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ABSTRACT

The effects of non-resonating hot ions on the spectrum of magnetohydrodynamic(MHD) waves

and instabilities in tokamaks are studied in the limit when the width of the hot ion drift orbits is

much larger than the radial scale length of the MHD perturbations. Due to the large magnetic

drift velocities the hot ions cannot contribute to the MHD perturbations directly, but two main

effects of the hot ions, the hot-ion density-dependent effect and the hot-ion pressure-dependent

effect, influence theMHD perturbations indirectly. The physics of both effects is elucidated and

it is shown that both these effects can be described in MHD approach. A new code, MISHKA-H

(MISHKA including the hot-ion indirect effects) is developed as an extension of the ideal MHD

code MISHKA-D [G. T. A. Huysmans et al., Phys. Plasmas 8, 4292 (2002)]. Analytical

benchmarks for this code are given. Results of the MISHKA-H code on Alfvén spectrum in a

shear-reversed discharges with Ion-Cyclotron Resonance Frequency (ICRF) heating are presented.

Modelling of Alfvén Cascades and their transition into Toroidal Alfvén Eigenmodes in a shear

reversed tokamak equilibrium is considered. The hot-ion effect on the unstable branch of the

MHD spectrum is studied for the test case of an n = 1 ideal MHD internal kink mode, which is

relevant to short-period sawteeth in low-density plasmas observed in Joint European Torus [JET,

P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled

Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol.I, p.11]

experiments with high-power ICRF heating.
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I. INTRODUCTION

A significant population of hot ions with large drift orbits is typical of present-

day tokamak experiments in which high-power Ion-Cyclotron Resonance Frequency

(ICRF) heating is applied in plasmas with low central current1 or in low-density

plasmas.2 New magnetohydrodynamic (MHD) phenomena were revealed in such

regimes, e.g., upward frequency-sweeping phenomena named Alfvén Cascades (ACs)

in discharges with non-monotonic safety factor on Joint European Torus (JET)
3,4

 and

on JT-60U,
5
 and short-period sawteeth on JET.

2

Analytical study and numerical simulations of these phenomena are both

required in assessing their physics. The first step in the analytical study has been

made in Ref. 6, where the JET experiments exhibiting the ACs have been interpreted.

It has been found in Ref. 6 in the drift kinetic approach that non-resonant hot ions

with drift orbit width larger than the width of the MHD perturbation can non-

perturbatively alter the structure of the Alfvén spectrum and give rise to a new type of

Alfvén eigenmodes in a strong shear-reversed equilibrium. These modes are

essentially associated with the minimum value of the safety factor minq  and they

possess all the main properties of the experimentally observed Alfvén Cascades.
3
 An

important pecularity of the hot-ion effect studied in Ref. 6 is the dependence of this

effect on the density gradient of hot ions. Therefore this hot-ion effect can be called

the hot-ion density-dependent effect. The main goal of the present work is the

development of a MHD code for numerical simulations of the large-orbit hot-ion

effects and employment of this code to JET-relevant problems. The other goals are the

understanding of the physics of the phenomena considered and formulating analytical

benchmarks for the numerical simulations.
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In the code development, a modification of the existing MISHKA7,8 code is

performed. The MISHKA-type codes were designed to include not only the standard

MHD effects, such as incorporated, e.g., in the CASTOR code,10 but to accommodate

a variety of effects described in Ref. 9. These effects are the finite ion Larmor radius

effect and the electron and ion drift effects as well as the effects of neoclassical

bootstrap current, neoclassical ion viscosity, and the collisionless skin effect.

However, the effects of hot ions were out of the scope of this initial program on the

MISHKA codes,9 since a general approach to the hot ion effects requires MHD

treatment of specifically kinetic effects such as the wave-particle resonant interaction.

Such kinetic effects are essential, for instance, for the Energetic Particle Modes

(EPMs).11-13 However, in the frame of the standpoint of Ref. 9 the incorporation of the

resonant interaction effect in MHD codes is problematic.

In this connection, a question arises whether the hot-ion effect studied in Ref.

6 can be included into the MHD codes. The mechanism of the hot-ion density-

dependent effect was not considered in Ref. 6 in the MHD approach in order to

answer this question. Meanwhile, the notion of this effect was applied in Ref. 14 to

the theory of magnetic islands, where it was explained that the effect considered is in

fact caused by electrons compensating the equilibrium charge of the hot ions. Due to

their cross-field motion in the electric field of perturbations, these compensating

electrons lead to the drift (convective) contribution into the current continuity

equation, thereby resulting in an electron term proportional to the density gradient of

the hot ions.

Since an incorporation of the hot-ion density-dependent effect in the

MISHKA-type codes means in fact an accomodation of additional terms governing

the electron drift, the effect studied in Ref. 6 can be incorporated into the MISHKA
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codes. Evidently, this effect should be considered as an indirect effect of hot ions, in

contrast to the direct effects of hot ions, the example of which has been considered in

Ref. 11-13.

The mechanism of the hot-ion density-dependent effect is somewhat similar to

that of the Varma-Shukla effect15 studied in the theory of dusty plasma. In such

plasma, charged dust particles have a very large mass and are not involved in

perturbed dynamics, also revealing the cross-field effect of non-compensated

electrons or ions.

In general, the hot-ion density-dependent effect can essentially alter both the

stable and the unstable spectrum of MHD eigenmodes. Meanwhile, for some

equilibria the consequences of this effect are more profound. In particular, in tokamak

equilibria with a strongly reversed magnetic shear, the hot-ion density-dependent

effect leads to the appearance of a new type of Alfvén eigenmodes
6
 which essentially

differ from the Toroidal Alfvén Eigenmodes (TAEs). These new  eigenmodes with

eigenfrequencies outside the TAE-gap frequency and with a single dominant poloidal

harmonics,
6
 are revealed in shear-reversal experiments as the Alfvén Cascades.

3

In addition to the density-dependent effect, an important pressure-dependent

indirect effect of the large-orbit hot ions on MHD perturbations occurs naturally as

the hot ions do contribute in equilibrium diamagnetic current but fail to contribute in

the perturbed pressure of the MHD eigenmodes. It is known that for the MHD

instabilities in the case of vanishingly small ion orbits, a mutual compensation occurs

between the magnetic-well effect caused by the plasma diamagnetism and the

perturbed parallel magnetic field effect caused by the perturbed plasma pressure (see,

e.g., Ref. 16, Chapter 1 of Ref. 17, and Eq. (C.15) of Appendix C). Since the large-

orbit hot ions are not involved in the perturbed dynamics, they can not contribute into
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the last effect and, as a result, these ions lead to a non-compensated additional

contribution into the magnetic well. This contribution is proportional to the pressure

gradient of hot ions. Respectively, this indirect effect can be called the hot-ion

pressure-dependent effect.

The magnetic-well effect is known to be important for MHD instabilities with

characteristic mode growth rates and frequencies much smaller than those of the

Alfvén modes (see, e.g., Chapters 5-15 of Ref. 18 and references therein). Therefore,

the hot-ion density-dependent effect is of interest, first of all, for the problem of the

Alfvén modes, while the hot-ion pressure-dependent effect – for the problem of MHD

instabilities.

In physics terms, the hot-ion pressure dependent effect is similar to the

stabilizing effect of high energy ions on ballooning modes considered in Ref. 19.

According to Ref. 19, this stabilizing effect can give limiting beta values exceeding

the values predicted by the standard theory of ballooning modes (see Ref. 19 for

details).

An important step in the theory of Alfvén eigenmodes in shear-reversal

discharges has been made recently in Ref. 20. The subject of Ref. 20 is an analytic

description of the hot-ion density-dependent effect and its competition with a

toroidicity effect, which can cause a discrete Alfvén eigenmode associated with minq

in a weak shear reversal plasma. The essence of this paper is commented in more

detail below (see Sec. II).

Looking at the above-discussed hot-ion indirect effects with the standpoint of

the program stated in Ref. 9, one can note that the pressure-dependent effect can be

included in the MISHKA-type codes by re-determination of the equilibrium

parameters. On the other hand, the density-dependent effect can be incorporated by
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adding an electron drift term similar to the ion drift terms allowed for in the

MISHKA-D code.8 Therefore, it is possible to include both these effects in the MHD

approach used in the MISHKA codes. We have developed such a code and call it the

MISHKA-H (MISHKA including the hot-ion indirect effects described above).

Section II is addressed to the physics treatment of the large-orbit hot-ion

indirect effects. In Section III a description of the MISHKA-H model and its

numerical method is given. Section IV yields analytical benchmarks for Alfvén

eigenmodes. In Section V numerical results on these eigenmodes (computing the

Alfvén Cascades) are presented. Section VI demonstrates the pressure-dependent

effect in the problem of the Bussac internal kink mode.
18,21

 Conclusions are given in

Section VII.

In addition, the paper contains Appendices A-F. In Appendix A, we collect

equilibrium relations necessary for the physics treatment of the hot ion effects. In

Appendix B, the equilibrium relations necessary for the code development are given.

In Appendix C, we derive the perturbed current continuity equation, which is the basis

for analysis performed in Section II. Appendix D is addressing the derivation of a

single-fluid momentum equation allowing for the hot-ion indirect effects. This

equation is the basis for constructing the MISHKA-H model of Section III. Appendix

E collects relations explaining the single-fluid description of the perturbed quantities

that are necessary for the code. Appendix F is a mathematical supplement to Section I.

II. PHYSICS OF INDIRECT EFFECTS OF HOT IONS WITH LARGE

ORBITS

A.       Current continuity equation.

Following a routine derivation (see Appendix C), we represent the current

continuity equation to the problem in the form
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0
~~ =++⋅∇+∇ ⊥ np

I HHj j . (1)

Here j
~

 is the perturbed parallel current, Ij
~

 is the inertial current, and

[ ]hcp pp
B

c
H 003

0

~
4

∇×∇⋅= b
π

, (2)

hEhn neH 0∇⋅−= V , (3)

and the remaining definitions are given in Appendix C.

The terms pH  and nH  describe the two effects that depend on the pressure

and density gradients of the hot ions, respectively. The density-dependent effect was

studied in the kinetic approach in Ref. 6, while the pressure-dependent effect was

studied in kinetic approach in Ref. 19.

B. Physics of pressure-dependent effect

In order to understand the physics of the effect represented by (2) let us turn to

Appendix C. The first term in the brackets of the right-hand side of Eq. (C11)

describes the magnetic well due to the diamagnetism of the core plasma. When the

hot ions with large orbits are absent, the diamagnetic well is compensated by the

effect of the perturbed parallel magnetic field B
~

. Then, one arrives at the well-

known result (see, e.g., Ref. 16) that no magnetic well appears in the case of the

equilibrium magnetic field with straight field lines. However, since the hot ions

contribute in the diamagnetic effect and do not contribute into B
~

, this non-

compensated effect of the hot ion diamagnetism is causing a magnetic-well effect.

In order to determine the sign of the magnetic-well effect induced by hot ions,

we consider the perturbations in the form ( ) ( )yikxiktixf yx ++− ωexp , where ω  is

the mode frequency, xk  and yk  are the respective projections of the wave vector,
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( )xf  is a slowly varying amplitude, xkdxfd <</ln . For simplicity, we keep only

the inertial term in Eq. (1) and the term with the magnetic well. In this case

E
B

j
~~

2
0

2
0c

iI ωρ
−= , (4)

so that Eq. (1) reduces to

( ) 0
4

~
~ 0

0
0 =−⋅⊥ dx

dp

cB

pk
i hcy

π
ωρ Ek . (5)

Here, ( )yx kk ,=⊥k , iinm 00 =ρ  is the equilibrium mass density, and im  is the core

ion mass. The main contribution in the perturbed plasma pressure cp~  is due to the

cross-field convection, i.e., it is determined by the equation

0/~
0 =∇⋅+∂∂ cEc ptp V , (6)

so that

x

p

B

Ec
ip cy

c ∂
∂

−= 0

0

~
~

ω
. (7)

In addition, we take

φ~~
⊥⊥ −∇=E , (8)

where φ~  is the perturbed electrostatic potential. As a result, we obtain from Eq. (5)

the local dispersion relation

dx

dp

dx

dp

k

k

B
chy 00

2

2

2
00

2

4

1

⊥

=
πρ

ω . (9)

One can see from Eq. (9) that if the hot ion pressure gradient is directed along

the pressure gradient of the core ions,

000 >
dx

dp

dx

dp ch , (10)

the effect of the magnetic well is stabilizing, 02 >ω . In the opposite case, i.e., for
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000 <
dx

dp

dx

dp ch , (11)

this effect is destabilizing, i.e., one obtains a magnetic hill in this case.

In order to estimate when the hot-ion magnetic well becomes important, one

can compare the estimate for the mode frequency Eq. (9) with the characteristic

frequency of the flute instability in tokamaks (see, e.g., Section 9 of Ref. [22]):

dx

dp

R

r

k

k
cy 0

2
00

0
2

2
2

ρ
ω

⊥

≅ . (12)

Here 0r  is the radial coordinate labelling the magnetic surface at which the mode is

localized, and 0R  is the major radius of the torus. Comparing Eq. (9) and Eq. (12) we

conclude that the hot ion effect on the magnetic well should be taken into account in

addition to the standard magnetic well, if

( )2
00 / Rr nh κβ ≥ . (13)

This estimate was made for the flute-type modes with high poloidal m  and toroidal n

mode numbers, ( ) 1, >>nm . In the case of the 1≅≅ nm  kink mode (the Bussac mode)

it should be modified (see Section VI).

C. Physics of density-dependent effect

One can see from Eq. (3), that the density-dependent effect is related to the

cross-field motion of electrons that compensate the electric charge of the hot ions.

Even though this charge is relatively small, the electron cross-field motion can be

essentially stronger than the inertial motion of the core ions. Using Eqs. (4) and  (8),

we estimate

φ
ωρ ~~ 2

2
0

2
0

⊥⊥⊥ ≅∇ k
B

c
j , (14)
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while according to Eq. (3),

φ~
0

0

B

ck

x

n
eH yh

hn ∂
∂

≅ , (15)

so that the density-dependent effect is comparable to the inertial effect for

2
0

0

1

⊥∂
∂

≅
k

k

x

n

ne

e yh

ci

h

Biω
ω

, (16)

where ( )cmBe iiBi /0=ω  is the core ion cyclotron frequency. This condition holds for

Alfvén eigenmodes studied in Ref. 6.

D. Relative role of pressure-dependent and density-dependent

effects

Using Eqs. (2), (7), (8), and (15), we obtain

( )
ω

ωτ
β pi

h

i
h

n

p

n

n

H

H ∗+
⋅≅

1

0

0 , (17)

where

( ) dxpdBecTk iiiypi /ln/ 000=∗ω  (18)

is the diamagnetic drift frequency of core ions, and ie TT 00 /=τ  is the ratio of electron

and core ion temperatures. It follows from Eq. (17) that high-frequency modes,

pi∗>>ωω , similar to those studied in Ref. 6, are not affected by the effect of the hot

ion pressure gradient. On the other hand, low-frequency modes, pi∗≅ ωω , are

significantly affected by the pressure gradient of the hot ions if

��� QQ ��≥β . (19)

Condition (19) implies that the hot ions are super-Alfvénic, ( ) 2/1/ ihATh mmVV ≥ ,

where ThV  is the characteristic velocity of the hot ions.
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E. Concept of “finite-frequency” magnetic well

Below we analyse the density-dependent effect on Alfvén eigenmodes

representing the stable part of the MHD spectrum (waves), and the hot-ion pressure-

dependent effect on the Bussac mode,
21

 which is an example of the unstable MHD

mode. It appears to be important to study both the Alfvén eigenmodes and the MHD

instabilities under a simultaneous influence of the both hot-ion effects. The pressure-

dependent effect on the Alfvén eigenmodes can be essential when the

eigenfrequencies of these modes are not too high due to a small value of the effective

parallel wave number mink . On the other hand, if one investigates not only the

thresholds of MHD instabilities but their growth rates, γ , as well, then the density-

dependent effect proportional to the mode frequency γω i=  can be essential. A

somewhat similar evaluation of “frequency-dependent” effects on MHD instabilities

has been recently presented in Ref. 23 where the plasma compressibility effect on the

growth rates of the instabilities was studied.

In the theory of MHD instabilities, all the effects causing an appearance of a

discrete spectrum of unstable eigenmodes can be associated with a magnetic well of

“zero-ω ”, since the eigenmodes considered at the threshold have vanishingly small

frequencies. In this context, the frequency-dependent effects leading to the appearance

of eigenmodes with finite ω  in both the Alfvén Cascade theory and in the theory of

MHD instabilities can be called “ω -dependent magnetic well”. The sum of both the

“ω -dependent magnetic well” and the “zero-ω  magnetic well” naturally lead us to a

concept of a “finite-frequency magnetic well”.

In the scope of such concept, it is important to delineate the parts of the “ω -

dependent magnetic well” due to the hot ions and due to the core plasma. Calculations
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of both parts of the “ω -dependent magnetic well” were presented in Ref. 20. The

results of Ref. 20 are described in Subsection IV D.

III. THE MISHKA-H MODEL

A. General comments on the MISHKA codes

The codes of the MISHKA series
7-9

 are a continuation of the CASTOR code

(see Ref. [10] and references therein). A key feature of the CASTOR code is to use

the vector potential of the perturbed electromagnetic field. The main difference

between the MISHKA series and the CASTOR code lies in the use of optimized

variables characterizing the vector potential and the plasma velocity, and in an

optimized form of linearized MHD equations. The optimized variables used in Ref.

[7] are the “radial” (across the equilibrium magnetic surfaces) and the “parallel”

(along the equilibrium magnetic field 0B ) projections of the vector potential A  and

the perturbed plasma velocity V  and the radial components of the vector products of

A  and V  with 0B  called conventionally the “binormal” projections (see in detail

Appendix E). The essence of the optimization of the MHD equations is the use of,

firstly, the radial and parallel projections of the vector plasma motion equation as well

as the vector product of this equation with the field 0B , and secondly, the similar

projections of the vector Ohm’s law. In making the choice of the optimized variables,

and in optimizing the projections of the vector equations one should also allow for the

difference between the contravariant and covariant projections. Such optimization

allows one, on the one hand, to eliminate  the number of variables and equations in

analyzing reduced problems, such as the ideal MHD modes
7
 and their stabilization by

the i∗ω - effect,
8
 and on the other hand, to augment the standard MHD equations by

relatively simple terms describing the non-MHD effects.
9



14

The CASTOR code10 allows for resistivity and compressibility. It deals with 7

variables: three components of plasma velocity, three components of the vector

potential, and the perturbed plasma pressure. Formally, the CASTOR code includes

the 8th variable as well, the perturbed plasma density, but the simultaneous

considering of both the perturbed pressure and density is insignificant in practice if

one neglects the thermal conductivity. In contrast to the CASTOR code, the

MISHKA-17 is designed for the analysis of the ideal MHD modes in an

incompressible plasma, and it solves a set of four equations for four variables: two

components of the vector potential, both the radial and binormal projections. Such a

simplification is a result of that, within the scope of this code, the parallel projection

of the vector potential is excluded due to a vanishing parallel resistivity, the parallel

plasma velocity is “thrown away” due to neglecting the compressibility, while the

perturbed plasma pressure is expressed in terms of the binormal projections of the

vector potential. At the same time, in the development of the MISHKA-1 code, an

additional simplifying circumstance has been used. The matter is that, due to the

vanishing perpendicular resistivity, the velocity is algebraically expressed in terms of

the vector-potential, being the product of this potential and the mode growth rate, and

in addition, the left-hand side of each projection of motion equation is the product of

the velocity and the growth rate, while the right-hand side is a linear functional of the

vector potential. Therefore, the four equations for four variables, each containing the

first degree of the growth rate, are reduced to two equations for two variables (two

velocity projections) containing the squared growth rate (see in detail Ref. [7]).

The starting equations of the MISHKA-D code,
8
 which allow for the i∗ω -

effect are similar to those of MISHKA-1. There are four equations for four variables:

radial and binormal components of both the vector potential and the perturbed fluid
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velocity. However, the right-hand sides of the motion equation of MISHKA-D

contain in contrast to MISHKA-1 both the vector potential and velocity, and  the set

of four equations cannot be reduced to two equations as in MISHKA-1. Therefore,

studying the i∗ω - effect, MISHKA-D uses four equations for four variables.

B. MISHKA-H model

According to Appendix E, the MISHKA-H model is described by the four

vatiables �$ , 2Â , 1~
V , and 2V̂  interrelated by the equations

2
1 V̂A =λ , (20)

1
2

~ˆ VA −=λ . (21)

)(1)0(11 hRRL += , (22)

)(2)0(22 hRRL += . (23)

Here







+≡ 2121

110
1 ˆ~

V
fq

g
VgL λρ , (24)







+≡ 2221
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2 ˆ~

V
fq
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VgL λρ , (25)
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The values 1α̂  and 2α̂  are introduced as follows:

( ) ( )[ ]21
2

23
0

32
01

~~~~4
ˆ BNBMJ

sqR

F
BjBjJ

c
+−−=

∂
∂πα (28)

( )[ ]+ +






 +F

qR
q J LB MB

2
1 2∂

∂ϑ
∂
∂φ

~ ~
,

( )[ ]21
2

13
02

~~~4
ˆ BNBMJ

R

F
BJj

c
++=

∂φ
∂πα . (29)

The coefficients L, M, N, and G are defined by

L g J= 11 / , M g J= 12 / , N g J= 22 / , G g J F fq= =33 / / , (30)

where ��� 5TI  and  )  are given by Eqs. (B4)-(B6), ikg  with (i,  k)= (1, 2, 3) are

the metric tensor components.

The values )(1 hR  and )(2 hR  describing the hot-ion density-dependent effect are

given by

2
00

2

2
0

2
2)(1 ˆ4ˆˆ A

s

p

s

p

F

R

s

p
A

s
Vn

c

e
R hch

h
hh

∂
∂

∂
∂

+






∂
∂

∂
∂+= π , (31)

s

pA
Vfqn

c

e
R h

h
hh

∂
∂

∂
∂+−= 021)(2

ˆ~
ϑ

. (32)

The functions 1~
B , 2~

B , and 3~
B  in Eqs. (28) and (29) are the contravariant

projections of the perturbed magnetic field B
~

. They are expressed in terms of 1A  and

2Â  by Eqs. (E5)-(E7) for 0ˆ
3 =A .

C. Description of numerical method

We make Eq. (E.11) dimensionless as follows:

[ ] HcHHHc
i pEp

n

pA ρρττλρ ∇+×++−∇=





















 ′
∇×+ ~~~ˆ~

0
0

02
02

0
0 BVHB

B
V , (33)

by normalizing the space coordinate, the magnetic field, the density, the pressure, and

the velocity:
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0R

R
R =∗ , 

0B

B
B =∗ , 

0ρ
ρρ =∗ , 

2
0

4

B

p
p

π=∗ , 
AV

V
V =∗ , 

0R

tV
t A=∗ , 

0ρ
ρρ h

H = ,  (34)

where 0R , 0B , 0ρ  and AV  are the major radius, magnetic field, density, and Alfvén

velocity at the position of the magnetic axis. The thermal ion drift effect is governed

by the dimensionless parameter ( )0/ RV BiA ωτ = , while the hot-ion density-dependent

effect is governed by the dimensionless cyclotron frequency and energy of the hot

ions:

ABhH τωτ ≡ , (35)

( )2
AhhH VmTE ≡ . (36)

 In the numerical scheme, the variables 1X , 2X , 3X , and 4X  are introduced instead

of 1~
V , 2V̂ , 1A , and 2Â :

,
~1

1 VfqX =  2
2 V̂iX = , ,13 iAX =  24 ÂfqX = . (37)

These four unknown functions are Fourier expanded in both the toroidal and poloidal

angle; their structure in the radial coordinate s is described in Hermite finite elements

H s( ) , i.e., the same discretization as used in the CASTOR code10 is employed:

),()(
1

sHXeeeX
m

N

m
imint ∑ ∑

+∞

−∞= =

=
ν

νν
ϑφλ  (38)

where X  is any function from the four functions above. Following the approach

described in Ref. 7, the weak form is constructed by multiplying the Eqs. (22) and

(23) by (
~

)V 1 ∗  and ( )fqV ∗)ˆ( 2  correspondingly and integrating over the volume

d Jdsd dτ ϑ φ= , where the star denotes the complex conjugate. The resulting

equations are then solved in their weak form.10 Since the equilibrium does not depend

on the toroidal angle, the φ  - integration can be done trivially. The weak forms of

Eqs. (22) and (23) are obtained then as follows:
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,111
hMMN +=λ (39)

hMMN 222 +=λ . (40)

Here, 1N , 2N , 1M , and 2M  are given in Refs. 7 and 8. The weak forms hM1  and

hM 2  describing the hot-ion effects are defined by

( ) ( ) ( )[ ] ϑdsdAXXAXXAXXM hhhh ∫ ′′++= ∗∗∗ 4,14,12,1 4141211 , (41)

( ) ϑGVG$;;0 ��

������ ∫ ∗= . (42)

The matrix elements corresponding to the hot-ion effects, are

( ) ( )
F

R
iAA HH

hh
2

1,22,1 ρτ−== , (43)

( )
ds

d

ds

dp

fqF

ER

F

R

sds

d

fq

E
A HcHHHh ρρ 0

2

22

4,1 +





∂
∂−= , (44)

( )
ds

d

fqF

ER
A HHh ρ2

4,1 −=′ , (45)

( )
Ffq

ER

ds

d
mA HHh

2

4,2
ρ−= . (46)

In order to generate weak forms of Eqs. (20) and (21), we represent these equations in

the form

23 XX =λ , (47)

14 XX −=λ . (48)

By multiplying Eqs. (43) and (44) by ∗
3X , and ∗

4X , respectively, and integrating the

results over ( )φϑ ,,s  we obtain

33 MN =λ , (49)

44 MN =λ . (50)
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The expressions for 3N , 4N , 3M , and 4M  are given in Ref. 8. Let us correct a

misprint in the expression for 4M  in Ref. 8: it should be written ( ) 11,4 =A  instead of

Eq. (A13e) of Ref. 8.

IV. ANALYTICAL BENCHMARKS FOR ALFVEN EIGENMODES

GOVERNED BY HOT-ION DENSITY-DEPENDENT EFFECT

A.       Starting mode equation

Using Eq. (8), one reduces Eq. (3) for the density-dependent effect to

[ ]h
h

h n
ce

H 002
0

~ ∇×∇⋅−= φB
B

. (51)

In neglecting the pressure-dependent effect, �+  given by Eq. (51), Eq. (1) takes the

form

[ ] 0
~~~

002
0

=∇×∇⋅−⋅∇+∇ ⊥ h
hI n
ce

j φB
B

j . (52)

In addition, we neglect the core ion drift effect. According to Eq. (C9), in this case the

inertial current 
�Ma  is given by







∂
∂×=

t

cI V
B

B
j 02

0

0~ ρ
, (53)

with 9  determined by the right-hand side of Eq. (C8).

We take the time-space dependence of φa  in the form

( ) ( )rinimti φϕϑωφ −+−exp~
~

, (54)

where m  and n  are the poloidal and toroidal mode numbers, respectively.

B. Large-aspect ratio tokamak

Using Eqs. (53) and (54), by the standard approach presented in Sections 7.1

and 29.1 of Ref. 18, Eq. (52) reduces to (compare with Ref. 6)
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0
4 0
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||2
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−

∂
∂ φωπφωφω

r

n

r

m

cB

e
k

Vr

m

r
k

Vr
hh

AA

, (55)

where ��N  is the parallel wave vector given by

( ) 







−= n

rq

m

R
k

0
||

1
. (56)

According to Refs. 1, 2, and 6, the problem of Alfvén Cascades (ACs) is

relevant when the q-profile has a minimum ���TT =  at the point �UU = , so that in

vicinity of this point

( ) ( ) ���
�

	��� � TUUTUT ′′−
+= , (57)

where ( ) 

��

�� ��GUTGT =≡′′  is positive, ���� >′′T . Allowing for Eq. (56), for such a q-

profile, the function 
�
��N  is given by Eq. (6) of Ref. 6, i.e., by

( ) 








 ′′
−= 2

minmin||0

min
2

02
min||

2
|| 1 x

qkmR

qr
krk , (58)

where







−= n

q

m

R
k

min0
min||

1
, (59)

( ) �� UUUP[ −= . (60)

Using Eq. (58), one has

( )Sx
q

q

mR

kr
k

VA

+
′′

=− 2

min

min

0

min||
2

02
||2

2ω
, (61)

where

min
2

0

min||min0

2

22

qr

kqmR
S

A

A

′′
−

=
ω

ωω
, (62)

�� 9N �����=ω . (63)
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Allowing for Eqs. (60) and (61), Eq. (55) reduces to

( ) ( ) ����

=−−+





∂
∂+

∂
∂ φφ [64[6[[ (64)

where

r

n

kqrcB

qRe
Q hh

∂
∂

′′
= 0

min||min00

min04 ωπ
. (65)

The mode equation (64) is in correspondence with Eq. (7) of Ref. 6. The

difference in the signs of Q  given by Eq. (65) and by similar equation of Ref. 6 is

explained by the ( )ϕϑ , - dependence of φa  in the form ( )ϕϑ inim −exp  [see Eq. (54)],

in contrast to ( )ϑϕ imin −exp  taken in Ref. 6.

C. Analyzing the mode equation

We are interested in localized solutions of Eq. (64). Such solutions are

possible only if

�>4 . (66)

At the same time, in order to eliminate strong continuum damping, we consider the

localized solutions to be acceptable only if

�>6 . (67)

Turning to Eq. (62) and allowing for Eq. (59), one can see that, for a positive

P , �>P , the condition given by Eq. (67) is satisfied for

( ) ( ) 0min
22 >−− nqmAωω . (68)

Thus, the acceptable solutions are “super-Alfvénic”,

��
�ωω > , (69)

for

���QTP > (70)

or



22

������ >N . (71)

In the contrary case, when

���QTP < (72)

or

������ <N , (73)

the acceptable solutions are of “sub-Alfvénic” type,

��
�ωω < . (74)

Turning to Eq. (65) and allowing for �� <∂∂ UQ �  in Eq. (66), one finds that the super-

Alfvénic modes should have a negative frequency ω ,

�<ω , (75)

while the frequency of the sub-Alfvénic modes should be positive,

�>ω . (76)

Thus, the numerical code should predict both the super-Alfvénic and the sub-

Alfvénic eigenmodes. Both types of eigenmodes can be excited with an external

antenna technique. However, modes which can be excited by high-energy ions with a

monotonic density profile are selected by the sign of the diamagnetic drift frequency

of the hot ions, �∗ω ,

r

nV

r

m h

h

Th
h ∂

∂
Ω

≈∗
0

2

0

lnω , (77)

where ( )cmBe hhh 0≡Ω  is cyclotron frequency of the hot ions, and hm  is the mass of

the hot ion. A mode can be excited by the hot ions only if its frequency is of the same

sign as that of the diamagnetic drift frequency, �>∗ �ωω . Since, according to Eq.

(77), the value of �∗ω  is negative, we conclude that only the super-Alfvenic modes

are relevant to the ACs.
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The mode equation (64) has the same mathematical structure as that

describing the Suydam modes of a finite growth rate considered in Section 5.1 of Ref.

18 and references given therein. Therefore, one can use the approach of Ref. 18 in

analyzing Eq. (64).

The possibility of the existence of localized solutions of Eq. (64) is determined

by behaviour of the function φ  in the most remote region of x where the terms with S

are not important. For this region Eq. (64) reduces to

( ) �
��

=−+






∂
∂

∂
∂ [4[[[

φ
. (78)

The condition for localized solutions is (see also Ref. 6)

��>4 . (79)

Under the condition (79) the function φ  is given by

( )[.[ �αφ
���a − , (80)

where α�. is the Bessel function of second kind with an imaginary argument,

( )
���

��−= 4α , (81)

Substituting Eq. (65) into Eq. (79) and using Eq. (63), one finds that the

threshold density gradient of the hot ions, 	
�� UQ ∂∂ � , is given by

pihcrit

h c

e

e

q

q

R

r

r

n

n ωmin

min

0

00

0 4

11 ′′
=

∂
∂

. (82)

Here ( ) 2/1

0
24 iipi mneπω =  is the core ion plasma frequency.

For small deviations from the threshold value of the hot-ion density gradient,

i.e., for

��� <<−4 , (83)
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the eigenvalue S can be found analytically in the following way. In addition to the

remote region, one should solve Eq. (64) in a region of sufficiently small x

neglecting the small terms with x2 and S in the second bracket of the left-hand side.

Then Eq. (64) reduces to

( ) ��

=+





∂
∂+

∂
∂ φφ 4[6[[ . (84)

Solutions of Eq. (84) are presented in Appendix F. These solutions should be

asymptotically matched with the solutions determined by Eq. (80). As a result of such

matching, one obtains

( ) 








−
−=

2/1
2

41

2
exp

Q
xS A

π
, (85)

where

( ) =+−= 2/exp24 πCxA 43.2, (86)

and ≈C 0.577 is the Euler constant. Substituting S  from Eq. (62) into Eq. (85), one

finds an explicit expression for the mode frequency

( ) min||min0

min
2

0
2/1

2
2

22

41

2
exp

kqmR

qr

Q
xA

A

A ′′









−
−=

− π
ω

ωω
. (87)

According to Eq. (85), the eigenvalue S increases with increasing Q. However, for

�≥4  the above-presented approach to analyzing the mode equation (64) is invalid.

Then one can follow an alternative approach valid for the limiting case �>>4 . In this

case it is convenient, instead of φ , to use the function Φ  given by
6

( ) φ
����[6 +=Φ . (88)

Then Eq. (64) is transformed to
6

( ) ��

�

=Φ+
∂

Φ∂ [I[ , (89)
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where

( ) ( ) ���� −
+

−
+

=
[6
6

[6
4[I . (90)

The function f(x) has an extremum at the point �=[ , and this function is given by the

following equation in the vicinity of this point:

( ) �

� [6
4

6
64[I −−= . (91)

Then Eq. (89) reduces to the equation for the linear oscillator,

�
�

��

�

=Φ




 −−+

∂
Φ∂ [6

4
6
64

[ . (92)

The solution to this equation is

( ) ( ) �����������H[Sa �

=−Φ OZ+Z �  , (93)

where lH  are the Hermite polynomials, and

������ 6[4Z = . (94)

The eigenvalues are given by
6

( ) ����� 4O46 +−= . (95)

For not too large l, �	
�4O << , Eq. (95) reduces approximately to

46 ≈ . (96)

Turning to Eq. (64), one can see that this result corresponds to the local

approximation for �UU = .

It follows from Eqs. (96), (62), and (65) that in this case the frequency of the

eigenmodes is defined by

�

=−− �� ωωωω , (97)

where
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r

n

nm

r

m

m h
h

i

h
h ∂

∂
Ω= 0

0

0 1ω . (98)

Equation (97) is similar to the local dispersion relation for the drift-Alfvén

waves (see, e.g., Eq. (3.44) of Ref. 21), in which, instead of hω , one has pi∗ω  given

by Eq. (18). In order of magnitude

c

h

hi

ch

iypi

h

n

n

Le

Le

k 0

0
22

1

ρω
ω

≅
∗

, (99)

where iρ  is the ion Larmor radius of core ions, cL  and hL  are the characteristic scale

lengths of the gradients of the core ion pressure and hot ions, respectively. It follows

then that one can neglect the pi∗ω -effect if the hot ion density is high enough

ch

ni
iy

c

h

Le

Le
k

n

n 22

0

0 ρ> . (100)

For smaller values of ch nn 00 /  the pi∗ω -effect should be included in the analysis

presented above.

D. The role of core plasma toroidicity on Alfvén Cascades

According to Ref. 20, the Alfvén Cascade existence is determined by the

potential well, effQ , which is the sum of the effect of the hot ions, hotQ , and the

toroidal geometry effect, torQ :

torhoteff QQQ += . (101)

Here hotQ  is the same as the parameter Q  given by Eq. (65) while the torQ  is due to

the core plasma alone determined by

( )
( )
( )2

min

00

min
2

0

3
min

min
2

2
0

2

4/1

2

/12 nqmqr

q

mnqV

R
Q

A
tor −−

∆′+
′′−

=
εεω

, (102)

where 000 / Rr=ε  and 0∆  is the Shafranov shift.
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For not too high plasma pressure and small shear one can estimate 4/00 ε=∆′

[see, e.g., Eq. (2.52) of Ref. 18]. Then one obtains

( ) 



 −−

Ω
= 2

min
min

2
00

00

4

11

3

4
nqm

m

m

qmn

n

L

r

Q

Q

i

hh

c

h

htor

hot

εω
. (103)

For typical JET experimental parameters: 310/ ≅Ω ωh , 1
0 10−≅ε , minnqm = , 3=n ,

1/0 ≅hLr , 3
00 10/ −≅ch nn , we arrive at the estimate

( ) 



 −−⋅≅ 2

min2
min 4

11
20 nqm

qQ

Q

tor

hot . (104)

This estimate shows that in typical experimental conditions with high-power ICRF-

heating the core plasma contribution into effQ  is small. However, it is important to

note that the toroidicity effect alone can also cause Alfvén Cascade eigenmode in

equilibrium with weakly-reversed shear (for a small q ′′  value).

V. COMPUTING ALFVÉN CASCADES WITH THE MISHKA-H CODE

A. Alfvén Cascades in the presence of hot-ions

We test the hot-ion effect on Alfvén Cascades in a low-shear large-aspect

ratio, =0/ Ra 0.1, equilibrium first. In such equilibrium, the potential well due to the

toroidicity torQ  is very small as compared to the well determined by the hot ion

density gradient, hotQ , for a moderate hot ion pressure. Therefore, the general

condition of the mode existence given by Eq. (79) reduces to

4/1>≈+= hothottor QQQQ , and it is determined by the hot ion density gradient

alone, with hotQ  given by Eq. (65).

Figure 1 shows the 3=n  Alfvén continuum for the equilibrium used in this

test case, with ≈minq 1.92, ( ) ≈= min
22 / rrdsqd 1.105, ≈0min / Rr 0.0523, and

( ) ≈=∆′ minrr 0.013. The MISHKA-H code was used then for a spectral analysis and a



28

discrete eigenmode, the Alfvén Cascade with n=3, m=6, was found to exist with an

eigenfrequency above the Alfvén continuum with mode structure as shown in Fig. 2.

By varying hotn  it was found that the eigenmode exists only at ≈> crit
hothot nn 2.5⋅ 10

-3
,

with the eigenmode width shrinking at the threshold as shown in Fig. 2. The

corresponding values of hotQ  are given in the caption of Figure 2, with the threshold

value found is in agreement with the analytical estimate hotQ  = 0.25.

In order to investigate the transition from Alfvén Cascades to Toroidal Alfvén

Eigenmodes, a family of equilibria with the same profile of the current density, but

with different minq  was generated. Figure 3 shows the computed evolution of two

branches of the ACs, one with positive and the other with negative frequency, during

a minq  decrease from 1.92 to 1.82. Formation of TAEs consisting of two dominant

harmonics is observed similar to [20]. Evolution of the corresponding frequencies of

the eigenmodes in Figure 3 is shown in Figure 4 (cf. Ref. [20]).

B. Alfvén Cascades in a low-shear finite-aspect ratio tokamak

In a finite-aspect ratio tokamak, =0/ Ra 0.3, the potential well due to the

toroidicity torQ  can cause the existence of an AC eigenmode even without the hot ion

density gradient, hotQ =0, provided the value of minq ′′  is small enough to satisfy Eq.

(79). In order to test the condition of the Alfvén Cascade existence due to the

toroidicity effect alone, we assume the hot ion density to be zero and consider the

condition [cf. (79)]

4/1>=+= torhottoreff QQQQ , (105)

determined by toroidicity effect alone.

A low-shear finite-aspect ratio equilibrium with ≈minq 1.89,

( ) ≈= min
22 / rrdsqd 0.47, ≈0min / Rr 0.1, and ( ) ≈=∆′ minrr 0.044 was tested with the
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MISHKA-H code for hotQ =0. For the equilibrium parameters above, the value of torQ

exceeds the threshold, ≈torQ 0.4 > 0.25. The Alfvén continuum structure as a function

of minor radius is shown in Figure 5. For hotQ =0, we transit in fact to a version of the

MISHKA-D code
8
 with the i∗ω -effect neglected. An Alfvén Cascade associated with

minq  can be easily found in such equilibrium, with an example n =1, =m 2 AC shown

in Figure 6.

C. Alfvén Cascades in current hole discharges

Equilibria with zero density of the toroidal current in the near-axis plasma

region are typical for the JET low-inductive current discharges with internal transport

barriers. Alfvén Cascades in such plasmas are almost always seen clearly in such

discharges and they allow diagnostics of the evolution of minq  in such plasmas. Figure

7 shows plasma equilibrium with the current hole reconstructed with the motional

Stark effect measurements in a typical JET discharge of this type, with ≥)0(q 35 and

≈minq 1.8. Figure 8 shows the structure of the Alfvén continuum computed with the

CSCAS code for such equilibrium. The MISHKA-H code was applied then and an

Alfvén Cascade with n =2 was obtained shown in Fig. 8.

The MISHKA-H code was applied then and an Alfvén Cascade with n =2 was

obtained shown in Fig. 9. In contrast to the low-shear equilibrium described above,

the AC mode does not consist of a single poloidal harmonic anymore, but it is

strongly coupled to higher harmonics close to the current hole region.
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VI. ANALYTICAL BENCHMARKS AND NUMERICAL RESULTS ON

THE PRESSURE-DEPENDENT EFFECT

A. Analytical benchmarks

By analogy with Sections 5.1 and 13.3 of Ref.18, using Eq. (C10), one can

show that in allowing for the hot-ion pressure-dependent effect the growth rate of the

Bussac mode is given by

Hλλ = . (106)

Here λ  is the mode dimensionless growth rate and the parameter Hλ  is equal to

)()( h
H

c
HH λλλ += , (107)

where

( ) 
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r βκλ , (108)
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H ∂
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−= ∫ 00
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2
0

)(
04πκλ , (109)

( ) ( )0
2

0
2ˆ rBrS

B

ϑ

πκ = , (110)

where Ŝ  is the magnetic shear and 0r  is the mode resonant point satisfying the

condition ( ) 10 =rq . It is assumed that in the region 0rr <  the magnetic shear is small

and the core plasma pressure and the toroidal plasma current have parabolic radial

distributions.

B. Numerical results

In order to assess the effect of hot ions on the unstable part of MHD spectrum,

the MISHKA-H code is applied for calculating the stability limit of the internal kink

mode.21 A toroidal equilibrium with circular cross-section and ε = 010.  is analyzed.

The pressure profile is chosen of the form
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p p= −0 1( ),ψ (111)

and the flux surface averaged current density

j j= −0 1( )ψ , (112)

where ψ ψ ψ= / edge  is the normalized poloidal flux. The kink mode was computed up

to a hot ion pressure comparable to the thermal plasma pressure. The eigenmode

structure consists of the principal 1=m  poloidal harmonic and two satellites 0=m

and 2=m  as shown in Figure 10. In Fig.11 the growth rates of the kink mode are

displayed as functions of the hot ion pressure for the hot ion pressure profile

( )ψ1.0100 ±= hh pp , (113)

for different values of the square of β β ψp p≡ ( )1 , where β ψp ( )1 is defined as

follows (compare with Refs. 18 and 21):

( ) ( )
β

ψ ψ

ψp
p

p dA dA p

B
=

−∫ ∫
2

1

2
1

( ) / ( )

( )
, (114)

where dA Jdsd= ϑ , ψ ψ= 1  is the flux where q( )ψ = 1 and Bp ( )ψ 1 is the flux

averaged poloidal magnetic field. As shown in Fig.11, the linear dependence of λ  as

β p
2  allows extrapolation to the marginal stability λ = 0 , but the value of the critical

( )
critp

2β  depends on the hot ion pressure. For the hot ion profile given by Eq. (113),

we obtain a reduction in the growth rates and the corresponding increase in ( )
critp

2β .

For an inverted hot ion profile, which could occur in experiments with off-axis ICRF-

heating, i.e. for

( )ψ1.0100 += hh pp , (115)

the hot ion effect becomes destabilizing as shown in Fig.11.



32

VII. CONCLUSIONS

One can see that the analytical and numerical approaches to describing the

linear MHD spectrum in this paper meet at a “cross-road” of several trends in fusion-

oriented plasma physics. First, we deal with the extended, or “generalized” MHD

which includes, in addition to the effects described by the standard single-fluid MHD,

the core-ion drift effect (the i∗ω -effect) and the indirect density-dependent and

pressure-dependent effects of hot ions. Second, our term “spectrum” implies all the

varieties of eigenmodes including Alfvén eigenmodes representing the stable part of

the spectrum, and numerous MHD instabilities in the unstable part of the MHD

spectrum. Analytical and numerical approaches are coupled with each other, so that

the analytical results are used as benchmarks for performing the numerical

simulations, while the numerical simulations revealing some unexpected details of a

physics phenomenon, help to a further development of a more perfected analytical

approach to analyzing this phenomenon.

In the scope of this paper we have limited our studies by two specified cases

only: the Alfvén Cascades, and the Bussac internal =n 1 kink mode.

It was explained in the Introduction that the Alfvén Cascades have an

important role in the JET experiments on internal transport barriers in reversed-shear

equilibrium. Though initially the generation of Alfvén waves by hot ions was

perceived as a harmful phenomenon leading to a worsening of the hot ion energy

transfer to the core plasma, this type of phenomena recently attracted attention as

plasma diagnostics. In particular, the Alfvén Cascades became an important tool for

the MHD spectroscopy of the reversed-shear discharges.
1,3,4

 In the scope of the MHD

spectroscopy based on the Alfvén Cascades, the determination of the temporal

evolution of )(min tq  from the clustering of different toroidal mode number ACs in
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time was performed.1,4 Moreover, a close correlation between the integer minq  values,

the so-called ITB triggering events and the Alfvén grand-cascades (when ACs of all

n ’s are excited simultaneously) was experimentally established on JET
3
 and is widely

used for obtaining ITBs in shear-reversed discharges.

Preceding numerical simulations of the Alfvén Cascades made with the

CASTOR
24

, NOVA
25

 and TASK/WM
26

 codes were performed neglecting the hot-ion

contribution into the Alfvén spectrum. In terms of the parameter effQ  given by Eq.

(101) this means that the term hotQ  given by Eq. (65) was neglected compared with

the term torQ  given by Eq. (102). This relation is valid for the case of alpha-particles

in Ref. [25], but not for experimental conditions with ICRH-accelerated hot ions,

where the opposite relation holds [see the estimate given by Eq. (104)]. Though the

modes were found to exist in Refs.[24-26], these were due to the weakly non-

monotonic ( )rq -profiles considered in these papers. However, for a broader family of

equilibria with larger values of negative magnetic shear, the hot ion contribution is

crucial for the mode formation as the cross-field motion of electrons compensating the

equilibrium charge of the hot ions, the hotQ  term, is essentially stronger than the core

plasma inertia leading to the torQ  term (see in detail Section II).

The Bussac mode, the 1=n  internal kink mode, has been long recognized as a

linear trigger for sawtooth oscillations.
27

 The new type of short-period sawteeth,

which were observed in JET low-density discharges
2
 with high-power ICRF heating

and with corehot ββ ≅  could not be interpreted in a perturbative approach with small

orbit width.
28

 The accomodation of the indirect pressure-dependent effect in the

MISHKA-H code seems to be a relevant approach for understanding the physics of

the short-period sawteeth in the future.
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The MISHKA-H code was tested as follows. The threshold character of the

appearance of the computed Alfvén Cascades shown in Fig.3 is in correspondence

with the benchmark given by Eqs. (65) and (66). The results of numerical simulations

of the Bussac mode presented in Figs. 9 and 10 are in agreement with the benchmarks

given by Eqs. (106)-(110).

A part of our numerical simulations has been performed in neglecting the hot-

ion effects corresponding to the scope of the MISHKA-D code,
8
 see Figs. 4 and 5.

These simulations, on the one hand, support the analytic theory of the Alfvén

Cascades caused by the toroidicity effect due to the core plasma alone,
20

 and on the

other hand, can be considered as an additional test for the code developed.

For the real JET discharges with low inductive current and with internal

transport barrier, the equilibrium with zero-density toroidal current in the central

plasma region became recently important.
29

 Computing the zero-current equilibrium

and studying both the Alfvén continuum and the Alfvén Cascades in such equilibrium

require a high level of accuracy and consistency between the equilibrium and MHD-

spectrum codes involved. The capability of the MISHKA-H code to handle this type

of equilibrium and to compute the Alfvén Cascades observed experimentally was

demonstrated in Figs. 7 and 8.

In summary, the MISHKA-H code seems to be an effective numerical tool for

a routine analysis of the MHD spectrum in tokamak discharges with large-orbit hot

ions generated at the ICRF heating of plasma. This code could be also generalized to

the case of finite-orbit hot ions most relevant to the fusion discharges with α -

particles.
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APPENDIX A: EQUILIBRIUM RELATIONS FOR THE PHYSICS

TREATMENT OF THE INDIRECT EFFECTS OF THE HOT IONS

The equilibrium pressure of the core (thermal) plasma and of the hot ions are

assumed to be isotropic and described by scalar functions cp0  and hp0 , which only

depend on a radial coordinate labeling the equilibrium magnetic flux surfaces.

Evidently, such an assumption is a model for the hot ions.

Both the thermal plasma and the hot ions contribute to equilibrium plasma

pressure 0p  and the equilibrium electric current density 0j  as follows:

hc ppp 000 += , (A1)

hc 000 jjj += , (A2)

where c0j  and h0j  are currents of the core plasma and of the hot ions,

correspondingly. We assume for simplicity that the current of the hot ions h0j  has
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only a component perpendicular to the equilibrium magnetic field 0B , so that h0j  and

hp0  are related through

[ ]hh p
c

002
0

0 ∇×= B
B

j . (A3)

Taking the equilibrium current in the form of Eq. (A2), we thereby take into

account the hot ion contribution into the inhomogeneity of the equilibrium magnetic

field since

( )hcc 000

4
jjB +=×∇ π

. (A4)

According to the equilibrium equation,

[ ]000

1
0 Bj ×+−∇=

c
p , (A5)

and Eq. (A3), the part of the perpendicular thermal plasma current ⊥c0j  is given by

[ ]cc p
c

002
0

0 ∇×=⊥ B
B

j . (A6)

It follows from Eqs. (A3), (A4), and (A6) that for the simplest case of a slab

geometry with 0B  directed along z - axis and the equilibrium gradients directed along

x - axis of the Cartesian coordinate system ( )zyx ,, , the plasma pressure balance

leads to

( )phhpccB κβκβκ +−=
2

1
. (A7)

Here dxBdB /ln 0≡κ , dxpd cpc /ln 0≡κ , dxpd hph /ln 0≡κ  are the inverse

characteristic scales of the inhomogeneity of equilibrium magnetic field, core plasma

pressure and hot ion pressure, respectively, and 2
00 /8 Bp cc πβ = , 2

00 /8 Bp hh πβ = . The

dependence of Bκ  on phκ  is an essential point of the present paper.
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The equilibrium number density of the hot ions, hn0 , is assumed to be much

smaller than that of the core ions, in0 , so that the ratio ih nn 00 /  is small. At first sight,

one could neglect this small parameter. However, as shown in Section II, under

certain conditions the small ratio ih nn 00 /  is amplified by a large ratio between the

cross-field effect related to plasma perturbations and the perpendicular inertia effect,

so that the resulting effect of ih nn 00 /  can be essential. Therefore, we take the

quasineutrality condition allowing for hn0 :

0000 =++ hhiiee nenene , (A8)

where ,, ie ee  and he are the electric charges of the core plasma electrons, thermal

ions and hot ions, respectively, en0  is the equilibrium number density of electrons.

APPENDIX B: EQUILIBRIUM RELATIONS USED IN THE MISHKA-H CODE

We use the coordinate system s, ,ϑ φ  related to the magnetic surfaces with

straight magnetic field lines similar to Ref. 7:

01
0 =B , (B1)

)(/ 2
0

3
0 sqBB = , (B2)

where ( ) ���

� ����V ψψ=  is the radial coordinate marking the magnetic surfaces, ϑ  is

the poloidal coordinate, φ  is the toroidal angle, B i
0  ( )[ ]�����=L  are the contravariant

components of the equilibrium magnetic field B0, and q is the safety factor. This

coordinate system is specified by representing the magnetic field in the form

B 0 = ∇ × ∇ + ∇φ ψ φF , (B3)

where ψ ψ= =( ), ( )s F F s are the functions characterizing the poloidal and toroidal

magnetic fluxes, correspondingly. According to Eq. (B3),



38

B F03 = , (B4)

JfB /2
0 = , (B5)

where B03  is the φ  - covariant component of B0, f d ds≡ ψ / , and J is the Jacobian

of the coordinate system.

In accordance with the choice of the toroidal angle φ ,

2332
33 /1, RgRg == , (B6)

where R is the radial coordinate in the cylindrical coordinate system 33),,,( gZR φ

and g 33 are the corresponding components of the metric tensor gik  of the coordinate

system ( , , )s ϑ φ and of the inverse metric tensor g ik . According to Eqs. (B4)-(B6)

B g B F R0
3 33

03
2= = / . (B7)

Using Eqs. (B3), (B5), and (B7), we find the expressions for J and B0
2 :

J fqR F= 2 / , (B8)

B F qR0
2 2= / . (B9)

The radial dependence of the function F  is determined by the Grad-Shafranov

equation averaged over the poloidal oscillations of the equilibrium magnetic field.

This equation can be found in Refs. 7 and 9.

APPENDIX C: DERIVATION OF CURRENT CONTINUITY EQUATION

We express the pressure, number density, velocity, and the current of electrons

and thermal ions as sums of their equilibrium and perturbed quantities (denoting the

equilibrium parts by the subscript zero and the perturbations by tilde): ααα ppp ~
0 += ,

ααα nnn ~
0 += , ααα VVV

~
0 += ; ααα jjj

~
0 +=  ( )ie,=α , and introduce similar

notations for the magnetic and electric field, BBB
~

0 += , EE
~= . The perturbed

densities of core ions and electrons are described by the continuity equations:
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( ) 0
~~/~

00 =+⋅∇+∂∂ ααααα VV nntn , (C1)

where ( )LH�=α .

It is assumed that the orbit width of the hot ions is infinitely large and that the

orbit time is much shorter than the perturbation time scale (see in detail Ref. 6). Under

these assumptions, the electric field of the perturbation acting on a hot ion is averaged

along the large orbit of the hot ion and is negligibly small, 0
~ →E . Thus, the hot

ions are not involved in the perturbed motion, and the quasineutrality condition for the

perturbations takes the form [cf. Eq. (A8)]:

0~~ =+ iiee nene . (C2)

Similarly, the total perturbed electric current j
~

 is given by

∑
=

=
ie,

~

α
αjj , (C3)

where

( )αααααα VVj
~~~

00 nne += . (C4)

By combining the continuity equations (C1) for electrons and for the core ions, one

obtains

( ) 0
~~~ =+⋅∇+∇ ⊥⊥⊥ iej jj , (C5)

where e⊥j
~

 and i⊥j
~

 are the perpendicular (with respect to 0B ) perturbed electric

currents of electrons and core ions, j
~

 is the parallel perturbed electric current.

In order to find the contribution of e⊥j
~

 into Eq. (C5), we use the equation for

the electron motion,

[ ]




 ×++−∇= BVE eeee c

nep
1

0 , (C6)

from which we obtain by linearizing and by neglecting the magnetic field curvature
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[ ] [ ] 


 ∇×∇+∇×∇−∇⋅=∇ ⊥⊥ BpBp
c

ne eeeEee

~~~~
002

0

0
0 B

b
Vj , (C7)

where 000 / BBb ≡ , Bb
~~

0 ⋅=B ,

2
00 /]

~
[ BBEV ×= cE  (C8)

is the cross-field velocity due to the MHD perturbation with a perturbed electric field

E
~

.

In order to find the contribution of i⊥j
~

 into Eq. (C5), we use the equation for

the core ion motion,

[ ] Λ⋅∇−




 ×++−∇= πρ t

BVE
V

iiii
i

c
nep

dt

d 1
, (C9)

where Λπt  is the gyroviscosity tensor,9 ∇⋅+∂∂= itdtd V// , and ρ  is the plasma

mass density. One obtains then

        [ ] [ ] 


 ∇×∇+∇×∇−∇⋅+⋅∇=∇ ⊥⊥⊥ BpBp
c

ne iiiEi
I

i

~~~~~
002

0

0
0 B

b
Vjj , (C10)

where Ij
~

 is the inertial part of the perpendicular current with the gyroviscosity

included.

Substituting Eqs. (C7) and (C10) into Eq. (C5), we obtain the current

continuity equation given by Eq. (1), where

[ ] [ ] 


 ∇×∇+∇×∇−= BpBp
c

H ccp

~~
002

0

0

B

b
, (C11)

( )iieeEn neneH 00 +∇⋅= V , (C12)

and cp~  is the perturbed pressure of core plasma given by

iec ppp ~~~ += . (C13)

Since the hot ions do not take part in the perturbed motion, one has
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ppc
~~ = , (C14)

where p~  is the total perturbed plasma pressure. The perturbed plasma pressure is

related to B
~

 through the perturbed pressure balance equation:

0~
4

~
0

=











+∇ cp

BB

π
, (C15)

so that

0/~4
~

BpB cπ−= . (C16)

Using Eqs. (A7) and (C16), we reduce Eq. (C11) to Eq. (2) while Eqs. (A8) and (C12)

give Eq. (3)

APPENDIX D: DERIVATION OF SINGLE-FLUID MOMENTUM EQUATION

We sum Eqs. (C6) and (C9) and obtain

( ) ( )[ ] ( )EBjj
V ~1

iieecieie
i nene

c
pp

dt

d
++×+++−∇=⋅∇+ Λπρ t

. (D1)

Using Eq. (C8) we express the perpendicular electric field ⊥E
~

 in terms of EV :

[ ]BVE ×−= Ec

~1~
. (D2)

The time dependence of the perturbed values is taken in the form ( )tλexp , so that

ωλ i−= .

In linear approximation, one has:9

( )[ ]iE
i

i
E

i p
e

cm

dt

d
002

0
0

~ ∇⋅∇×+→⋅∇+ Λ VB
B

V
V λρπρ t

. (D3)

Besides, allowing for Eqs.(A8) and (D2), one has in the linear approximation

( ) [ ]0
0 ~

BVE ×→+ E
hh

eeii c

ne
nene . (D4)

Similarly, in accordance with the discussion in Appendix C,
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( )[ ] [ ] [ ]BjBjBjj
~~

00 ×+×→×+ cie . (D5)

Allowing for Eqs. (A2) and (A3), we express

[ ] [ ] hc pB
B

c
0

0
00

~~~
⊥∇−×=× BjBj , (D6)

and use Eq. (C16) in order to reduce Eq. (D1) to

[ ] [ ]000

~1~1~~
BjBjV ×+×+−∇=

cc
pcEλρ

    ( )[ ] [ ]002
0

002
0

~~4~
BV

B
VB

B
×+∇+∇⋅×− h

h
h

c
iE

i

i n
c

e
p

p
p

e

cm π
. (D7)

Without the two last terms in the right-hand side, Eq. (D7) coincides with the

single-fluid momentum equation of Ref. 8. On the other hand, applying the operator

∇⋅0b  to Eq. (D7) and neglecting the curvature effects, one arrives at Eq. (1) with

pH  and nH  given by Eqs. (2) and (3). This shows that the single-fluid momentum

equation (D7) allows for both the pressure-dependent and density-dependent effects.

APPENDIX E: SINGLE-FLUID DESCRIPTION OF PERTURBED

QUANTITIES

We express the magnetic and electric fields of the MHD perturbations in terms

of the perturbed vector-potential A :

AB ×∇=~
, (E1)

c/
~

AE λ−= , (E2)

which is characterized by the covariant components �� �� $$ and �$ . The perturbed

fluid velocity vector V is characterized by the contravariant components �� ��

99 and

�

9 . Introducing “optimized” variables similar to Ref. 7, i.e.,

[ ] 2
0

1
02 /ˆ BBA ×≡A , 003 /ˆ BAA ≡⋅≡ BA , (E3)
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[ ]10
2ˆ BV ×≡V , 0

2
00

3 //ˆ BVV ≡⋅≡ BBV , (E4)

we relate the perturbed magnetic field components 21 ~
,

~
BB , and 3~

B  to 21
ˆ, AA , and

3Â  by (cf. Ref. 7)

=







∂
∂

−
∂
∂

=
φϑ

231 1~ AA

J
B 














−+





+− 32

22
2

ˆˆ1
A

qR

g
FAqf

J ∂φ
∂

∂ϑ
∂

∂φ
∂

∂ϑ
∂

 (E5)

( )







∂
∂+

∂
∂

= 2
12 ˆ1~

Af
s

A

J
B

φ
, (E6)

( ) 





∂
∂

−
∂
∂=

ϑ
1

2
3 ˆ1~ A

Afq
sJ

B , (E7)

while the perturbed velocity components are

~
V 2  = 

F

qR

2

2
0
2B 





− 1

2
12

2 ~ˆ
V

qR

g

f

V
+ 

2

3ˆ

qR

VF
, (E8)

~
V 3  =

2
0

4

2

BqR

F−  





+ 1

12
222 ~ˆ VgV

fq

g
+ 

2

3ˆ

R

VF
. (E9)

We obtain from Eqs. (D2) and (E2) the first two equations of our model, Eqs. (20)

and (21). In order to obtain the two remaining equations of our model, we use the

Maxwell equation

c/
~

4
~

jB π=×∇ , (E10)

and represent the linearized equation of perturbed motion (D7) in the form:

[ ] h
c

h
h

c
i

E p
B

p
n

c

e
p

n

pAc
02

0
0

0

02
02

0
0

~4~
4

~ˆ~ ∇+×++−∇=





















 ′
∇×+

π
π

λρ BV
H

B
B

V , (E11)

where

( ) ( )BBBBH
~~

00 ×∇×−××∇= . (E12)
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We only consider projections of Eq. (E11) perpendicular to the equilibrium magnetic

field, which are important for our problem. These s, ϑ - covariant projections of the

resulting equation lead to Eqs. (22) and (23) .

APPENDIX F: SOLUTIONS OF EQ. (84) AND THEIR MATCHING TO

SOLUTION (80)

The even and odd solutions to Eq. (84) ±φ  are







−+−+ S

xii
F

2

;
2

1
;

24

1
,

24

1
~

ααφ , (F1)

,;
4

3
;

24

3
,

24

3
~

2







−+−− S

xii
xF

ααφ (F2)

where )  is the hypergeometrical function.  Matching the asymptotic of the solution

(80) for �<<[  with the asymptotic of solutions (F1) and (F2) for 
���

6[ >>  leads to

dispersion relations for the even and odd modes, respectively, of the form (see in

detail Section 5.1 of Ref. 18)

( ) 












−+=







4

1
1221

4
ψψα

α

i
S

i

, (F3)

( ) 












−+=







4

3
1221

4
ψψα

α

i
S

i

, (F4)

where ( ) ( ) ( )ttt ΓΓ′=ψ  is the psi-function. It hence follows that the eigenvalues

±= SS  of the even and odd modes are given by (cf. Eqs. (5.36) and (5.37) of Ref. 20)






 +−−=+ π

α
π &O6 ��H[S��

, (F5)






 −−−=− π

α
π &O6 ��H[S��

, (F6)

where ���������=O .
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FIG.1. Structure of the Alfvén continuum spectrum | ωA (s)| for n = 3 in the test
case with non-monotonic q(r) -profile, qmin  =1.92.

FIG.2. MISHKA-H: Computed Eigenmodes of Alfvén Cascades associated
with maximum of | wA (s)| (left, positive w) and with minimum of | wA (s)|
(right, negative w),  for Qhot =0.25 (threshold), Qhot =0.4 and Qhot =1.
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FIG.3. MISHKA-H: evolution of Alfvén Cascades associated with maximum
of | wA (s)|  (left, positive w) and with minimum of | wA (s)| (right, negative
w), at qmin  decreasing from 1.92 to 1.82. Qhot =0.7.
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Cascades shown in Fig.3 at qmin  decreasing from 1.92 to 1.82.
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FIG.5. Structure of the Alfvén continuum spectrum |ωA (s)| for n=1 in the
test case with non-monotonic q(r) -profile and Qtor  ≈0.4. qmin =1.89.
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FIG.10. Eigenmode of the Bussac internal n=1 kink in the presence of large orbit hot
ions with bhot = bthermal .
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