured. However, because they are line-integrated they require solving an inverse problem

for calculating the local density profile. Due to access limitations in tokamak devices, interferometer

systems with a single fan of probing beams are the practical choice [1], [2], [3], [4]. In this case,

additional information about the structure of the electron density is required to solve the inverse

problem. One possibility is to require the solution to satisfy some constraints. The Minimum Fisher

Information (MFI) is particularly successful in inverting line-integrated interferometric data [2] by

minimizing the Fisher Information [5] of the sought-for electron density distribution. The second

possibility is to reduce the degrees of freedom of the problem by expanding the solution in series of

orthogonal basis functions. In this approach, different functional forms have been used for

interferometer data, i.e. Fourier-Bessel functions [6] or Gaussian functions [7]. However, these

basis functions give good results only for specific data sets. No general and physically justifiable
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functional form exists for fitting electron density profiles in tokamak plasmas.

In this article, we develop a novel approach to inverting line integrated interferometer data by

expanding the sought-for solution into a linear combination of basis functions that are well adapted

to the physics determining the transport. The singular value decomposition (SVD) of the Thomson

scattering measurements is used to determine these basis functions. In the following, we shall refer

to the novel method, which combines the advantages of interferometry with those of Thomson

scattering, as the Singular Value Decomposition Inversion (SVD-I) method.

The remainder of the article is organized as follows. In Sec.2, the far infrared interferometer and

the Thomson scattering system on the TCV tokamak are described. In Sec.3, MFI and the expansion

in basis function methods to perform interferometric inversion are presented. In Sec.4, the SVD-I

method is developed and compared to the MFI method using artificial data. Applications to experimental

interferometer data discharges in the Tokamak  Configuration Variable [8] (TCV) and Joint European

Torus [9] (JET) are discussed in Sec.5. Finally, the conclusions are summarized in Sec.7.

The applications presented for the TCV and JET devices are not intended to be an extensive

physics study. Rather, the examples and references supplied should be understood as a guided tour

in the context of the authors’ current research on particle transport. To some degree, the data shown

are a revisitation of previous investigations for the purpose of cross-validation. However some of

the examples are novel results, which have not been previously published.

2. TCV EXPERIMENTAL SETUP

The TCV device [8] has a major radius R0 = 0.89m, minor radius a = 0.25 m and axial magnetic

field BT ≤ 1.54 T. The TCV vacuum vessel allows for plasmas with elongations up to 2.9. Plasma

shaping is performed with 16 independently controlled poloidal field coils. The radio frequency

system provides 3MW of EC power for heating and current drive at the second cyclotron harmonic

resonance (82.7GHz) using the extraordinary mode [10].

Examples of an extremely elongated and an extremely triangular plasma are shown respectively

in Fig.1(b) and (c). The geometry of the magnetic flux surfaces is provided by the equilibrium

reconstruction code LIUQE [11]. For practical calculations a grid of 41 equispaced points in the

coordinate ρ is used, where we have defined

(1)

Ψ0 is the poloidal flux at the magnetic axis and Ψa is the poloidal flux at last closed flux surface. In

Fig.2, an example of magnetic equilibrium reconstruction is given for the TCV discharge No. 12819.

In this figure, the flux surfaces are shown at t = 0.7s and correspond to ρ = 0.1 . n, for n = 1, ..., 10.

On TCV, the electron density ne is obtained by interferometric and Thomson scattering

measurements. The far infrared interferometric (FIR) system [3] uses an optically pumped CH2F2

laser with a wavelength λ = 214.6µm corresponding to the cutoff density nc ≈ 2:4 . 1022m-3. The

ρ =     —
Ψ - Ψ0

Ψa - Ψ0
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plasma is probed along 14 vertical chords of diameter ≈ 20mm in a single poloidal plane as shown

in Fig. 1(a). The phase shift ∆øi between a laser beam passing through the plasma along a straight

optical path Li and a reference beam outside the plasma is measured by a Mach-Zehnder

interferometer using heterodyne detection. The signal detectors (InSb hot electron bolometers)

provide a frequency response up 100kHz. For all experiments in TCV, the condition ne 〈〈 nc holds

and the phase shift ∆øi is proportional to the line integrated electron density

(2)

where ne is expressed in m-3. At the selected wavelength, only minor refraction effects dare present,

even at high line averaged densities, ne ≈ 2.2 . 1020 m-2, and the precisionof the measurement is

typically ∆ne ≈ 5 . 1017 m-2.

The TCV Thomson scattering system [12] also provides measurements of electron density profiles.

Three nearly co-linear laser beams (wavelength λ = 1.064 µm, repetition rate to 20Hz.) are injected

from the bottom of the TCV vessel at the radial position R = 0.9m. The light scattered from 25

sampling volumes, shown in Fig. 1(a), is collected with a spatial resolution of 40mm in the vertical

direction and 3mm in the radial and toroidal directions. Sampling intervals down to 0.4ms can be

achieved in the so-called ‘burst-mode’, when the three lasers are triggered close together.

3. METHODS TO INVERT INTERFEROMETRIC DATA

From the mathematical point of view, the calculation of the local electron density profile ne from

line integrated measurements requires the solution of the system of inhomogeneous Fredholm

equations of the first kind in Eqs.2. This system is always underdetermined, since an infinite number

of measurements would be required to solve the system exactly.

On TCV, strongly shaped plasma configurations are produced, so a simple Abel inversion [13]

of this system of equations is not of much use. Under these circumstances, additional information

is required to obtain a local electron density. Provided that the plasma is not perturbed by strong

magnetohydrodynamic (MHD) activity, the electron density is expected to be constant on a toroidally

symmetrical magnetic flux surface and depends on the radial flux coordinate ρ alone, i.e. ne =

ne(ρ).

The supplementary information provided by the flux surfaces is introduced in the system of

equations by defining nested pixels, ρi ≤ ρ ≤ ρi+1, d etermined by the geometry of the magnetic

surfaces (shaded pixel in Fig. 2), within which the electron density is considered constant [14], [2].

The electron density is discretized on this grid of nested pixels and the system of integral equations

is thus transformed to a system of algebraic equations as

(3)

∆øi = 6.0474 . 10-19 nedli, i = 1,..., 14∫Li

(ne)i = Tik(ne)k, i = 1,..., nl
k=1,...,npix

Σ—

–



4

which can be arranged in matrix form

ne = T . ne

The matrix element Tik equals the length of the optical path Li in pixel k. The line integrated

measurements and the density profile form respectively column vectors ne of size nl (the number of

line integrated measurements) and ne of size npix (the number of pixels).

In practical situations, a direct inversion of T is almost always impossible, either because there

are less equations than unknowns (nl < npix) and therefore the number of solution is infinite or, even

if we have nl = npix, because T is badly conditioned.

One way to choose a physically sensible solution is to choose a density profile such that the

functional

(5)

is minimized, where

x2 = (T . ne — ne)
T . (T . ne — ne)

is the least-square term which provides the consistency of the solution with the line integrated

measurements, R is a regularization functional and α is a positive definite parameter. For convenience,

we have used the abbreviation Tik = Tik/σi and (ne)i = (ne)i/σi where σi is the standard deviation of

(ne)i.

The parameter α determines the weighting between the goodness of fit (represented by x2) and

the functional R. In the limit α → 0, the solution is determined by x2 alone as in Eq. 5, while for α
→ ∞ only the requirements imposed by the functional R determine the solution. The most likely

solution is somewhere in between, so one part of the problem is to choose the “correct” value of the

regularization parameter α, a second part is to find a solution for this particular value. In practice,

provided that the experimental errors σi are known suffciently well, the parameter α is determined

by minimizing the functional F subject to the constraint x2 ≈ nl, as discussed in details in Refs. [15],

[17].

An example of a regularization method used on TCV for soft X-ray tomography [15], [16] and

interferometry [7] introduces the Minimum Fisher functional

(7)

where né (ρ) is the derivative of the electron density profile with respect to the radial flux coordinate

ρ. An effcient iterative scheme to minimize the functional FFI = x2 +αRFI has been developed [15]

which utilizes the criterion x2 ≈ nl to determine the “correct” value of the parameter α.

The second possibility to solve the system of Eqs. 3 is to reduce the degrees of freedom by

           ~            ~         ~    ~—

~

—

RFI = ∫ — dp
[n'e(ρ)2

[ne(ρ)

(4)

F = x2 + αR

(6)—

~ —
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expanding the local electron density profile into a series of orthogonal functions wk(ρ) such that

(8)

which can be casted in the matrix form

(9)

Using the expansion in Eq. 9, the set of Eq. 3 can be arranged in the matrix form

(10)

where the coeffcients a are the unknowns of the system. The crucial issue in this approach is the

choice of the basis functions wk(ρ) in Eq. 8 which results in the condition nl ≥ Kmax. Provided that

this condition is satisfied, the system of Eqs. 10 becomes an over-determined system for which a

least squares solution can be determined by solving the set of normal equations [17]

(11)

In the next section, Thomson scattering measurements of electron density profiles are used to

form the basis functions, wk(ρ), for the expansion of the local electron density profile as in Eq. 8.

4. NEW INVERSION METHOD USING SINGULAR VALUE DECOMPOSITION OF

THOMSON SCATTERING DATA

In tokamak transport experiments, the temporal evolution of the electron density can be described

by a time-dependent linear combination of spatial eigenfunctions of the operator that governs the

dynamical response [18], [19]. Using these particular eigenfunctions, a small number (typically

from two to four) of components is usually required to model the evolution of the electron density

profile [18], and therefore they constitute well-adapted basis functions to reduce the dimensionality

of the system of Eqs. 8. The SVD is particularly effective in identifying these basis functions from

spatio-temporal data [20]. The SVD has also been successfully used in the analysis of soft x-ray

[19], [21] and magnetic [22] data and in image processing [23]. The basic idea of the SVD-I method

to invert interferometric data is to expand the electron density profile in Eq. 8 by using basis functions

wk(ρ) which are obtained from SVD analysis of Thomson scattering data. This choice of basis

functions is well adapted to the physics determining the electron density profiles and therefore

reduces the number of significant coeffcients, ak, in Eq. 10 allowing a least-square solution of the

inverse problem as in Eq. 11.

In this section, the SVD-I technique is developed, and an example using artificial electron density

ne(ρ) = ak  
.
 wk (ρ)

k=1,...,Kmax

Σ

^

—

^

ne = W . a

ne = T . W . a

(T . W)T . (T . W) . a = (T . W)T . ne
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data is illustrated. Readers interested in a more rigorous mathematical derivation of the SVD and

its fundamental properties can refer for example to Ref. [24].

4.1. DEVELOPMENT OF THE SVD-I METHOD AND COMPARISON TO MFI METHOD

To illustrate the SVD-I method and compare its performance to that of the MFI method, an artificial

set of local density data, ne, that simulates sawtooth activity has been generated (see Sec.5 for

details on sawtooth activity). The temporal evolution of the artificial electron density is shown in

Fig.3(a,b) for two different radial positions together with two profiles, Fig.3(c), before and after the

sawtooth crash. From these artificial data sets the line integrated density, ne, is calculated using Eq.

11. The transfer matrix T is obtained from an actual TCV discharge. Reconstructed local density

profiles ne are obtained from both SVD-I and MFI method. The performance of the inversion

techniques is thus revealed from a final comparison between ne and the initial ne input. Thomson

scattering measurements, which are used to form the basis functions, are simulated in this example

by choosing a temporal subset of ne at 15 points. The corresponding times are indicated on Fig.3(b)

as vertical dashed lines. In practice, because of the low temporal resolution of the Thomson scattering

system, each sample is obtained from a different, but equivalent, sawtooth cycle. Typical samples

of Thomson scattering profiles taken over a quasi-stationary discharge include from 50 up to 100

time points for the examples presented in Sec.5 and Sec.6.

To apply the SVD, Thomson scattering electron density profiles ne(ρi, tj) are arranged in matrix

form as follows

(12)

where M and N are respectively the number of temporal and spatial Thomson scattering samples.

On TCV, the standard grid from the magnetic reconstruction code LIUQE assumes N = 41 and

therefore the inequality M > N usually holds.

The SVD provides a decomposition of the matrix Ne into three matrices U, S and V such that

(13)

The matrices U and V are M x N and N x N unitary matrices respectively, i.e. U . UT = I and V . VT

= I. The N x N matrix S is diagonal with positive or zero elements, Sk, which we refer to as the

singular values. Conventionally, they are ordered in descending order such that S1 ≥ S2 ≥ . . . ≥ SN.

The columns of V represent spatial eigenmodes vk(ρ) or topos, whereas the columns of U can be

considered as temporal eigenvectors uk(t) or chronos, where we have adopted the nomenclature of

Ref. [19].

^

^

Ne = 
( )

ne(ρ1, t1) 

ne(ρ1, tM) 

ne(ρN, t1) 

ne(ρN, tM) 

. . .

. . .

. . .

...
...

^ ^

^ ^

Ne = U . S . VT
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In Fig.4, the first three topos are shown together with the power distribution of the topos/chronos

couples. As can be seen in this figure, the singular values are strongly ordered and 99.99% of the

signal energy, defined as pk = Sk
2 Σk Sk

2, is contained in the first three chronos/topos pairs. Here,

the local electron density is expanded as in Eq. 8 using the first three topos as the basis functions,

wk(ρ), and a simple least squares solution of Eq. 10 is found. A method to determine the number of

components that are needed in the case of experimental data is presented in Sec. 5.

In Figure 5, two artificial electron density profiles are shown (dashed lines), before and after the

sawtooth crash, together with reconstructions from artificial line integrated data. Figure 5(a) shows

MFI method, Fig. 5(b) the SVD-I method. For the same set of artificial data, the time evolution of

the reconstructed electron density using both methods is shown for two different radial positions in

Fig. 6(a,b). The time evolution of the artificial electron density is also shown as a dashed line for

comparison. In Fig. 6(c), the time evolution of the error in the reconstruction defined as x2 = (ne—

ne)
T .(ne—ne) is shown.

In the case of the peaked profile, a good reconstruction is obtained with both methods for ρ ≤
0.8. However, the outermost region of the plasma, ρ ≥ 0.8, is more accurately reconstructed by the

SVD-I method. This is due to the sensitivity of the MFI functional in Eq. 7 to boundary conditions.

In the case of the hollow electron density profile, inversions obtained using the SVD-I method are

considerably more accurate than the MFI reconstructed profiles. The strength of the SVD-I method

is also obvious when we consider the time evolution of the x2, as can be seen in Fig. 6(c). The

smoothing imposed by regularization methods destroys features in the density profiles. By contrast,

the SVD-I method utilizes Thomson scattering data and does not impose smoothing of the profile.

This allows features to be preserved when they are contained within the set of topos used as computed

from Thomson scattering data. It is possible that the MFI method could benefit from utilizing

Thomson scattering data in an analogous way but small-scale features may still be smoothed out by

nature of the MFI method itself.

It is also worth noting that, due to the small number of computations required, the SVD-I method

provides for a fast inversion process. On a PC workstation (Pentium 2, 600MHz, 1GB of RAM)

using Matlab 6.0, 10000 time points, similar to the number in a typical TCV discharge, can be

inverted in less than 1s for a fixed magnetic equiliubrium. By contrast, inversion of the same set of

data would require ≈ 30 minutes using the MFI method.

4.2. THE IMPORTANCE OF ERRORS IN THE THOMSON DATA

For testing the e¨ect of errors in the Thomson scattering measurements, reconstructions were produced

from artificial line integrated data with three different levels of noise added on the simulated Thomson

measurements: 2.5%, 5% and 10% respectively, the latter representing a rather pessimistic case

compared to available experimental data. Figure 7 displays reconstructed peaked and hollow profiles

(solid lines) for the different noise levels. Artificial electron density profiles are also shown for

comparison (dashed lines). As would be expected, as the level of noise in the Thomson measurements—
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increases the level of noise in the reconstruction increases as well. However, even for the worst case

scenario with 10% noise in the Thomson measurement, the reconstruction still conveys the major

features of the electron density profile. We should also note here that the database of the local Thomson

scattering profiles from which the basis functions are derived, needs to be rich enough to contain

sample profiles which are representative of all phases of the density profile evolution of interest.

5. APPLICATION TO TCV INTERFEROMETRIC DATA

This section, which is not meant to be an extensive physics study, illustrates applications of the

SVD-I method to experimental data during sawtooth activity in TCV plasmas.

Sawtooth oscillations, named after the characteristic shape of their soft x-ray time traces, were

first observed on the ST tokamak [25] and are present in many tokamak experiments. In ohmically

heated plasmas, they consist of periodic relaxations of the central electron temperature and density

which develop when the safety factor on axis drops below unity. The sawtooth behavior for normal

sawteeth is presented in Fig. 8(a,b) for TCV discharge No. 15279. The temporal evolution of the

line integrated electron density, ne, is shown from a central interferometer chord, Fig. 8(a), and

from a chord outside the inversion radius (see definition below), Fig. 8(b). Particle transport is

ordinarily characterized by a negative (inward-directed) convective velocity that results in a slow

rise (sawtooth ramp) of the line integrated central electron density ne0, Fig. 8(a), and moderately

peaked electron density profiles. The sawtooth ramp phase is followed by a rapid drop (sawtooth

crash) during which an m/n = 1/1 MHD instability grows (as indicated by soft x-ray tomographic

reconstruction [26]) and particles are expelled from the central plasma region defined by ρ ≤ ρinv,

ρinv being the inversion radius.

Although sawteeth have been observed and studied in all tokamaks, recent experiments have

revealed new peculiar features when electron cyclotron heating (ECH) and electron cyclotron current

drive (ECCD) are applied in sawtoothing tokamak discharges. In particular on TCV, with central

ECH or ECCD, outward particle convection is observed when a quasi continuous m=n = 1=1 mode

is present. This results in inverted sawteeth on the line integrated central electron density and hollow

electron density profiles, whilst in the absence thereof, inward convection between successive

sawtooth crashes leads to normal sawteeth [26], [27]. The temporal evolution of line integrated

interferometric data during inverted sawteeth is presented in Fig. 8(c,d) for TCV discharge No.

18549.

The application of the SVD-I method to real data requires the assessment of the number of

components (NC) that are needed in Eq. 8 to expand the electron density profile and whether or not

these components can be retrieved from SVD analysis of Thomson scattering data. Using TCV shot

No. 18549 as an illustrative example, we discuss a method to determine the NC by comparing the

SVD analysis of line integrated interferometric data to the SVD analysis of Thomson scattering data.

To apply the SVD, line integrated data from the 14 interferometer channels ne(k, tj) are arranged

in matrix form as follows

—

—
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(14)

where P is the number of temporal samples and k = 1, . . . , 14 refers to the channel number as

shown in Fig. 1.

In Fig.9(a-d), the first four topos are shown from SVD analysis of the interferometric signals in

the time interval of interest t = 1.499 — 1.53s in Fig. 8. The power distribution of the singular values

Sk, shown in Fig.9(e), reveals four significant components that contain together more than 99.99%

of the total signal energy. The first topo, Fig.9(a), corresponding to the largest singular value,

represents the contribution to the line integrated data of the spatially-averaged electron density

profile. The periodic peaking-flattening of the profile during sawtooth activity is represented by the

second topo in Fig.9(b). Analysis of the singular value distribution shows two topos, corresponding

to k = 3, 4 whose singular values are close enough to suggest the presence of rotating mode, Fig.

9(c,d). This is confirmed by the corresponding chronos (not shown here) which are oscillating at a

frequency of ≈ 4kHz and phase shifted by π/2. This mode is localized at the positions of the

interferometer channels k = 6, 9, which cross the plasma at opposite sides of the magnetic axis, and

therefore exhibits an m = 1 structure. This is also confirmed by soft x-ray data as detailed in Furno

et al. [27]. Topos/chronos couples corresponding to higher singular values Sk > 4 are noise dominated,

and no coherent spatial and temporal structures are observed.

From this analysis, we can conclude that the SVD is effcient in separating the dynamics of the

sawtooth activity (whose dominant structure is m = 0) from the rotation of the m = 1 mode. The

persistent m = 1 mode provides a perturbing asymmetry which is incompatible with the hypothesis

of poloidal symmetry underlying the reconstruction. In this case, we filter it out by removing the

corresponding singular components (k = 3, 4 in Fig.9). This provides the poloidally symmetric

component of the line integrated interferometric data that can be inverted using the SVD-I method.

When MHD activity is weak or absent, this step of filtering is of course not necessary.

To assess whether or not the SVD of Thomson data can provide the correct basis functions to

expand the electron density, we apply the SVD to a set of Thomson scattering profiles measured

during the same discharge as detailed in Sec.4.1.  In Fig.10(c,d), the first two topos obtained from

SVD analysis of 60 Thomson scattering profiles for TCV discharge No. 18549 are shown. The first

topo in Fig.10(c), corresponding to the largest singular value, represents the spatially-averaged

electron density profile. The second topo in Fig.10(d) represents the periodic flattening-peaking

during sawtooth activity. We can therefore conclude that these two topos can be used to expand the

electron density in Eq.8 and a least-square solution can be found.

The SVD analysis of line integrated FIR data has been performed for the normal sawtooth case

of Fig. 8 resulting in the identification of two components (not shown here) describing the sawtooth

dynamics. Also in this case, the topos corresponding to the first two largest singular values, shown

ne = 
( )

ne(1, t1) 

ne(1, tP) 

ne(14, t1) 

ne(14, tP) 

. . .

. . .

. . .

...
...

^ ^

^ ^
—
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in Fig.10(a,b), as determined by SVD of Thomson scattering measurements provide the correct

basis functions to model sawtooth activity.

Here, it is important to note that a basis functions obtained in a particular physical situation

should not be expected to reconstruct electron density profiles in a different physical situation. For

example, the topo in Fig.10(c) can effectively reconstruct hollow density profiles observed during

inverted sawteeth (see discussion below) but it will be inadequate in reconstructing peaked profiles

during normal sawtooth activity.

The temporal evolution of local electron density reconstructed using the SVD-I method is shown

in Fig.11 for both normal (a,b) and inverted sawteeth (c,d). For the same discharges, electron density

profiles are shown in Fig.12 at times indicated by different symbols in Fig.11. In Fig.12(b,d), inverted

electron density profiles are compared with profiles as measured by the Thomson scattering system

at the same times. Due to the low repetition rate of the Thomson scattering system, only a single

profile is measured during the 3 sawtooth periods of Fig.11.

In Fig.13, experimental line integrated data are compared to the line integrated data computed

using Eq.4, where ne is the reconstructed profile.

In the normal sawtooth case, ne0 increases during the sawtooth ramp and then drops at the

sawtooth crash on a fast time scale (typically ≤ 100 ms) resulting in a flattening of the electron

density profile. After the sawtooth crash, the increase of ne0 results from a particle flux in the

direction of the density gradient and hence from an inward particle convection, as shown by the

temporal evolution of the electron density profile in Fig.12(a,b). In the inverted sawtooth case, the

decrease in ne0 results from an outward particle flux, which results in a hollowing of the density

profile followed by a fast recovery at the sawtooth crash. In both cases, the SVD-I method yields a

reconstruction of the electron density profile which reproduces the experimental line integrated

data within the measured experimental error bars as shown in Fig.13. The reconstructed profiles

are also in excellent agreement (≤ 5%) with the profiles measured by the Thomson scattering at the

same times as shown in Fig.12(b,d). This proves that the SVD-I method can be successfully applied

to interferometric data in practical situations with experimental errors.

The existence of hollow profiles proves that the normally inward directed particle pinch can be

reversed under certain circumstances. Two mechanisms have been proposed to explain this behavior.

According to the first [28], the reversal may be due to neoclassical thermodiffusion in the core of

the plasma, which is helically displaced by the m/n = 1/1 island, making the core region similar to

a stellarator. For axisymetrical systems (ideal tokamak), neoclassical thermodiffusion is inward

directed (for a monotonic electron temperature profile), while for non-axisymmetrical systems it is

outward directed and stronger in magnitude due to the presence of particles trapped in local mirrors

[29]. Hollow density profiles of this nature are frequently observed in stellarators. According to the

second explanation, derived in axisymmetrical geometry, the outward convection may be due to

anomalous thermodiffusion. Outward thermodiffusion leading to hollow density profiles was

observed in non-linear collisionless simulations when the electron heating exceeded the ion heating
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by a factor of two or more, which is the case in TCV [30]. A recent quasi-linear analysis [31] has

shown that this anomalous thermodiffusion is due to trapped electron modes (TEM) and increases

in magnitude as the TEM becomemore unstable. The same analysis also suggests that the

thermodiffusive outward flux may not be suffcient to overcome the curvature driven flux, which is

always inward for positive shear discharges. Since these calculations were made in axisymmetrical

geometry, their relevance to hollow density profiles correlated with m/n = 1/1 islands is unclear.

Although the theory of anomalous transport in non-axisymmetrical systems is less developed, there

is no reason to believe that anomalous convection should not occur in those systems as well. The

explanation of density flattening by anomalous outward thermodiffusion does appear to apply to

the reduction of the density gradients in the confinement zone (outside the q = 1 radius and arguably

axisymmetrical even in the presence of a m/n = 1/1 island) of TCV, which is observed in the presence

of powerful central ECH irrespective of the presence or absence of m = 1, n = 1 islands[32], [33].

The phenomenon of density profile flattening has also been observed on ASDEX Upgrade in high

density plasmas in the presence of Ion Cyclotron Resonance Heating (ICRH) [34], although it was

interpreted as solely due in increased electron particle diffusivity brought about by the central

heating, in the presence of a constant or weakened Ware pinch. An analogous mechanism is observed

to occur on AUG in high density plasmas with central ECRH [31]. Figure 14 shows an example of

the SVD-I method applied to an ELMy, sawtoothing H-mode in TCV. The figure shows reconstructed

traces near the edge (ρ = 0.9), at ρ = 0.6 and on-axis. The occurrences of ELMs, inferred from a Dα
signal, are marked by broken vertical lines. For a period of ≈ 1ms at the ELM crash, a strongly

asymmetrical perturbation is observed, which prevents a meaningful reconstruction. The

corresponding periods are left blank in the traces of Fig.14. We found that the line integral of the

reconstructed profiles for the chords closest the edge is poor in H- mode. Having ascertained that

this is not an effect of beam refraction in the pedestal region, where gradients are strong, we realized

that this chord passes within less than the Thomson scattering radial resolution (≈ 3cm after mapping)

of the Last Close Flux Surface (LCFS). Hence the SVD analysis of Thomson scattering profiles is

unable to generate basis functions that allow the H-mode pedestal region to be adequately represented

and reconstructed. Consequently we have omitted these chords in the reconstructions of Fig.14. We

have compared the results of the SVD-I to those from Thomson scattering for a wide range of

sawtoothing Ohmic L-mode discharges in TCV. These discharges were presented previously in an

investigation of density profile behavior, which showed that the broadness < ne > /ne0 of the electron

density profiles is directly related to the peaking of the current density profile, irrespective of

plasma shape, average density and collisionality (see e.g. Fig.1B in Ref.[33]). The same data are

shown in Fig.15 for Thomson scattering (dots) and for SVD-I (triangles) demonstrating good

agreement. As previously shown [32], the scaling of electron density peaking with current density

peaking is in agreement with Turbulent Equipartition Theory (TEP) [35]. The fact that good

reconstructions are obtained for a modest number of topos (2-4 depending on circumstances),

suggests that a smaller number of interferometer chords than available on TCV may be sufficient.
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We tested the idea by performing reconstructions with reduced sets of approximately evenly spaced

chords and found that the quality of the reconstructions remains virtually unchanged down to as

few as 5 or 6 chords (for 4 topos), as shown in Fig. 16 for a broad and for a peaked density profile.

ELMy H-modes are also reconstructed satisfactorily with 5 chords using 3 topos, but for 4 topos, 6

chords are often required. The robustness of the reconstruction at low chord numbers is an important

advantage for larger fusion devices, such as JET, where access restrictions limit the number of

interferometer lines.

6. APPLICATION OF SVD-I TO JET DISCHARGES

We have applied the SVD-I to a set of several hundred discharges in L- and H-mode in JET. JET is

equipped with an 8 channel system [14] and a LIDAR Thomson Scattering system [36]. The pedestal

region is not resolved by the 4Hz core LIDAR system, which has a relatively modest resolution of

some 12cm for the JET low field side minor radius of typically 85cm. JET has a higher resolution

edge Thomson scattering system, but it currently has a lower repetition rate (1Hz) and is not always

available, which is why we haven’t included it in the present analysis. For the same reasons as in

TCV, we have excluded edge chords, which are nearly tangent to the LCFS, and the chord passing

through the X-point, which can pick up a significant contribution from outside the LCFS, leaving 5

chords for the reconstructions. The SVD-I was applied to study the behavior of the density profile

in a series of Lower Hybrid Current Driven (LHCD) discharges presented previously [40]. These

plasmas all had the same plasma current Ip = 1.3MA, corresponding to q95 = 8. They were also free

from sawteeth and other MHD activity and had q0 > 1. Applying a range of powers of off-axis

LHCD up to 3.6MW, the magnetic shear in the core was reduced and eventually reversed. The

width of the density profile followed the width of the current profile as < ne > /ne0 ≈ 2/3 . li
-1,

where the internal inductance li is a measure of the peaking of the current profile, in qualitative

agreement with predictions from TEP [35] and its counterpart in fluid theory, the curvature pinch

[30]. These discharges had no MHD activity, which is why reconstructions with two (as in the

figure) or three topos provide the same result within 2%. In Ref.[37], the analysis of the interferometer

signals was based on a three parameter functional fit, made available to the JET community as a

standard [38].

The present analysis has shown that the SVD-I produces inversions that reproduce the raw

interferometer signals more accurately than the functional fit. The result is that the density profiles

are somewhat more peaked than those quoted in Ref.[37]. Figure 17 can directly be compared to

Fig. 13 in Ref. [37]. However, all parametric dependencies remain qualitatively similar, in particular

the dependence on li, the independence of the peaking on electron temperature gradient length LTe

and on the theoretically important effective collisionality, relevant for Ion Temperature Gradient

(ITG) and TEM instabilities, which is defined as

(15)νeff  = νei=ωDe ≈ 3(mi=me)
1/2

∈
3/2ν*

ei /q
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where νei is the electron ion collision frequency, νei is the electron collisionality familiar from

neoclassical theory, ωDe is the curvature drift frequency and ∈ the local aspect ratio. The

approximation introduced above and used in this paper stems from the assumption kθ ρ ≈ 1/3 for the

fastest growing poloidal mode number kθ ρ, which is supported by fluid and kinetic microstability

calculations (ρ is the ion Larmor radius). These discharges have been analyzed with respect to

microinstabilities with the gyrokinetic code GS2 [39], using gradients at mid-radius as inputs. The

main result is that the sign of the mode frequency, which indicates the nature (ITG or TEM) of the

dominant instability, is very sensitive to input parameters. This stresses the importance of accurate

profile measurements for meaningful stability calculations. We interpret the sensitivity of the mode

frequency as an indication that the discharges are in a mixed ITG/TEM regime, where thermodiffusion

is expected to be weak, consistently with the absence of an LTe dependence. The behavior of H-

modes is in stark contrast to the L-mode, Fig. 18, with a clear collisionality dependence and no li
dependence, except for νeff < 0.3 [40]. Although a scaling with both li and νeff  [41] is expected

from theory, it is presently not understood why no νeff dependence is observed in L-mode and why

an li dependence is only apparent at low collisionality in H-mode, although it appears to be linked

to the fact that H-modes at medium and high collisionality are clearly in the ITG domain. Once the

νeff dependence is acknowledged, there are no further dependencies on < ne >, nor on PICRH=PAUX,

PNBI=PAUX, LTe, LTi, βN or ρ*.

Figure 18 confirms the collisionality dependence of the density peaking observed on ASDEX

Upgrade [41] and extends it to lower collisionalities. The vertical broken line indicates the

collisionality expected for the ITER reference H-mode. ne0 / < ne > is slightly less (by ≈ 7% ) at νeff

≈ 0.2 in JET than in ASDEX Upgrade when the evaluation of νeff is based on a flat Zeff derived from

visible Bremsstrahlung. However, JET and ASDEX Upgrade results agree when lower and hollow

Zeff profiles measured by charge exchange spectroscopy are used. The agreement between the two

different size devices suggests the possibility of an extrapolation to ITER. Assuming similar

conditions (no significant α particle heating), we expect that the peaking factor on ITER for νeff ≈
0.1 will be ne0/ < ne > ≈ 1.6±0.2, as at JET, corresponding to R=Lne ~_ 4±1.3 at mid-radius. However,

the power density available for electron heating in the core of JET is relatively modest and therefore

not representative of an ignited plasma. Density peaking in ITER is likely to be reduced from the

level observed in JET by the strong α heating, which is expected to drive TEM unstable, producing

an outward thermodiffusive convection [31].

SUMMARY

The SVD-I method combines the high bandwidth of interferometer systems with the spatial accuracy

of Thomson scattering. It uses SVD of temporally sparse local electron density profile measurements

from a Thomson scattering system in the same or equivalent plasmas to determine a set of orthogonal

basis functions which is well adapted to the physical processes under investigation. The sought-for

density profile is expanded into series of a small number of these functions and a solution is calculated
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by using a simple least-square fit method. An SVD analysis of line integrated interferometer

measurements allows the determination of the number of components that are needed to reproduce

the evolution of the density profile in a particular situation. This information is used for optimizing

the number of local basis functions to include in the inversion. We have shown that the SVD-I

method is more accurate and faster than a regularization method for reconstructing density gradients

and hollow profiles. The SVD-I method has been successfully applied to invert interferometric

measurements from TCV plasmas during normal and inverted sawteeth. In the former case, with

Ohmic and low power ECH, the density profiles are consistent with TEP predictions, i.e. the peaking

of the density profiles is directly related to the peaking of the current profiles, irrespective of plasma

shape and average collisionality. Departures from TEP occur with high power ECH and ECCD,

leading to flatter and sometimes hollow (when a m/n = 1/1 island is present) density profiles. The

existence of hollow density profiles proves that the normally inward directed particle pinch can be

reversed under certain circumstances. The observed pinch reversal in the presence of a (m/n = 1/1)

island is consistent with neoclassical predictions of reversed thermodiffusion in the core of a helically

deformed plasma.

The robustness of the SVD-I method, even in the presence of a small number of line-integrated

measurements (down to as few as 5 or 6 chords), allows the inversion of interferometric data from

JET plasmas. We applied the SVD-I method to a set of MHD-free, L-mode discharges previously

analyzed using a three parameter functional fit [38]. All parametric dependencies remain qualitatively

similar between the two methods. In particular, we found that < ne > /ne0 is independent from both

the electron temperature gradient length LTe and the collisionality νeff . Yet, the SVD-I method

provides inverted profiles which are more peaked and reproduce the interferometric raw data more

accurately than functional fit profiles.

Using the SVD-I method, we studied the dependence of the density peaking on the effective

collisionality in H-mode discharges in JET. The main result is that we observed the same collisionality

dependence of density peaking as in ASDEX Upgrade [41] and extended it to a lower collisionality

regime as shown in Fig. 18.
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Figure 2: Nested pixels corresponding to TCV magnetic
flux surfaces as calculated by the equilibrium code
LIUQE. Shown are magnetic flux surfaces corresponding
to ρ = 0.1 ≤ n for n = 1,…, 10. The pixel corresponding
to 0.7 ≤ 1/2 ≤ 0.8 is shown in gray. The electron density
is assumed constant in each pixel.

Figure 1: Far Infrared Interferometer on TCV. (a)
Geometrical arrangement of the 14 laser beams probing
the plasma. Shown as squares are also the 25 scattering
volumes of the TCV Thomson system. (b,c) Two extreme
plasma shapes in TCV.
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Figure 3: Artificial local electron density measurements simulating sawtooth activity in the plasma.
Time evolution of the electron density at different radial positions: (a) on axis, (b) just outside
the inversion radius, (c) electron density profiles at different times indicated by different symbols
in (a). Vertical dashed lines in (b) indicate times used to build the subset of Thomson profiles to
form the basis functions.
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Figure 7: Inverted electron density profiles (solid lines)
using the SVD-I method from artificial line integrated
data. Different levels of noise are added on Thomson
scattering profiles used to calculate the basis functions.
The artificial electron density profiles (dashed lines) are
also shown for comparison.
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Figure 9: SVD analysis of the 14 line integrated
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together with the distribution of the singular values (e).
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Figure 12: Reconstructed electron density profiles using the SVD method during normal and inverted sawteeth.
Times correspond to different symbols in Fig.11. (a,c) Profiles before (circle symbols) and after (triangle symbols) the
sawtooth crash. (b,d) Profiles during the sawtooth ramp (square symbols) are compared with profiles (dashed line)
as measured by the Thomson scattering system at the same times.
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Figure 14.: Time evolution of reconstructed density at
three positions in an ELMy H-mode using 4 topos and 12
chords. Vertical lines indicate ELMs. The density at ρ =
0.9 has been scaled by a factor of 1.6 to avoid overlapping.

Figure 15: Dependence of density profile width on current
profile peaking in sawtoothing Ohmic L-mode discharges
in TCV. Dots: using only Thomson scattering. Triangles:
using SVD-I with 3 topos.
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Figure 17: Dependence of density profile width on internal
inductance in MHD-free LHCD L-mode discharges in
JET. Symbols indicate different classes of effective
collisionality.

Figure 18: Dependence of density profile width on
effective collisionality in ELMy H-mode discharges in
JET. Symbols indicate different classes of internal
inductance. A vertical line is drawn at the effective
collisionality expected for the ITER reference H-mode.


