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ABSTRACT

This paper discusses predictive transport simulations of type I ELMy H-mode with a theory-

motivated ELM model based on linear ballooning and peeling mode stability theory. In the model,

a total mode amplitude is calculated as a sum of the individual mode amplitudes given by two

separate linear differential equations for the ballooning and peeling mode amplitudes. The bal-

looning and peeling mode growth rates are represented by mutually analogous terms, which differ

from zero upon the violation of a critical pressure gradient and an analytical peeling mode stabil-

ity criterion, respectively. The damping of the modes due to non-ideal MHD effects is controlled

by a term driving the mode amplitude towards the level of background fluctuations. Coupled to

JETTO transport simulations, the model qualitatively reproduces the experimental dynamics of

type I ELMy H-mode, including an ELM frequency that increases with the external heating power.

The dynamics of individual ELM cycles is studied. Each ELM is usually triggered by a balloon-

ing mode instability. The ballooning phase of the ELM reduces the pressure gradient enough to

make the plasma peeling unstable, whereby the ELM continues driven by the peeling mode insta-

bility, until the edge current density has been depleted to a stable level. Simulations with current

ramp-up and ramp-down are studied as examples of situations in which pure peeling and pure bal-

looning mode ELMs, respectively, can be obtained. The sensitivity with respect to the ballooning

and peeling mode growth rates is investigated. Some consideration is also given to an alternative

formulation of the model as well as to a pure peeling model.

1. INTRODUCTION

The high confinement mode (H-mode) offers a promising regime of operation for tokamak plas-

mas. H-mode operation is characterized by the formation of an edge transport barrier (ETB), a thin

layer with suppressed anomalous transport just inside the magnetic separatrix, resulting in a steep

edge pressure gradient and improved confinement. The ETB generally features strong periodic

bursts of particles and energy, referred to as edge localized modes (ELMs) [10, 2], which limit the

achievable level of pressure gradient. ELMs have the beneficial effect of transporting impurities

across the pedestal region, thus helping to prevent the plasma from terminating due to impurity

accumulation, but they also have the disadvantage of causing large peak heat loads on the divertor

plates, which can be a serious problem in large tokamaks. ELMs are broadly believed to be con-

trolled by a combination of magnetohydrodynamic (MHD) ballooning mode instabilities driven

mainly by the edge pressure gradient and peeling mode instabilities driven mainly by the edge

current. The most commonly observed type of ELMs, called type I ELMs, have been observed for

a wide range of densities in plasmas with modest and strong external heating. Type I ELMs are the

most violent type of ELM events. They are capable of removing up to 10% of the plasma energy

in a single ELM and are characterized by an ELM frequency that increases with the power flux

across the last closed flux surface.
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Many different approaches have been used in predictive transport modelling of type I ELMy

H-mode. Qualitatively, the main features of type I ELMy H-mode can be reproduced fairly well

even with a very simplead hocmodel, in which the transport coefficients are enhanced uniformly

throughout the ETB to an arbitrary level for an arbitrary duration of time once a pressure gradient

threshold has been exceeded [3, 4, 5]. In such simulations, the ELM amplitude and ELM dura-

tion have simply been chosen so that each individual ELM removes the correct amount of plasma

energy and the critical pressure gradient has typically been set to match the finiten ballooning

stability limit determined by MHD stability analysis. It is usually assumed that the ELMs are

controlled by the pressure gradient, but the influence of current-driven modes can to some extent

be accounted for implicitly by determining the finiten ballooning stability limit in a complete

analysis taking into account the current as well. This crudead hocapproach can to some extent

be refined e.g. by using Gaussian-shaped ELMs consistent with linear theory and by adjusting the

ELM width in accordance with mode widths derived from linear MHD [6]. Apart from in simula-

tions with a stability limit only for ballooning modes, the simplead hocELM modelling scheme

has also recently been used in simulations with stability criteria for both ballooning and peeling

modes [7]. In more sophisticated ELM modelling approaches, the times of ELM onset as well as

the ELM amplitude and ELM duration have been self-consistently calculated from a simple model

of instability. Such modelling has recently been carried out by coupling a transport simulation to a

model for the amplitude of an unstable ballooning mode in a system with a background noise [8].

This paper takes the idea of coupling a simple model of instability to a transport simulation one

step further than previous studies by introducing a theory-motivated instability model with both

ballooning and peeling mode components in the simulations. The modelling scheme can qualita-

tively reproduce the experimental dynamics of type I ELMy H-mode. In particular, the dynamics

of individual ELM cycles is studied in this paper. The behaviour of the model in simulations with

current ramp-up and ramp-down and in various parameter scans is also investigated.

2. THEORY-MOTIVATED ELM MODELS BASED ON BALLOONING AND / OR PEEL-

ING MODE STABILITY

In the predictive transport modelling presented in this paper, a simple theory-motivated model

based on linear ballooning and peeling mode stability theory is used to describe the dynamics

of type I ELM generation. The use of an alternative formulation of the model as well as of a

pure peeling model is also briefly demonstrated. The construction of these models is inspired by

and analogous to the construction of similar models used in previous studies. Specifically, the

construction of the model
dξ

dt
= λ

(
|p′| − |p′c|+ av2

θ − bv′2E
)
ξ (1)

for the amplitude of an unstable ballooning mode used in Ref. [9] serves as a starting point, as

in Ref. [8]. Here,ξ is the mean squared level of normalized MHD velocity fluctuations,t is the
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time and the expression in front ofξ on the right hand side corresponds to the growth rate of

the ballooning instability. The quantityλ is a parameter characterizing the growth rate,p′ is the

pressure gradient andp′c is a critical pressure gradient, above which the instability develops. The

last two terms inside the parenthesis represent corrections due to poloidal rotation and the shear in

the flow ofE×B motion, respectively, both of which modify the stability threshold. In this paper,

the equations used to describe the time evolution of the ballooning and peeling mode amplitudes

have the format of the pure ballooning model

dξ

dt
= Cb

cs√
LpR

(
1− αc

α

)
H

(
1− αc

α

)
ξ − Cd

cs
R

(ξ − ξ0) (2)

previously introduced in Ref. [8] and constructed analogously to Eq. (1). Here,Cb ∼ 1, Cd ∼ 0.1

andξ0 ∼ 0.01 are constants characterizing the growth rate of the ballooning mode instability, the

decay rate of the mode due to non-ideal MHD effects and the level of background fluctuations,

respectively,H is the Heaviside function defined asH(x) = 0, if x < 0 andH(x) = 1, if

x ≥ 0, x being an arbitrary variable,cs =
√
Tele/mion is the sound speed, whereTele is the

electron temperature andmion is the ion mass,Lp = p/p′ is the pressure scale length, wherep is

the pressure,R is the major radius,α = −(2µ0r
2/Bθ)(dp/dψ)/0.64 is the normalized pressure

gradient, wherer is the minor radius,Bθ is the poloidal magnetic field andψ is the poloidal flux

co-ordinate, andαc is the critical normalized pressure gradient.

In the pure ballooning model given by Eq. (2), the stability threshold has been described by a

fixed critical pressure gradient, which can be a reasonable approximation in certain circumstances.

Similarly, one could use a fixed critical current as the stability threshold in a pure peeling model

as a first approximation. However, Ref. [10] proposes a more general localized peeling stability

criterion based on the MHD energy principle. By denoting

J = 1 +
1

πq′

∮
j‖B

R2B3
θ

dl −∆v (3)

Jc =
√

1− 4DM , (4)

the condition for peeling stability can be expressed as

J < Jc. (5)

Here,DM is the Mercier index [11, 12], which is proportional to the pressure gradientp′, q′ is

the gradient of the safety factor,j‖ is the current density parallel to the magnetic field,B is the

magnetic field strength and∆v is a vacuum energy parameter describing the distance from the

external surface to the plasma surface.

Assuming Eq. (5) to be the criterion for peeling stability, the following linear differential equa-

tion for the peeling mode amplitude, completely analogous to Eq. (2) for the ballooning mode

amplitude, has been constructed to describe the dynamics of peeling-driven ELMs:

dξ

dt
= Cpγp

(
1− Jc

J

)
H (J − Jc) ξ − Cd

cs
R

(ξ − ξ0) . (6)
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Here,Cp ∼ 1 is a constant characterizing the growth rate of the peeling mode instability andγp is

the characteristic peeling mode growth rate.

In the construction of Eq. (6) (as well as in the construction of Eq. (2)), the corrections to critical

pressure gradient due to plasma rotation used in Eq. (1) have been omitted for simplicity. Above

the thresholdJc, the mode amplitudeξ increases exponentially. Below the threshold, the growth

rate is zero due to the Heaviside function, which, as in Eq. (2), has been introduced in the model to

account for the fact that there is no damping or growing solution in ideal MHD below the instability

threshold. Introducing the Heaviside function is a simple way to reproduce the transition from an

oscillating solution to a growing solution taking place when the instability threshold is exceeded.

The second term on the right-hand side of Eq. (6) describes the level of background fluctuations

and the decay rate of the mode after an ELM relaxation due to non-ideal MHD effects. It causes

the mode amplitude to tend to converge towards the level of background fluctuations between the

ELMs. The coefficientCdcs/R determines the rate at which the mode is damped after an ELM

crash by e.g. finite viscosity, diffusivity and other non-ideal MHD effects.

In the most complete scenario, in which it is assumed that the ELMs can be driven by either

ballooning modes, peeling modes or combinations of both types of instabilities, Eqs. (2) and

(6) are solved separately for the ballooning and peeling mode amplitudesξb andξp, respectively,

whereupon the individual mode amplitudes are added to give a total mode amplitudeξ:

dξb
dt

= Cbγb

(
1− αc

α

)
H (α− αc) ξb − Cd

cs
R

(ξb − ξ0) (7)

dξp
dt

= Cpγp

(
1− Jc

J

)
H (J − Jc) ξp − Cd

cs
R

(ξp − ξ0) (8)

ξ = ξb + ξp. (9)

Here,γb is the ballooning mode growth rate. In this paper,γb = cs/
√
LpR has generally been used

for the ballooning mode growth rate and, for simplicity,γp = γb for the peeling mode growth rate.

Again,Cb ∼ 1, Cp ∼ 1, Cd ∼ 0.1. The simplificationγp = γb can be used, because the models

defined by Eqs. (6) and (7) – (9) are relatively insensitive to the growth rates, as will be shown in

Sec. 4.4.

Assuming that there is non-linear coupling between the ballooning and peeling modes, Eqs. (7)

– (9) can be replaced with a single differential equation for a combined ballooning and peeling

mode amplitude:

dξ

dt
= Cbγb

(
1− αc

α

)
H (α− αc) ξ

+Cpγp

(
1− Jc

J

)
H (J − Jc) ξ

−Cd
cs
R

(ξ − ξ0) . (10)

In this model, the mode amplitude starts to grow exponentially as soon as either instability thresh-

old is exceeded. The damping mechanism is the same as in the individual Eqs. (7) and (8). As

4



will be discussed in Sec. 4.4, the one-equation ballooning-peeling model given by Eq. (10) almost

always reproduces the same ELM dynamics as the model with separate equations for ballooning

and peeling modes given by Eqs. (7) – (9).

3. JETTO IMPLEMENTATION

The predictive transport simulations presented in this paper have been carried out using the 1.5D

JETTO transport code [13] coupled with the theory-motivated ELM models based on linear bal-

looning and peeling mode stability theory defined in the preceding section. The transport model

used in the JETTO simulations is the so-called JET transport model, a mixed Bohm / gyro-Bohm

model [14]. In the numerical simulations, the ETB is represented by a sudden reduction of all

transport coefficients to a uniform ion neo-classical level in a 3 cm wide region at the edge of the

plasma. For simplicity, the width of the ETB is considered a fixed parameter. The effect of letting

the ETB width vary has been studied in Ref. [15].

The theory-motivated peeling and combined ballooning-peeling ELM models defined by Eqs.

(6), (7) – (9) and (10) have been implemented in JETTO according to the same scheme as Ref. [8]

uses for Eq. (2). At each time step, the plasma parameters calculated by JETTO are used to

evaluate the mode amplitudeξ given by Eqs. (6), (7) – (9) or (10) and the calculated perturbation

amplitude determines the level by which transport is enhanced. More specifically, Gaussian-shaped

perturbations having amplitudes proportional to the calculated perturbation amplitudeξ are added

on top of the radial profiles of the transport coefficients within the ETB and its vicinity. The

additional transport perturbationsδχ representing ELMs can thus be written

δχ(r, t) ∼ ξ(t) exp

[
−

(
r − r0

∆

)2
]
, (11)

wherer0 is the radial location of the centre of the Gaussian and∆ is the characteristic width of the

Gaussian. The use of Gaussian-shaped ELMs is motivated by the fact that the ballooning modes

assumed to drive the ELMs have Gaussian shapes in linear theory.

The fact that the perturbations applied to the transport coefficients scale linearly with the cal-

culated ballooning mode amplitude is consistent with the commonly used quasi-linear approxi-

mation [16]. In the mixing length approximation [16], which corresponds to a strong turbulence

limit, the thermal conductivities and particle diffusivity scale asχ ∼ λ2
wγd ∼ γd/k

2
⊥. Here,λw

is the characteristic wavelength of the turbulence,γd is the decorrelation rate, which scales in the

same way as the growth rate of the instability, andk⊥ is the perpendicular wavenumber. Therefore,

the enhancement of the transport coefficients should arguably scale with the mode amplitude as

something in the range from almost no dependence, consistent with the constant saturated level

of diffusivity in the strong turbulence limit, to the square dependence given by the quasi-linear

approximation. The linear dependence used in this paper lies in between these two extremes and

gives qualitatively the same results as the quadratic dependence. As will be discussed below, the
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ELM amplitudes in the simulations have for technical reasons been limited to pre-defined peak

levels, which also can be thought of as a way to represent a transition to a saturated level of trans-

port.

It turns out that it is difficult to obtain discrete peeling or combined ballooning-peeling ELMs

at reasonably high edge temperatures, because slow current redistribution keeps the edge current

unstable for a long time. At lower temperatures, the current can be dissipated more quickly at the

edge, because the resistivityρr scales with the temperatureT asρr ∼ T−3/2, whereby it becomes

easier to obtain discrete ELMs. One way to make it easier to simulate peeling and combined

ballooning-peeling ELMs at reasonably high edge temperatures is to enhance the neo-classical

resistivity during the ELMs. Such a scheme can be justified as a way to model the dynamoβ

effect [17]. In a few simulations with high edge temperatures discussed later in the paper, neo-

classical resistivity has, therefore, been enhanced during the ELMs in a similar way as the transport

coefficients:

δρr(r, t) ∼ ξ(t) exp

[
−

(
r − r0

∆

)2
]
, (12)

The relative enhancement of the neo-classical resistivity is, however, usually orders of magnitude

smaller than the relative enhancement of the transport coefficients. However, since the enhance-

ment of the transport coefficients is often very large, the resistivity enhancement can also be quite

significant. For instance, the ion and electron thermal conductivity and particle diffusivity are typ-

ically enhanced from an inter-ELM level of0.2 m2s−1 in the ETB to a peak level of5000 m2s−1

during the ELMs. The unperturbed profile of neo-classical resistivity peaks strongly at the sep-

aratrix. More specifically, the neo-classical resistivity usually varies from about5 × 10−18 Ωm

near the top of the ETB to6 × 10−17 Ωm at the separatrix in the simulations described in this

paper. Given the large ELM amplitude, this profile is typically perturbed during the ELMs with a

Gaussian-shaped enhancement with a maximum amplitude of5 × 10−15 Ωm. However, discrete

ELMs of reasonable duration at normal edge temperatures can readily be obtained even with sig-

nificantly smaller resistivity enhancements. The larger level of enhancement in this study has been

used in order to shorten the ELMs and increase their frequency.

Ballooning and peeling modes can be considered global, i.e. spanning the whole ETB rather

than being localized to a specific radius, because of toroidal coupling between the individual har-

monics making up the modes. In order to account for this fact, the right-hand sides of Eqs. (6),

(7) – (8) and (10) are treated as averages over the whole ETB in the JETTO implementation. The

peeling model used in the transport simulations can thus be written

dξ

dt
=

1

N

iseparatrix∑
i = itop of ETB

[
Cpγp,i

(
1− Jc,i

Ji

)
H (Ji − Jc,i) ξ − Cd

cs,i
Ri

(ξ − ξ0)

]
(13)
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and the combined ballooning-peeling models

dξb
dt

=
1

N

iseparatrix∑
i = itop of ETB

[
Cbγb,i

(
1− αc

αi

)
H (αi − αc) ξb − Cd

cs,i
Ri

(ξb − ξ0)

]
(14)

dξp
dt

=
1

N

iseparatrix∑
i = itop of ETB

[
Cpγp,i

(
1− Jc,i

Ji

)
H (Ji − Jc,i) ξp − Cd

cs,i
Ri

(ξp − ξ0)

]
(15)

ξ = ξb + ξp (16)

and

dξ

dt
=

1

N

iseparatrix∑
i = itop of ETB

[
Cbγb,i

(
1− αc

αi

)
H (αi − αc) ξ

+Cpγp,i

(
1− Jc,i

Ji

)
H (Ji − Jc,i) ξ

−Cd
cs,i
Ri

(ξ − ξ0)

]
. (17)

Here, the sums run over all mesh points within the ETB, the indexi refers to the mesh point

number andN is the number of mesh points within the ETB in the JETTO grid. The choice that

the radial extent of the unstable mode usually coincides with the ETB width has been crosschecked

in numerical analysis with the MHD stability code MISHKA [18].

As briefly mentioned above, the components of the total ELM amplitude resulting from the

global ballooning and peeling mode equations have generally individually been limited to5000 m2s−1

in terms of ion thermal conductivity in order to keep the simulations numerically stable. This is

the reason for why the ELM amplitude is the same for each individual ELM in most of the sim-

ulations, as will be apparent later in the paper. Due to the slow redistribution of the current, the

exponentially increasing ELM amplitude would grow very large without the amplitude limit before

a transport relaxation would occur, which JETTO might not be able to cope with. The levels of the

pressure gradient and edge current density immediately before and after the ELMs are unaffected

by the limitation of the ELM amplitude, whereby the effect on ELM frequency is negligible.

For simplicity, the critical normalized pressure gradientαc is radially constant in the simulations

discussed in this paper. Some description of how the most important types of ELMy H-modes are

controlled by various MHD stability limits is given in Ref. [3]. The fixed valueαc = 1.5 used

in the present paper has been chosen so that it fairly well corresponds to the finiten ballooning

stability limit relevant for type I ELMy H-mode.

4. SIMULATION RESULTS

A NUMBER of predictive JETTO transport simulations making use of the ELM modelling schemes

presented in Sec. 3 are discussed in this section. All simulations use the magnetic configuration
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of JET discharge 53298, a typical type I ELMy H-mode discharge. The toroidal magnetic field

is B0 = 2.67 T on the magnetic axis in all the simulations, as in the original discharge, and the

boundary condition for the electron density at the separatrix isnsep = 1× 1019 m−3. The effective

charge isZeff = 2.0. The boundary conditions for the electron and ion temperatures vary and are

stated from case to case. The neutral beam heating power and the total current also vary in some

of the simulations, but areP = 16 MW andI = 2.5 MA, respectively, unless otherwise stated.

In all simulations, the ion and electron thermal conductivities and particle diffusivity are enhanced

during the ELMs with Gaussian-shaped perturbations having a characteristic width of∆ = 6 cm

and being centred at the magnetic surfaceρ = 0.92 slightly inside the top of the ETB. The same

enhancement profiles with comparatively modest amplitudes are used for the neo-classical resis-

tivity in the cases with resistivity enhancement applied during the ELMs. The normalized critical

pressure gradient isαc = 1.5 and the vacuum energy parameter in the peeling stability criterion

∆v = 0.2. All simulations have been run for 0.5 s in L-mode before the transition to H-mode.

4.1. REPRODUCING TYPE I ELMY H-MODE DYNAMICS

The theory-motivated ELM model with separate equations for the ballooning and peeling mode

amplitudes given by Eqs. (7) – (9) is capable of qualitatively reproducing the main features of

type I ELMy H-mode when coupled to a JETTO transport simulation, as described in Sec. 3.

With an appropriate choice of simulation parameters, simulations with the model produce strong

periodic oscillations distinctly resembling type I ELMs with a repetition frequency that increases

with the external heating power. This is illustrated in frames (a) – (c) in Fig. 1, which shows

time traces of the ion thermal conductivity at the magnetic surfaceρ = 0.92 in three predictive

transport simulations with different levels of neutral beam heating power, namely 8 MW, 16 MW

and 24 MW. The plots are qualitatively similar to time traces of theDα signal in type I ELMy

H-mode discharges. As in experiments with type I ELMy H-mode, the ELM frequency slowly

increases with the heating power. In these particular simulations, neo-classical resistivity is not

enhanced during the ELMs. The boundary conditionTsep = 25 eV is used for the ion and electron

temperatures at the separatrix. The feature that the level of enhancement is around7000 m2s−1

in terms of ion thermal conductivity is due to the limits imposed on the ELM amplitude in the

ballooning and peeling mode equations.

Quantitatively, the ELMs in frames (a) – (c) in Fig. 1 are rather strong, as revealed in frame (d),

which shows the thermal energy content of the plasma as a function of time in each of the three

cases. Compared with experiments, the ELM frequency is rather low and each individual ELM

removes a rather large fraction of the plasma energy. This is due to the very slow redistribution of

the edge current, which makes the duration of the peeling unstable phase of the ELM considerably

long. By enhancing neo-classical resistivity during the ELMs, the ELM frequency can be increased

and the energy loss per ELM decreased to a level consistent with experiments, even if higher edge

temperature is used. This is illustrated in frames (e) – (h) in Fig. 1, which show a similar power
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scan with higher edge temperature and enhanced resistivity during the ELMs. Specifically, the

edge temperature isTsep = 100 eV for both electrons and ions and resistivity during the ELMs is

enhanced from an inter-ELM peak value of6× 10−17 Ωm near the separatrix to a maximum level

of 5× 10−15 Ωm.

The simulations produce reasonable pre-ELM plasma profiles in the pedestal region, despite

the fact that the ELMs are rather strong e.g. in cases without resistivity enhancement during the

ELMs. Figure 2 shows the electron density, electron temperature and electron pressure profiles

from the simulations used in frames (b) and (e) in Fig. 1 together with experimental data from

JET discharge 53298, which has been used as a template in the modelling. It should be mentioned

that the external heating power is roughly the same,P = 16 MW in the two chosen simulations

as in the experimental discharge. The plasma profiles from the simulations correspond to times

shortly before an ELM, when the pressure gradient has evolved fully. The experimental data, which

consists of edge and core Lidar (Thompson scattering) data, has been selected to correspond to a

pre-ELM state as well as the existing data sampled at a low frequency permits. It should be noted

that the data for the edge region is associated with a rather large uncertainty. In particular, the

edge Lidar data probably has a rather large artificial radial shift due to the difficulty of determining

location of the separatrix. Taking into account these factors and the fact that the simulations have

not explicitly been intended to reproduce the plasma profiles in any particular pulse, the match

with the chosen JET discharge is acceptable and shows that the calculated profiles are reasonable,

as far as the pedestal region is concerned. The large mismatch of the core profiles can be attributed

to the Bohm / gyro-Bohm transport model used in JETTO. However, it is not of primary interest

to predict the core profiles correctly in this paper, which focuses on ELM models.

4.2. ELM GENERATION MECHANISM

When using the combined ballooning-peeling model for ELMs given by Eqs. (14) – (16) in JETTO,

each individual ELM is normally triggered by a ballooning mode instability, which subsequently

makes the plasma peeling unstable. The ELM set off by a violation of the critical pressure gradient

continues driven by a violation of the peeling stability criterion defined by Eq. (5) for a while

after the pressure gradient has relaxed back to a stable level. The ELMs in Fig. 1 are examples

of such combined ballooning-peeling ELMs. It should be noted that Ref. [7] reports that a single

ballooning-driven ELM can trigger a cluster of peeling-driven ELMs in simulations with anad

hoc ELM model with both ballooning and peeling stability criteria. With the more advanced

model used in this study, the result is more realistic, namely a single strong ELM triggered by a

ballooning mode instability and continuing in a lengthy peeling phase rather than as a cluster of

separate peeling mode ELMs.

Figure 3, which shows the time evolution of some plasma parameters during a typical combined

ballooning-peeling ELM, gives some insight into the dynamics of such an ELM. The plots in the

figure are derived from a simulation with the boundary conditionTsep = 10 eV for the ion and
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electron temperatures at the separatrix. No resistivity enhancement is applied during the ELMs.

Specifically, frame (a) shows the ion thermal conductivity at the magnetic surfaceρ = 0.92 of

maximum ELM amplitude, frame (b) the global ballooning mode growth rate

γB =
1

N

iseparatrix∑
i = itop of ETB

Cbγp,i

(
1− αc

αi

)
H (αi − αc) , (18)

and frame (c) the global peeling mode growth rate

γP =
1

N

iseparatrix∑
i = itop of ETB

Cpγb,i

(
1− Jc,i

Ji

)
H (Ji − Jc,i) . (19)

Frames (d) – (h) show time traces of a number of plasma parameters at six different magnetic

surfaces, namelyρ = 0.94, ρ = 0.95, ρ = 0.96, ρ = 0.97, ρ = 0.98 andρ = 0.99. To be

specific, frame (d) shows time traces of the normalized pressure gradientα, frame (e) of the total

current parallel to the magnetic fieldj‖, frame (f) of the expressionJc in the peeling mode stability

criterion defined by Eq. (5), frame (g) of the expressionJ in the peeling mode stability criterion

and frame (h) of the expressionJ − Jc.

By comparing the time traces of the ion thermal conductivity, the global ballooning mode

growth rate and the global peeling mode growth rate, it becomes clear that the ELM starts as a

ballooning mode instability and continues as a peeling mode instability. It should, however, be

noted that the critical pressure gradient is exceeded and the global ballooning mode growth rate

becomes finite already long before the discrete peak in the growth rate develops. The complete bal-

looning phase is thus lengthy. Not surprisingly, the triggering of the ballooning mode ELM phase

that initiates the combined ballooning-peeling ELM follows exactly the same mechanism as in

simulations with the pure ballooning model defined by Eq. (2). Ref. [8] describes this mechanism

in detail. Very briefly, the onset of a discrete ballooning ELM phase is related to how transport is

perturbed radially during an ELM and to how the edge pressure gradient evolves as a result of this.

In order to obtain a discrete ballooning ELM phase, the Gaussian-shaped transport perturbation

applied during the ELM has to be centred some way inside the separatrix, e.g. atρ = 0.92 as in

many of the simulations in this paper, so that transport during the ELM decreases strongly towards

the separatrix, whereby a strong peak in the pressure gradient builds up near the separatrix as a

result of reduced heat propagation. Such a peak in the pressure gradient, clearly visible in frame

(d) in Fig. 3 seems to be necessary for a discrete ELM to develop.

As shown in frame (d) in Fig. 3, the ballooning component of the ELM eventually becomes

so strong that it starts to deplete the pressure gradient at the edge, wherebyα quickly falls below

the critical level and the ballooning mode fades away. The edge current, however, reacts more

slowly to the onset of the ELM, as shown in frame (e) in Fig. 3. This is a direct consequence of the

general property that the current evolves more slowly than the pressure gradient. Since the Mercier

coefficient scales asDM ∼ p′ and generallyDM < 0, the stability thresholdJc given by Eq. (4)
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decreases in phase withα, as illustrated in frame (f) in Fig. 3. Because the current responds to the

transport enhancement induced by the ballooning phase of the ELM more slowly than the pressure

gradient, the quantityJ given by Eq. (3) remains essentially unchanged during the initial drop in

Jc. Hence, the peeling stability criterion defined by Eq. (5) is violated during the collapse ofα

induced by the ballooning phase of the ELM. This becomes very evident by looking at the time

trace ofJ − Jc in frame (h) in Fig. 3. The expressionJ − Jc exceeds zero when the initial drop in

the pressure gradient occurs. At the onset of the ELM, the plasma is still deeply peeling stable.

Because of the slow redistribution of the current, it takes a relatively long time for the ELM to

reduceJ given by Eq. (3) to a level below the stability thresholdJc. Therefore, the peeling phase

of the discrete ELM peak lasts noticeably longer than the brief large-amplitude phase of ballooning

instability preceding it. The feature that the decay time of the ELM is of the order of or longer

than both the peak ballooning phase and the peeling phase of the ELM is due to the fact that the

damping rate term in Eq. (10) is much smaller than the ballooning and peeling mode growth rate

terms, as determined by the choicesCd � Cb andCd � Cp.

Each ELM cycle follows a characteristic path in the operational space defined by the normal-

ized pressure gradient and the edge current density, as illustrated in Fig. 4. The figure shows a

trace made up of points(α, j‖) at the magnetic surfaceρ = 0.97 sampled over one ELM cycle

lasting 120 ms in the simulation used in Fig. 3. Consecutive points in the trace have an equidistant

temporal separation of1 × 10−4 s. The ballooning unstable region bounded by a vertical line at

α = 1.5 and the approximate location of the peeling unstable region are indicated in the plot.

As expected, Fig. 4 confirms the qualitative results observed when discussing Fig. 3. The ELM

cycle starts with the lengthy build-up of the pressure gradient and the edge current density. Be-

cause the pressure gradient generally evolves faster than the current and because peeling modes

are stabilized by an increase in the pressure gradient, the first stability criterion to be violated is

the ballooning stability limit defined by the critical pressure gradient. Even after the ballooning

stability limit has been exceeded, the pressure gradient continues to increase for some time, which

corresponds to the situation in which an ever stronger peak in the pressure gradient builds up at the

edge due to the reduction of transport towards the separatrix caused by the shape and localization

of the ELM perturbation. The collapse of the pressure gradient is extremely fast, lasting less than

0.2 ms once it starts, as indicated by the large distance between the points in the plot during this

phase. The diagram unambiguously shows that it is the drop in the pressure gradient that makes

the plasma peeling unstable. The collapse of the edge current takes a considerably longer time

than the collapse of the pressure gradient and starts only when the pressure gradient has relaxed

almost fully. It should be noted that the ELM cycle obtained here resembles the cycle for type I

ELMs predicted in Ref. [20].
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4.3. PURE BALLOONING AND PURE PEELING MODE ELMS

For a large range of parameters, the combined ballooning-peeling model given by Eqs. (14) – (16)

generates ELMs with a ballooning mode phase followed by a peeling mode phase. However, in

some situations such as with a low or a high level of current, the model can generate either pure

ballooning or pure peeling mode ELMs, respectively. This is illustrated in Fig. 5, which demon-

strates typical ELM behaviour in situations with current ramp-up and ramp-down, respectively.

Frame (a) shows the total plasma current as a function of time in a simulation with an initial 1.5 s

long phase with a constant current ofI = 2.5 MA followed by a current ramp-up at a rate of

dI/dt = 1.0 MA/s to I = 4.0 MA, frame (b) the ion thermal conductivity at the magnetic surface

ρ = 0.92, frame (c) the global ballooning mode growth rateγB, frame (d) the global peeling mode

growth rateγP and frame (e) the thermal energy content. Frames (f) – (j) show the same quantities

in a simulation with an initial 1.5 s long phase with a constant current ofI = 3.0 MA followed

by a current ramp-down at a rate ofdI/dt = −1.0 MA/s to I = 1.5 MA. In both simulations,

the boundary conditionTsep = 10 eV is used for both the ion and electron temperatures at the

separatrix. Neo-classical resistivity is not enhanced during the ELMs.

The time traces of the global ballooning and peeling mode growth rates indicate that during

the initial phases of constant current each ELM is triggered by a ballooning mode instability and

continues in a peeling unstable phase in both simulations. In the simulation with current ramp-

up, the ELMs, with a few exceptions, change into pure peeling mode ELMs after the start of the

ramp-up. There are two reasons for the immediate transition to pure peeling mode ELMs. Firstly,

the edge current responds very quickly to the ramp-up, bringing the plasma towards the peeling

instability threshold. Secondly, the poloidal magnetic field increases with increasing current. Since

α decreases with increasing poloidal magnetic field, the current ramp-up effectively reduces the

level of α, so that a higher level of (unnormalized) pressure gradient is needed to reachαc. The

ELM frequency during the ramp-up is lower than during the phase of steady current due to the

effect of the poloidal magnetic field onα, which prevents ballooning stability from being violated

at an early stage. The thermal energy content increases during the current ramp-up, because the

(unnormalized) pedestal pressure gradient, contrary toα, evolves to larger values than during the

steady current phase due to the lower ELM frequency. As a result of profile stiffness, the steeper

pedestal pressure gradient translates into larger total energy content. It should be noted that with

higher levels of initial current, pure peeling mode ELMs are obtained already during the phase

with steady current, whereby a ramp-up causes the ELM frequency to increase.

In the simulation with current ramp-down, the ELMs, with a few exceptions, change into pure

ballooning mode ELMs after the start of the ramp-down. The main reason for the transition to

pure ballooning mode ELMs is that the current ramp-down quickly reduces the edge current to

such a low level that the collapse of the pressure gradient due to a ballooning mode ELM is not

enough to make the plasma peeling unstable. In addition, the ELMs tend to occur for lower levels

of edge pressure gradient and edge current density during the ramp-down because of an increase
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in the level ofα due to the decreasing poloidal magnetic field. This together with the features

that the pure ballooning mode ELMs are both shorter and have smaller amplitudes than the com-

bined ballooning-peeling mode ELMs causes the ELM frequency to increase significantly at the

transition to pure ballooning mode ELMs. The thermal energy content decreases during the cur-

rent ramp-down, because the ELMs are triggered for lower values of the pedestal pressure gradient

than during the steady current phase due to both the increased ELM frequency and reduced poloidal

magnetic field.

It should be noted that pure ballooning and peeling mode ELMs can be observed in other sit-

uations as well. Apart from the edge current density, parameters such as the normalized critical

pressure gradientαc, the vacuum energy parameter∆v and the normalization of the growth rates

determined by the constantsCb andCp influence whether combined ballooning-peeling or pure

ballooning or peeling mode ELMs are obtained.

4.4. SENSITIVITY WITH RESPECT TO BALLOONING AND PEELING MODE

GROWTH RATES

An interesting feature of the combined ballooning-peeling model given by Eqs. (14) – (16) is that

the simulation results obtained with it are both qualitatively and quantitatively relatively insensi-

tive to the ballooning and peeling mode growth rates. The sensitivity to the growth rates has been

studied by fixing the characteristic growth rate coefficients atγp = γb = cs/
√
LpR and system-

atically varying the arbitrary constantsCb andCp in the growth rate terms in Eqs. (14) and (15),

respectively. The results of these parameter scans are illustrated in Fig. 6, which shows time traces

of the ion thermal conductivity at the magnetic surfaceρ = 0.92 of maximum ELM amplitude in

a number of simulations with the combined ballooning-peeling model. In the left-hand column of

the figure,Cp = 1.0 andCb varies as follows: (a)Cb = 1.0 × 10−2, (b) Cb = 1.0 × 10−1, (c)

Cb = 1.0, (d) Cb = 1.0 × 102, (e)Cb = 1.0 × 104. In the right-hand column,Cb = 1.0 andCp

varies as follows: (f)Cp = 1.0 × 10−2, (g)Cp = 1.0 × 10−1, (h)Cp = 1.0, (i) Cp = 1.0 × 102,

(j) Cp = 1.0 × 104. Otherwise, the simulation parameters are the same in all ten simulations. In

particular, the boundary conditionTsep = 25 eV is used for the ion and electron temperatures at

the separatrix. Neo-classical resistivity is not enhanced during the ELMs.

The ELM frequency initially increases with increasing ballooning mode growth rate, but then

stabilizes forCb & 1× 10−1. With respect to the peeling mode growth rate the ELM frequency is

equally insensitive in a similar parameter range,Cb & 1× 10−1. ForCb . 1× 10−2, the combined

ballooning-peeling model generates pure ballooning ELMs, whereby the ELM amplitude drops

and the ELM frequency increases dramatically, as visible in frame (j) in Fig. 6. It should be

emphasized that the parameter ranges forCb andCp used in Fig. 6 are very large. Within the

parameter space0.1 ≤ Cb ≤ 10, 0.1 ≤ Cp ≤ 10, for instance, which is of most interest, the ELM

frequency is practically constant. Hence, it is justified to use the same characteristic growth rate

for ballooning and peeling modes in the ELM models presented in Sec. 2.
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4.5. SIMULATIONS WITH A ONE-EQUATION BALLOONING-PEELING MODEL

It turns out that the one-equation ballooning-peeling model given by Eq. (17) almost always repro-

duces the same behaviour as the model with separate equations for ballooning and peeling modes

given by Eqs. (14) – (16). This is shown in Fig. 7, which illustrates the results of parameter scans

with the one-equation ballooning-peeling model given by Eq. (17) completely analogous to those

shown in Fig. 6. Specifically, the parametersCb andCp vary in the same way from frame to frame

in Fig. 7 as in Fig. 6 and the remaining simulation parameters are exactly the same in all simula-

tions in both figures, i.e. as given in Sec. 4.4. Hence, the two figures can be compared directly

and it is evident that both models produce qualitatively the kind of same behaviour. In particular,

both models generate pure ballooning mode ELMs withCb = 1.0 andCp = 1.0 × 10−2. Quan-

titatively, the difference in ELM frequency is small in all ten comparisons of simulations with the

two models. The fact that the model with separate equations for ballooning and peeling modes

gives a slightly larger ELM amplitude than the one-equation ballooning-peeling model is due to

the fact that the ELM amplitudes have been limited separately in each equation to5000 m2s−1 in

terms of ion thermal conductivity in the former case and the combined ballooning-peeling ELM

amplitude to the same value in the latter case. It should be emphasized that the qualitatively and

quantitatively similar behaviour produced by the two models is a general result, which applies not

only in the parameter scans shown in Figs. 6 and 7, but in most situations.

4.6. SIMULATIONS WITH A PEELING STABILITY CRITERION ONLY

The theory-motivated pure peeling model described by Eq. (6) can in a similar way as the combined

ballooning-peeling models produce periodic discrete oscillations qualitatively resembling type I

ELMs when coupled to a transport simulation as described in Sec. 3. The frequency of these

relaxations increases with increasing external heating power, as in experiments with type I ELMs.

Frames (a) – (c) in Fig. 8 show the ELM behaviour in three simulations with different levels of

neutral beam heating power. To be specific, the neutral beam heating power isP = 8 MW in

frame (a),P = 16 MW in frame (b) andP = 24 MW in frame (c). The boundary condition

Tsep = 100 eV is used for the electron and ion temperatures at the separatrix. Neo-classical

resistivity is not enhanced during the ELMs. Since the simulation parameters in this power scan

are exactly the same as in the power scan illustrated in frames (e) – (g) in Fig. 1, the two series

of simulations can be compared directly. Noticeably, the ELM frequency is much lower in the

case of ELMs controlled solely by peeling mode stability than in the case of ELMs controlled by

both ballooning and peeling modes, because in the absence of a ballooning stability criterion, the

plasma continues to evolve until it reaches the peeling stability limit, whereby an ELM occurs. The

pure peeling mode ELMs are longer than the combined ballooning-peeling ELMs, since they start

off at a higher level of edge current than the ELMs triggered by the pressure gradient and it takes a

long time for them to deplete the current to a stable level. Quantitatively, the edge current density
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and edge pressure gradient typically both reach values twice as high as in Fig. 4, but otherwise

the pure peeling ELM cycle resembles the combined ballooning-peeling ELM cycle with a very

fast collapse of the edge pressure gradient followed by a slower depletion of the edge current. In

accordance with the long ELM duration, the drop in thermal energy content resulting from each

ELM is very large, as shown in frame (d) in Fig. 8. By centring the ELM perturbation not in

the vicinity of the top of the ETB, as here, but closer to the separatrix, so that it more effectively

increases transport in the pedestal, the ELM frequency can be increased slightly, but it is still

difficult to quantitatively reproduce experimental ELM frequencies with the pure peeling model.

5. SUMMARY AND DISCUSSION

This paper has presented a theory-motivated model for type I ELMy H-mode based on linear

ballooning and peeling mode stability theory. In the model, a total mode amplitude is calculated as

a sum of the individual mode amplitudes given by two separate linear differential equations for the

ballooning and peeling mode amplitudes, respectively. The ballooning and peeling mode growth

rates are represented by mutually analogous terms in the individual equations. A critical pressure

gradient and a peeling mode stability criterion, respectively, control whether the growth rate terms

differ from zero. The damping of the modes due to non-ideal MHD effects is controlled by a term

tending to drive the mode amplitude back towards the level of background fluctuations. The ELM

model has been coupled to the JETTO transport code in such a way that the calculated total mode

amplitude linearly determines the level of transport enhancement in the pedestal region. In order

to account for the fact that ballooning and peeling modes are global, the differential equations

defining the model are averaged over the whole ETB in the JETTO implementation.

It has been demonstrated that the ELM model qualitatively reproduces the experimental dynam-

ics of type I ELMy H-mode, including an ELM frequency that increases with the external heating

power. The pre-ELM plasma profiles are also reproduced reasonably well, despite the fact that the

ELMs are rather strong in many situations. The typical ELM cycle reproduced by the model has

been examined in close detail. It turns out that the individual ELMs are usually driven by both

ballooning and peeling mode instabilities. Due to the fact that the current generally evolves more

slowly than the pressure gradient, the combined ballooning-peeling mode ELMs are triggered by a

violation of the ballooning stability criterion. The collapse of the pressure gradient induced by the

ballooning phase of the ELM then leads to a violation of the peeling mode stability criterion and

the ELM continues in a generally quite long peeling mode phase until the edge current density has

been depleted to a stable level. It has been shown that alternative ELM cycles with pure peeling

and pure ballooning ELMs can be obtained e.g. in situations with current ramp-up and ramp-down,

respectively. It has also been demonstrated that the behaviour reproduced by the ELM model is

very insensitive with respect to both the ballooning and peeling mode growth rates.

An alternative ELM model with a single linear differential equation for a combined ballooning-
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peeling mode amplitude has also been introduced. It has been shown that simulations with this

model reproduce essentially the same behaviour as modelling with separate equations for the bal-

looning and peeling amplitudes. Similarly, a simplified model with a peeling mode stability cri-

terion only has been explored. It turns out that this model, too, can qualitatively reproduce the

experimental dynamics of type I ELMy H-mode. However, because of the very slow redistribu-

tion of the current, it is difficult to quantitatively reproduce e.g. experimentally observed ELM

frequencies and ELM energy losses with the pure peeling mode model.
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Figure 1: Simulations with the combined ballooning-peeling ELM model with separate equations for the ballooning
and peeling mode amplitudes (Eqs. (14) – (16)). Frames (a) – (c): Ion thermal conductivity as a function of time in
three mutually similar simulations with different levels of neutral beam heating power, (a) P = 8MW, (b) P = 16MW

and (c) P = 24MW. The boundary condition T
sep

 = 25eV is used for the ion and electron temperatures at the
separatrix. Neo-classical resistivity is not enhanced during the ELMs. Frame (d): The thermal energy content of the
plasma as a function of time in the simulations used in frames (a) – (c). Frames (e) – (g): Ion thermal conductivity
as a function of time in another series of simulations with different levels of neutral beam heating power, (e) P =

8MW, (f) P = 16MW and (g) P = 24MW. The boundary condition T
sep

 = 100eV is used for the ion and electron
temperatures at the separatrix and neo-classical resistivity is enhanced during the ELMs. Otherwise, the simulation
parameters are the same as in the simulations used in frames (a) – (c). Frame (h): The thermal energy content of the

plasma as a function of time in the simulations used in frames (e) – (g). 18
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Figure 6: Time traces of ion thermal conductivity at the magnetic surface ρ = 0.92 of maximum ELM amplitude in
simulations with the combined ballooning-peeling ELM model with separate equations for the ballooning and
peeling mode amplitudes (Eqs. (14) – (16)). The scaling factors in the ballooning and peeling mode growth rate
terms have been varied as follows, while the characteristic ballooning and peeling mode growth rates have been
kept fixed at
γ

p
 = γ

b
 = c

s
/√L

p
R:

(a) C
b
 = 1.0 × 10-2, C

p
 = 1.0

(b) C
b
 = 1.0 × 10-1, C

p
 = 1.0

(c) C
b
 = 1.0, C

p
 = 1.0

(d) C
b
 = 1.0 × 102, C

p
 = 1.0

(e) C
b
 = 1.0 × 104, C

p
 = 1.0

(f) C
b
 = 1.0, C

p
 = 1.0 × 10-2

(g) C
b
 = 1.0, C

p
 = 1.0 × 10-1

(h) C
b
 = 1.0, C

p
 = 1.0

(i) C
b
 = 1.0, C

p
 = 1.0 × 102

(j) C
b
 = 1.0, C

p
 = 1.0 × 104.

Otherwise, the simulation parameters are the same in all ten simulations. In particular, the boundary condition T
sep

= 25eV is used for the ion and electron temperatures at the separatrix. Neoclassical resistivity is not enhanced during
the ELMs.
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Figure 7: Time traces of the ion thermal conductivity at the magnetic surface ρ = 0.92 of maximum ELM amplitude
in simulations with the combined ballooning-peeling ELM model with a single equation for a combined ballooning-
peeling mode amplitude (Eq. (17)). The scaling factors in the ballooning and peeling mode growth rate terms have
been varied exactly in the same way as in Fig.6 in frames (a) – (j) and all the other simulation parameters are also

exactly the same as in the simulations in Fig. 6.
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Figure 8: Simulations with the pure peeling mode ELM model (Eq. (13)). Frames (a) – (c): Ion thermal conductivity
as a function of time in three mutually similar simulations with different levels of neutral beam heating power, (a) P
= 8MW, (b) P = 16MW and (c) P = 24MW. The boundary condition T

sep
 = 100eV is used for the ion and electron

temperatures at the separatrix and neo-classical resistivity is not enhanced during the ELMs. Frame (d): The thermal
energy content of the plasma as a function of time in the simulations used in frames (a) – (c).




