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ABSTRACT.

This paper analyses the properties of a critical gradient transport model based on a few assumptions:

electrostatic gyroBohm scaling law, existence of an instability threshold, and finite background

transport below the threshold. This model is characterised by only 3 scalar parameters. A quantitative

criterion of stiffness is proposed, which provides a mean for a quantitative assessment and inter-

machine comparison. It is also shown that this transport model is compatible with a two term

scaling law of global confinement, as proposed recently by the ITPA-CDBM Group (International

Tokamak Physics Activity - Confinement Data Base and Modelling Topical Group). This model

has also been applied to analyse a variety of experiments using mostly electron heat modulation on

JET, ASDEX-Upgrade and FTU. The thresholds are found to be in the expected domain for micro-

instabilities in tokamaks. The stiffness factor is found to cover a broad range of variation. One

possible cause is the ratio of electron to ion temperature, which is found to exhibit a correlation

with the stiffness factor.

1. INTRODUCTION

The question of profile stiffness in tokamak plasmas has been debated for years [1,2,3,4,5,6,7]. Up

to know, and in spite of a wealth of results, this debate did not lead to a clear conclusion. This

suggests that some conditions have to be fulfilled to observe stiff profiles. Also a new element was

introduced in the discussion, which comes from a recent result of the Confinement Data Base and

Modelling (CDBM) Topical Group in the frame of the International Tokamak Physics Activity

(ITPA). It was found that the confinement time is fairly well described by a two term scaling law

that separates the contributions of the bulk and pedestal in H-mode plasmas [8]. These two

contributions exhibit different parametric dependences, whereas an assumption of strong stiffness

would lead to similar scaling laws.

Part of the contradiction comes from some ambiguity in the definition of stiffness. Stiff profiles

are commonly defined as marginally stable profiles, i.e. profiles whose gradients are very close to

the instability threshold everywhere. However, a less stringent characterisation is to define a number
χs, the stiffness factor, which quantifies the ratio between the diffusivity and the difference between

the temperature gradient and its critical value κc, with an appropriate normalisation. Strong stiffness

corresponds to a large value of χs. It is also often forgotten that the diffusivity stays finite below the

instability threshold. This property is obviously true for ions since the diffusivity cannot be lower

than the neoclassical value, which is not negligible. The neoclassical diffusivity of electrons is very

small. However it is plausible that a finite turbulent diffusivity exists below the threshold, for

instance due to some residual small scale turbulence or to turbulence propagation. Assuming an

electrostatic gyroBohm scaling law, one is led to a transport model that is characterised by 3 numbers:

a threshold κc, a stiffness factor χs and a background diffusivity χ0.

There exist already many transport models that involve an instability threshold. One may quote

RLW [9], Weiland [10], IFS-PPPL [11], GLF23 [12], Multi-Mode (MMM) [13] and OHE [14]
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models. The concept of diffusivity with two contributions, a large and a small one, also underlies

the mixed Bohm-gyroBohm model [15]. Stiffness is usually assessed by predicting profiles using

one or several models and comparing them with measurements. This has been done extensively

during the recent years [4,7,16,17]. Another strategy was proposed recently [18,19,20]. It consists

in identifying the reduced set of parameters that characterise the simplified transport model described

above. This identification was made possible by analysing experiments where the heating source is

modulated. Both steady and modulated profiles provide some information in this case. In particular,

the threshold can be determined with accuracy by using the change of slope that is observed on the

radial profiles of amplitude and phase of modulated temperature. The drawback is obviously that

this simplified model does not cover all the physics known from first principle turbulence simulations.

However, it offers many advantages. First, an interpretative analysis can be done in an efficient

way, i.e. the parameters of this model can be directly identified from experimental results, and

compared in different plasma conditions or machines. Second, this transport model has analytical

(or semi-analytical) solutions so that some exact results can be obtained and tested. In particular,

quantitative conditions for getting stiff profiles can be derived. Finally, it provides an easy access to

the scaling law of global confinement. The latter property is used here to clarify the compatibility

with a two-term global scaling law.

The paper is organised as follows. The transport model is described in section II. Conditions for

stiffness are given in section III, while the global confinement time is assessed in section IV. Finally

a comparison with experimental results based on existing modulation experiments and on the ITPA-

CDBM two-term scaling law is done in section V. A summary and conclusion follow.

2. A MINIMAL TRANSPORT MODEL

The aim of this section is to derive a simple transport model that preserves some basic properties of

turbulent transport. The main hypothesis is a turbulent transport characterised by an electrostatic

gyroBohm scaling law, switched on above a threshold -R∂rT/T = κc [21]. Here r is a label of flux

surface with a dimension of length. The assumption of gyroBohm scaling relies on several recent

turbulence simulations in the limit of small values of ρ* [22,23,24,25]. However, one has to bear in

mind that a substantial departure from gyroBohm scaling is found when the diamagnetic E×B

velocity shear rate is large [22,24] or when turbulence spreading takes place [25]. Below the threshold,

the diffusivity is finite and is produced by collisions for ions, or by some background of turbulence

for electrons. To simplify the calculation, the scaling law of this background diffusivity is supposed

to be also gyroBohm (this means that the dependence on temperature is wrong when the background

diffusivity is neoclassical). With these assumptions, the thermal diffusivity is of the form

(1)

where  is the Larmor radius, ρs =    miT/eB is a number that characterises the stiffness, and H(x) is

χT = χsqν H-κc +χ0qνT
eB

ρS
R

T
eB

ρS
R

-R∂rT

T( ) -κc
-R∂rT

T( )
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a Heaviside function. The safety factor has been introduced to account for the improvement of

confinement with plasma current. It is also consistent with profiles of diffusivity that increase

radially. The exponent ν is adjusted once for all when comparing various devices. The value ν=3/2

was chosen in the present work, as it seems to be the best compromise, and allows to recover the

scaling of the two term scaling law with plasma current (see section V). Recent simulations of Ion

Temperature Gradient (ITG) driven turbulence provide some justification of this choice [26], since

the parameter n was found to range between 1 and 2. Still this choice cannot be considered as

definitive. Once the parameter†n is chosen, this transport model is characterised by 3 dimensionless

constants χ0, χs, κc, to be determined from experiments. These parameters may depend on plasma

parameters such as the ratio of electron to ion temperature Te/Ti, the effective charge number Zeff,

the density gradient length, and/or the ratio of the magnetic shear to the safety factor s/q depending

on the underlying instability. The present analysis is valid if the 3 parameters χ0, χs, κc are radially

uniform for a given plasma. Thus χ0, χs, κc may differ from one set of experiments to another one.

Still the assumption that χ0, χs, κc are uniform is a limitation. For instance the threshold is known

to vary radially in Tore Supra [3].

For each species, the steady-state temperature is a solution of the heat equation, the heat flux

being determined by the Fourier law

(2)

Using the transport model Eq.(1), it can be rewritten as (see appendix A)

(3)

τ is a normalised temperature

(4)

and is a function of the normalised spatial coordinate

(5)

A prime indicates a derivative with respect to ρ. The parameter

(6)

characterises the relative degree of stiffness and is supposed to be smaller than 1. The function g(ρ)

is a heat flux normalised to the edge value (see appendix A). The temperature TgB is determined by

the relation

ΓT = -nχT∂rT

+ λ0τ' = gH-1
τ'

τ( ) -1
τ'

τ( )τ'

5/2
T

TgB( )τ =

5

2
ρ =

a - r

R
κc

χ0
κcχs

λ0 =
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(7)

where the flux ΓT(a) is the heat flux at the edge, qa the edge safety factor, na the edge density and

ρs,gB =    miTgB /eB is the Larmor radius calculated with the temperature TgB. The temperature TgB

plays a central role in this work. It exhibits the usual “gyroBohm” scaling and may be recast in a

more convenient way when the geometry is elliptical (see appendix A)

(8)

Since each species may be characterised by a different set of parameters χ0, χs, and κc, the temperature

TgB can be different for electron and ions. In the expression (8), PMW is the additional power for

one species.

The equation (3) can be rephrased in the following way:

i) above the threshold, τ′ > τ, the temperature gradient is solution of the equation

(9)

or equivalently

(10)

ii) below the threshold,  τ′ > τ, the temperature gradient is solution of the equation

(11)

In the case where the normalised heat flux is a radially uniform or an exponential, the solution of

the heat equation (3) is analytical (see Appendix B). In the general case, the first order Eqs.(10) and

(11) are easily solved numerically. The paper will be illustrated with the choice λ0 = 0.025 and a

normalised flux g of the form

(12)

The parameter xs characterises the heat source localisation and is chosen as xs = 0.3 throughout this

paper. The boundary condition is an edge temperature T = Ta at r = a. For an H mode, Ta is the

height of the pedestal.

3. CONDITIONS FOR STIFFNESS.

The analysis of equations (10) and (11) shows that the plasma can be divided in three regions:

ρs, gB

R2

TgB

eB
ΓΤ (a) = χsκc

2
 qa

ν
 naTgB

χs
-2/5κc

-4/5Μ-1/5εa
-2/5qa

-2ν/5BT
4/5na,19

-2/5PMW
2/5

-2/5

TeB, keV = 1.89
1 + κ2

2κ( )

τ' 2-τ(1-λ0) τ' - gτ = 0

τ' = + + gτ
2

(1 - λ0)τ

4

(1 - λ0)2τ2 1/2

τ' =
λ0

g

g = exp - xs - 1
r

a

r

a2
2
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 1) an edge region where the temperature is low and the gradient is well above the threshold. This

region exists when T<<TgB (i.e. τ<<1). An approximate solution of Eq.(11) is

(13)

2) a stiff region where the temperature is high τ>>1, and the gradient is above the threshold. An

approximate solution when λ0<<1 is the well known exponential shape

(14)

Using the heat flux conservation ΓT = -n0
χ

T ∂rT, it is found that for a stiff profile ∂rT =-n0κcT, the

heat diffusivity is given by χT = ΓT/(n0κcT). Thus the heat diffusivity decreases when the temperature

increases along the radial profile. This behaviour may appear paradoxical at first sight. It results

from a temperature that increases faster than its gradient, as shown by Eq.(10) (see also Fig.1).

Hence the temperature gradient length gets closer to the threshold when approaching the magnetic

axis. The transition between the edge and stiff regions is smooth. It is decided arbitrarily here that

the boundary ρ = ρgB between the two regions corresponds to τ = 1. For a constant heat flux, the

logarithmic derivative of the temperature -∂rT/κcT is a unique function of the temperature T/TgB,

as indicated by Eq.(10). For a given class of heat profiles, all these curves are close to each other

(see Fig.1).

3) a region where the temperature is high and its logarithmic derivative is below the threshold. In the

following, we will refer to this non-stiff region as the “core region”. The solution of Eq.(11) is

The transition between the stiff and core regions is sharp and occurs at the position where τ = τ′= g/λ0.

This equation defines a position ρ = ρcr and a critical temperature  Tcr = g(ρcr)TgB/λ0. Explicit

expressions of ρcr and ρgB are given in Appendix B. The transition temperature depends essentially

on the reference temperature TgB and the stiffness factor λ0. It also depends on the normalised heat

flux g(ρ): when the deposition profile is flatter, the stiff region is thinner. A localised deposition

profile leads to a flux g that behaves as a/r, thus moving the location of the transition towards the

axis. This transition corresponds to the point where turbulence vanishes (note however that a

turbulence may propagate from unstable to stable regions). The hot core is therefore a quiescent

region (or weakly turbulent depending on the meaning of χ0).

In summary the temperature profile is stiff in a layer ρcr<r<rgB, where rgB is the radius such that

τ = 1, and rcr/a = 1-ρcr/ρmax, where ρcr is defined above. An example is shown in figure 2. Figure

3 gives the dependence of these radii on the edge temperature for λ0 = 0.025.

τ = + dρg(ρ)τa 2
1

2
1/2

ρ

0

τ ≈ Ceρ

τ =
λ0

1
dρg(ρ)

ρ
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At this point, three main conclusions may be drawn:

i) the edge region disappears when increasing the edge temperature, i.e. when Ta>>TgB. This

condition expresses that the edge is stiff when the pedestal is high enough (it comes from the

T3/2 dependence of the diffusivity). We note that TgB does not depend on the machine size (see

Eq. (8)). So the difference of stiffness observed in various devices has to be explained with

other considerations. When increasing Ta/TgB, the hot core region broadens, thus reducing the

width of the stiff region. For instance when Ta = 2TgB and λ0 = 0.025, the stiff region only

covers a half of the plasma.

ii) Stiffness is controlled by the stiffness factor χs. However the extension of the core region

depends on the relative degree of stiffness λ0 = χ0/(κcχs). In particular there is no core region

if κ0 = 0, whatever χs. The transition temperature between the stiff and core regions behaves as

1/λ0. For instance, for λ0 = 0.001, the temperature profile is stiff almost everywhere. An example

is shown in figure 4.

iii) a scan on the source radial width indicates that the stiff region is wider when the heat source is

more centrally localised (i.e. when decreasing the parameter xs). This comes from the fact that

at a given radius close to the axis, the heat flux increases thus maintaining -∇rT/T more easily

above the threshold. The non stiff core region is thus reduced.

In summary the condition for the plasma to be stiff everywhere is twofold τa>>1 and λ0<<1, or

equivalently Ta>>TgB and χ0<<κcχs. Peaked deposition profiles enhance the stiffness.

4. TWO TERM SCALING LAW AND STIFF TRANSPORT MODEL.

Once the heat equation has been solved for each species, the energy content and confinement time

can be calculated. Some simplification is necessary to allow a comparison to a scaling law of global

confinement time. It is assumed here that the model of diffusivity Eq.(1) is the same for electrons

and ions, with the same threshold κc, degree of stiffness λ0 and normalised heat flux g, but possibly

different stiffness factors χse and χsi. (and therefore different background diffusivities to maintain

λ0 constant). Also the density, and the ratio of electron to ion temperatures are supposed to be

radially constant. Adding the electron and ion heat equations eliminates the equipartition term. The

resulting heat equation is the same as before (i.e. Eqs(1) and (2)) except that κs is now an effective

stiffness factor. Solving in the average temperature T = (Te+Ti)/2, this effective stiffness factor

appears to be

(15)

 The confinement time is then of the form

(16a)

χs, eff =
χs, i +              χs, e

0.5  1 +

5/2

5/2

Te

Ti

Te

Ti

τΕ ≈ CττgB
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where

(16b)

and τgB is given in the Appendix A, Eq.(A11). The function J is J = nV′/naV′a. We limit the calculation

to the case of an elliptical geometry so that J = 2r/a = 2(1-ρ/ρmax). It is stressed that PMW is now

the total additional power. The temperature profile and the form factor Cτ, are parameterised by the

normalised edge temperature Ta/TgB, the stiffness λ0, and the heat source localisation xs. This

confinement time includes the energy content associated to the pedestal. Thus it differs from the

“core confinement time” defined by the Confinement Database ITPA group [8]. To avoid any

confusion we will call the latter confinement time of the plasma bulk. Hence the plasma bulk

covers the 3 regions (core, stiff and edge) previously defined. The edge temperature Ta is the height

of the pedestal. Following the prescription of the ITPA group, the confinement time of the plasma

bulk is defined as

(17)

The form factor is now given by the relation

(18)

The transport model Eq.(1) predicts a global confinement time of the form

(19)

with the same conventions as the ITPA group. Since the ITPA database is dominated by plasmas

with equal ion and electron temperatures, the effective stiffness parameter is χs,eff = χs,e+χs,i.

This scaling law is compatible with the ITPA result if the form factor CITPA depends weakly on

the edge temperature. This is obviously not true in general. It is therefore interesting to analyse the

dependence of CITPA on the edge temperature. Using the solution found above, the form factor Cτ
is decomposed in the following manner

(20)

(21)

If the temperature profile is stiff everywhere, i.e. if τa>>1 and λ0<<1, then Cτedge = 0,

Cτ =
ρmax

1
dρJτ2/5

ρmax

0

τΕbulk ≈ CITPAτgB

CITPA = Cτ - dρJ(τ2/5 - τ2/5)=
TgB

Ta
ρmax

ρmax

0

1
a

τEbulk = 01.79CITPAχs,eff κC
-4/5 C-1/5κC

7/5 ε8/5R3B4/5q-2v/5n3/5  P-3/5

2
1 + κ2

MWa,19aa
-2/5 -2/5

Cτ = Cτedge + Cτstiff + Cτcore  

Cτedge =  dρJτ2/5 ;
ρmax

ρgB

0

1
Cτstiff =  dρJτ2/5 ;

ρmax

ρcr

ρgB

1
Cτcore =  dρJτ2/5

ρmax

ρmax

ρcr

1
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(22)

With the present choice of parameters, this expression reduces to . Therefore the form factor of a

stiff profile is proportional to the edge temperature, as expected. The global confinement time is

then essentially determined by the pedestal height. An extreme case λ0 = 0.001 is shown in figure 5.

For a stiff profile the core confinement is not gyroBohm unless the edge temperature Ta follows a

gyroBohm scaling law. This is not usually the case. Therefore a stiff profile is incompatible with

the result found by the ITPA group.

At this point, a legitimate question is whether a non stiff transport model fulfils a two term

separation criterion. The answer is negative. This can be understood by using the present transport

model in another extreme situation where there is no stiff nor edge region (rcr =a,τcr = τa). A simple

calculation shows that the form factor varies with the edge temperature as

(23)

This result can be tested by building an artificial case λ0 = 0.9 for which the temperature is not stiff

for Ta>TgB. As expected from Eq.(23), it is found that CITPA decreases strongly with the edge

temperature (see figure 5). Hence it does not satisfy the condition for a separation between pedestal

and bulk. More generally, the separation between pedestal and bulk is rigorous for a diffusion

coefficient that depends on the temperature gradient only (i.e. χT∝∇Tα). For instance, a unique

electrostatic gyroBohm model, χT∝∇T3/2, satisfies this requirement.

In the general case, the form factor is the sum of edge, stiff and core contributions. As mentioned

before, the core contribution increases with the edge temperature whereas the edge contribution

decreases. The contribution of the stiff region is non monotonic. It follows the width of the stiff

region. From Fig.3, one expects a bell shape. The detailed dependence of these form factors is difficult

to assess in general, but can be easily determined numerically. Some asymptotic results are given in

the Appendix C. A “typical” case λ0 = 0.025 is shown on figure 6. It turns out that the trade-off

between the edge, stiff and core regions leads to a form factor (as defined by the ITPA-CDBM group)

that is less sensitive to the edge temperature than in the non stiff or very stiff cases (see the comparison

on Fig.5). This behaviour occurs in spite of a profile that is stiff over a significant part of the plasma.

5. COMPARISON WITH EXPERIMENT

5.1 PARAMETERS OF THE TRANSPORT MODEL

Several groups have used previously a critical gradient model [18,19,20]. In these works, the

turbulent diffusivity was written under the form

(24)

Cτcore = 0 and Cτstiff = 2
2ρmax

1

TgB

Ta2ρmax

5
- - 1e

5

2ρmax
2

-3/2
CτITPA,core ≈ 2λ0

ρmax
TgB

Ta

χT = ΛqνT3/2
T

- K
−∂rT η

H
T

- K
−∂rT
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Models (1) and (24) are equivalent when η = 1, which turns out to be consistent with experimental

results. Comparing these models yield the relations κc = RK and χs = 0.22M-0.5BT
2Λ . The aim of

this section is not to fully assess the transport model Eq.(1) with respect to experiment but rather to

compare the values of χ0, χs, and κc deduced from existing experiments to those deduced from a

two term scaling law.

Pulse No: χ
0,e

χ
s,e κc,e λ0,e

JET 55809 0.7 4 5 0.035

JET 55804 1.2 1.5 5 0.160

JET 58148 0.8 3 5 0.053

JET 53822 0.5 1.5 4.8 0.069

JET 55805 0.5 6 5 0.017

AUG 14793,94 0.01 0.25 3 0.013

AUG 13556,58 0.1 0.15 5 0.133

AUG 17788,89 0.01 0.13 8 0.010

AUG 10591 0.85 0.99 6 0.143

AUG 12935 0.28 0.14 4 0.5

AUG 7806 1.79 1.4 7 0.183

AUG 17175 0.32 3 7 0.015

FTU 0.7 0.5 7.5 0.187

Table I: Values of χs,e, χ0,e, κc,e and λ0,e in JET, ASDEX-Upgrade, and FTU. All pulses are in L-mode except JET
Pulse No: 58148 (H-mode), and AUG 13556, 17789 (partly in Ohmic).

Electron stiffness is investigated first here, summarising the results of experiments in ASDEX-

Upgrade, JET and FTU. In ASDEX-Upgrade (R = 1.65m, a = 0.5m), dedicated experiments were

performed in L mode with ECRH modulation. The Electron Cyclotron Resonant Heating (ECRH)

power was deposited at two radial positions in such a way that the total power was constant. This

procedure allowed varying ∇Te/Te over a large range of values while maintaining a constant edge

temperature Ta. The modulated profiles were modelled with the model Eq.(24) and led to values of
χ

0,e, χs,e, and κc,e [19]. A similar analysis was done by F. Imbeaux et al. [18] with another set of

experiments.

In JET (R=3m, a=1m), experiments using modulated Ion Cyclotron Resonance Frequency (ICRF)

heating with a steady background of Neutral Beam Injection (NBI) heating have been done in L-

mode [20] and H-mode [27]. A mode conversion scheme was used with 18% of He3 in D plasmas
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(PICRF=3.7MW). Electrons are directly heated when using this Ion Cyclotron Heating scheme,

with good localisation properties. The position of the mode conversion layer was changed and the

NBI power was varied from 2 to 9MW in order to cover a large range of temperature gradients. The

3 parameters χ0,e, χs,e, and κc,e were found by fitting both the steady and modulated profiles [20].

In FTU (R=0.96m, a=0.28m), a series of 9 ECRH heated plasmas was used. The power was not

modulated in these experiments, but the heating location was changed. A least square minimisation

technique provided the parameters χ0,e, χs,e, and κc,e.

All these plasmas have been analysed with the same model Eq.(24) with ν = 3/2. The principal

difficulty is the determination of the background diffusivity χ0,e, given the experimental uncertainties

(one reason could be the ad-hoc choice of an electrostatic gyroBohm scaling for the background

diffusivity). The result of this multi-machine comparison is shown in Table I.

The thresholds in table I range between 3 and 7.5, which are typical values expected for ITG/

TEM modes. The range of variation of the stiffness parameter χs,e is found to be wider. It lies

between 0.25 and 2 when Te/Ti>1. Larger values (χs,e,~3÷6) are obtained in JET with dominant ion

heating, when Te≈Ti. This finding is consistent with a recent study by Asp et al. investigating the

effect of the ratio Te/Ti on confinement using the Weiland model [28]. In this work, both electron and

ion diffusivities are found to increase with Te/Ti when heating electrons at fixed ion temperature.

However diffusivities are also observed to increase when Te/Ti goes down by heating ions at fixed Te.

The latter result agrees with the trend that is observed here since the points at Te = Ti in Fig.7 correspond

to larger ion heating with about the same electron heating as compared to the other points for which

Te>Ti. However the effect that is found experimentally is larger than the one found when using the

Weiland model [27]. Finally we note that an opposite behaviour was found for χe in DIII-D in steady-

state experiments, i.e. a degradation of the confinement when increasing Te/Ti, although the latter

result was obtained in a different range of parameters, namely Te/Ti<1 [29].

Ion stiffness is less documented than electron stiffness because the ion temperature is difficult to

measure in modulation experiments with the appropriate time resolution. This question has

nevertheless been investigated in DIII-D, JET and ASDEX-Upgrade by analysing the steady ion

temperature profiles in various regimes [5,6,30]. It was found in JET and ASDEX-Upgrade that

κc,i ranges between 5 and 8. The scatter is reduced when accounting for the dependence on Te/Ti

and the E×B velocity shear. For Te = Ti and low shear rate, the value of the threshold is κc,i = 5.3,

which is close to the value found for electrons in JET. The stiffness factor was not obtained in this

case since its value is difficult to obtain with steady-state profiles. In fact, the values of the threshold

were obtained by assuming that the profiles are stiff enough to be close to the marginal profiles

between ρ = 0.2 and ρ = 0.6. Modulation experiments done at JET are currently under analysis to

clarify this issue.

5.2 CONDITIONS FOR STIFFNESS

The transport model Eq.(1) can be tested in several ways. One is a direct inspection of the

temperature profiles. A set of electron temperature profiles coming from ASDEX-Upgrade is shown
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in Fig.8 in Ohmic and ECH L-mode plasmas at Ip = 400kA and Ip = 1MA [19]. Profiles obtained in

JET plasmas when combining mode conversion ICRF and NBI heating are shown on Fig.9 [20].

The scaling temperature TgB is indicated on each profile. A change of slope occurs in general when

Te ≈ TgB, except for plasmas in ASDEX-Upgrade at Ip = 1MA, where Eq.(8) predicts a value of TgB

that is too large. Interestingly, using a value of TgB calculated with the values of χs and κc deduced

from the two term scaling law (see next section, Eq.(29)) is in better agreement with experiment. We

note also that the change of slope is sharper than expected (the transition at Te ≈ TgB is a smooth one).

At this point, it is stressed that other reasons may explain a different behaviour in the edge: for instance

a change of the underlying instability, the influence of the Scrape-Off Layer, or an effect of collisionality.

Another interesting feature is the change of gradients that occurs in JET core plasmas. No sawtooth is

observed in the plasmas shown in Fig.9. So this change of slope may correspond to the transition

between stiff and core regions that is expected when the gradient length crosses the stability threshold.

Note that the ASDEX-Upgrade plasmas at Ip = 1MA shown on Fig.8 (right panel) exhibit sawteeth,

which flatten the temperature profile. Thus the change of slope at ρ = 0.45 likely corresponds to the

q = 1 magnetic surface, masking a possible transition from stiff to non stiff regions. The transition

from the stiff region to the edge region is believed to be at ρ ≈ 0.8 for the Ohmic case and at rª0.9 for

the case PECRH = 1.6MW. This is in agreement with the model prediction that the stiff region

extends further out with increasing temperature.

Another analysis consists in drawing -∇Te/Te versus Te/TgB. For a stiff profile, this curve is

expected to be universal at a given value of λ0,e, as shown by Eq.(10). The exercise has been done

in ASDEX-Upgrade (Fig.10) and in JET (Fig.11). These figures exhibit some similarity with Fig.1.

The main features predicted by the model Eq.(1) are recovered. In particular, the region where the

gradient length is close to the threshold is wider when the heat deposition profile is more localised

in the core. This trend is observed when comparing ECRH with Ohmic heating (Fig.10), or when

comparing off-axis with on-axis heating in JET plasmas (see Fig.11).

5.3 COMPARISON WITH A TWO TERM SCALING LAW.

The ITPA group has proposed two scaling laws for the global confinement time of the plasma bulk

[8]. They correspond to two different hypotheses for the physics underlying the confinement in the

pedestal region. The first one assumes that the edge confinement is controlled by thermal conduction

with some degradation with β, while the second relies on an MHD β limit within the pedestal

region. In terms of accuracy, these two models are equivalent. We will analyse in detail the model

with MHD limited edge, because it corresponds to a confinement in the bulk that is gyroBohm and

electrostatic, i.e. consistent with the assumptions underlying the model used here. More precisely

the scaling law for the bulk region is

(25)τITPA,bulk = 0.15M0.34 κ-0.34 εa
1.96 R2.32 Ip,MA BT

0.13 na,19 PMW
0.68 0.59 -0.58
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The normalised confinement time BτE scales as ρ*-3β0.05, which is close to an electrostatic

gyroBohm scaling law. Using the relation

(26)

 one finds

(27)

to be compared with the Eq.(19) when using the expression of τgB given by Eq.(A11)

(28)

The exponents of power, density, magnetic field, safety factor and major radius are similar in Eqs(27)

and (28). Note that the agreement for the safety factor comes from the choice ν = 3/2. This choice

is however quite arbitrary, and would deserve a better assessment using both theory and experiments.

Some significant differences between Eqs(27) and (28) appear in the exponent of the inverse aspect

ratio εa = a/R, elongation, and mass, thus suggesting a dependence of the stiffness parameter on

geometry factors. Assuming a “typical” case κ = 1.6, εa = 1/3, and M = 2, it is found that Eq.(27)

matches Eq.(28) if χs,eff
2/5 κc

4/5
 = 2.20CITPA. The contour lines of CITPA are shown in Fig.12 for a

large domain of variation of the parameters λ0 and Ta/TgB. It is found that CITPA remains in the

interval 1÷3. Choosing κc ≈ 5, one finds that χs,eff should be in the range 0.3÷4.5. This is a large

interval, which has to be reduced by transport analysis of steady-state and transient regimes. Choosing

a medium value CITPA = 2.0 and κc≈5 yields a stiffness factor χs,eff ≈ 1.6. It is reminded here that
χ

s,eff is an effective stiffness factor. For equal temperatures, χcs,eff is the sum of electron and ion

stiffness parameters, χs,eff = χs,e + χ
s,i. Thus χs,e and χs,i should be of order unity. The choice χs,eff

≈ 1.6 leads to the following “practical” expressions of the scaling temperature TgB and the

confinement time of the plasma bulk.

(29)

and

(30)

The ITPA database has been used to compare the pedestal height Ta to TgB, given by the expression

(29). The result is shown in Fig.13. It is found that Ta ranges between 0.5TgB and 2TgB. However

this result must be considered with caution since the stiffness factor could depart significantly from

1 + κ2�

2

a2BT�

RIp,MA
q =

1 + κ2�

2
τITPA,bulk = 0.45M0.34κ-0.34

0.68
0.59 -0.58εa3.32R3qa-0.68BT0.81na,19PMW

εa8/5R3qa-2v/5BT4/5na,19PMW
1 + κ2�

2
τITPA,bulk = 0.179CITPAχs,effκc-4/5M-1/5κ7/5

-2/5
3/5 -3/5

M-1/5εa-2/5qa-3/5BT4/5na,19 PMW
1 + κ2�

2κ
TgB,keV ≈ 0.43

-2/5
2/5-2/5

εa8/5R3qa-3/5BT4/5na,19 PMW
1 + κ2�

2

-2/5

τEbulk ≈ 0.081M-1/5κ7/5 3/5 -3/5
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the value χs,eff ≈ 1.6 chosen here. The trend is that the ratio Ta/TgB is greater in large devices JT-60U

and JET than in the medium size devices DIII-D and ASDEX-Upgrade. This is an interesting feature

in view of Fig.3. Indeed, the stiff region was found to reach its maximum size for Ta≈TgB and decreases

when Ta/TgB increases. This may explain why large devices are claimed to be “less stiff” (or not

stiff at all). In spite of a higher pedestal that makes the edge stiffer, the width of the core region,

which is sub-critical, could be larger in those plasmas, in particular in the H mode.

A pending question is the compatibility of the two term scaling law with the values of

stiffness factor deduced from modulation experiments (table I). This is a delicate point since

most of these plasmas are in L-mode, with ratios Te/Ti different from 1, whereas the ITPA

database deals with H-mode plasmas, with Te ≈ Ti. It is expected that the core physics is the same

in L and H-mode. Similar values of λs,e were found in L-mode (Pulse No: 55809) and H-mode

(Pulse No: 58148) plasmas on JET, thus providing some support to this assumption. The range of

stiffness factor χs,eff that is compatible with the global scaling law is 0.3÷4.5. It is reminded here

that χs,eff = (Te/Ti)
5/2 χ

s,e + 
χ

s,i. Regarding the values of stiffness factor obtained from heat wave

analysis, while there is no problem of compatibility with the values χs,e ~ 0.25÷2 found in conditions

Te>Ti, the high values χs,e = 3÷6 at Te~Ti appear too large by a factor 1.5÷2.5 assuming χs,e = 
χ

s,i.

A sensitivity study indicates that the heat wave analysis becomes less sensitive to the value of χs,e

at high χs,e values. Moreover it can be noted that a significant scatter of points is present in Fig.7,

which is mainly due to the fact that the simple model assumed does not always allow a perfect

reproduction of the data, and some trade off in the fit of the various quantities often needs to be

accepted. Taking also into account the various simplifications introduced into this analysis, we

consider that these results are encouraging. Clearly some further measurements will be necessary

to reduce this uncertainty. The observations suggest that the ratio Te/Ti plays an important role,

which will have also to be investigated further in detail in the future.

Finally it is interesting to compare the present range of stiffness factors with theoretical

expectations. The IFS-PPPL model [11] is close to the form Eq.(1) when simplified, i.e. , choosing

Zeff = 1, r/R<<1, R/Ln = 0,

We note that the exponent of q is  ν = 1.1. Choosing Ti = Te, and a magnetic shear s = 1, one gets
χ

si ≈ 6. An estimate of χse is harder to provide, since it depends on collisionality.

The GLF23 model [12] is a more sophisticated model, which uses a calculation of growth rates.

So it cannot be easily reduced to an expression of the form Eq.(1). However it was mentioned in the

original paper that the stiffness factor is similar to the IFS-PPPL model. A renormalized model was

proposed recently [31], where the stiffness factor of ITG/TEM driven transport was reduced by a

factor 3.7. Using the IFS-PPPL value, this leads to an estimate χsi ≈ 1.6. The Weiland model is also

based on a comprehensive calculation of growth rates. Numerical scans indicate that χsi ≈ 1 and

χTi =
Ti

Te

1 + s0.84

12 csρs

R

1.1 2 -R∂rT -κCT

-R∂rT -κCH
T

q
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χ
se ≈ 0.3. Finally several theoretical models and turbulence simulations were compared in the

CYCLONE group [21]. The results from the LLNL gyrokinetic code were fitted by the expression

where κc = 6. The simulations were done at fixed ratio of density to temperature gradient length Ln/

LT = 3.1, with Zeff = 1. We note that there is no q dependence in this expression, i.e. χsi = 5/qν. Since

the simulations were done at q = 1.4, one gets an estimate χsi ≈ 3. In summary, it is found that csi

ranges between 1 and 6 depending on the model. The electron stiffness factor is less documented.

It is typically 3 times smaller that the ion stiffness. We stress here that these values are purely

indicative, as these models exhibit rather complex parametric dependences. Nevertheless we can

conclude that the range of variation of the stiffness factor found in the literature is quite large, and

compatible with both our experimental results and the value deduced from the ITPA scaling law.

SUMMARY

Using the critical gradient transport model

it is found that:

1) Choosing an exponent ν = 3/2, the proximity of a profile to a marginally stable state (stiffness)

is then characterised by 3 numbers: the degree of stiffness λ0 = χ0/κc
χ

s, the ratio Ta/TgB, and

the width of the deposition profile. Here Ta is the edge temperature and the reference temperature

TgB satisfies the condition

where ΓT(a) is the thermal flux at the edge. Profiles get stiffer when λ0 decreases, Ta/TgB increases

or when the heating source is more central.

2) The confinement time of the plasma bulk (without the pedestal contribution and for an elliptical

geometry) is

In this formula, the stiffness factor χs,eff is an effective value χs,eff = χ
s,e + χs,i, where χs,e and χs,i

are the electron and ion stiffness factors (the threshold κc and the degree of stiffness λ0 are supposed

to be the same for electrons and ions). The form factor CITPA depends on the normalised edge

χTi = 5
csρs

R

2 -R∂rT -κCT

-R∂rT -κCH
T

χT = χs qν + χ0qν
eB

T ρs

R eB

T ρs

R

-R∂rT -κCT

-R∂rT -κCH
T

ΓT (a) = χs κc qa
ν na TgB

eB

TgB ρs0

R
2

1 + κ2

2κ
TEBulk = 0179CITPA χs,eff κc

-4/5M-1/5κ7/5 ε8/5R3BT    q
-3/5na,19 PMW

-2/5
-2/5

a a
4/5 3/5 -3/5
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temperature Ta/TgB and the degree of stiffness λ0. It decreases with the normalised edge temperature

for non stiff profiles. On the contrary it increases linearly with the edge temperature for stiff profiles.

In the general case, CITPA is a sum of the contributions of stiff and non stiff regions, which behave

in opposite ways. The two term scaling law proposed by the ITPA-CDBM group corresponds to

intermediate values of λ0, typically in between 0.01 and 0.1, which indeed is approximately the

range of values observed in the heat modulation experiments for electrons (table I). Choosing this

range of stiffness factors and varying the edge temperature in a wide domain, it is found that

1<CITPA<3.

3) This model has been applied for electrons at JET, ASDEX-Upgrade and FTU (mainly modulation

experiments in the electron channel). The stiffness parameter  χse was found to cover a wide

range of variation, i.e. ranges between 0.25 and 6. A correlation has been found between the

stiffness  χse and the ratio Te/Ti in these plasmas:  χse decreases with increasing values of Te/Ti.

4) A comparison between this transport model and the ITPA two term scaling law leads to the

relation  χs,eff
2/5 κc

4/5 = 2.2CITPA. Choosing CITPA in the range 1÷3 and κc ≈ 5, one finds that
χ

s,eff should be in the range 0.3÷4.5. The medium value CITPA = 2.0 yields a stiffness parameter
χ

s,eff ≈ 1.6, i.e. a value of the order of unity for each species. The range 0.3÷4.5 is compatible

with the results found in JET, ASDEX-Upgrade and FTU given the simplicity of the model that

is used. Still it should be possible to refine this range in the future.

CONCLUSION

A critical gradient transport model that covers the basic properties of turbulent transport has been

used extensively. This model contains only 3 free parameters that can be deduced from actual

experiments in tokamaks. It also provides a quantitative criterion to get stiff profiles, thus providing

a way to assess quantitatively this controversial issue. It is found that increasing the edge temperature

does not necessarily lead to an overall stiffer profile. Indeed there exists usually a region in the core

where the temperature gradient is below the stability threshold, and is therefore not stiff. This core

region broadens when the edge temperature increases. This property explains why a transport model

with a threshold can still be compatible with the two term scaling law developed by the ITPA-

CDBM group. This model has been applied to analyse a variety of experiments using mostly electron

heat modulation on JET, ASDEX-Upgrade and FTU. The thresholds are found to be in the expected

domain for ITG/TEM modes. The stiffness factor deduced from modulation experiments is found

to increase when decreasing Te/Ti. The latter observation suggests that the ratio Te/Ti plays an

important role in confinement. The values of the stiffness factor are compatible with the expectation

from theory. The range of variation deduced from modulation experiment is larger than the one

estimated from the ITPA-CDBM two term scaling law. This difference appears to be compatible
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with the simplifications underlying this transport model, and also with the various uncertainties

when determining the models parameters from modulation experiments and global scaling laws.

Thus these results can be considered as encouraging. Still further experiments are needed to

better determine the parametric dependences of the threshold and more importantly of the stiffness

factor. The present study suggests a dependence on the ratio of Te/Ti. This raises the question of the

coupling between electron and ion channels, or in terms of stability between ITG and TEM branches.

This coupling may lead to a dependence of the heat flux of one species on the temperature gradient

length of another species, in addition to the temperature itself. The clarification of this point will

require a large number of experiments in a variety of electron and ion heating scenarios. Also the

value of the stiffness factor depends sensitively on the choice of scaling that is done with respect to

the safety factor and geometrical factors. The latter point is illustrated by the difference between

the two term global scaling law and the present model in terms of shaping and aspect ratio parameters.

Regarding this question, changing the profile of safety factor would be useful, for instance by

generating a non-inductive part of the current. The last issue is the comparison of a critical gradient

model with global scaling laws. The nature and scaling of the background diffusivity plays an

important role, because it determines the width of the non stiff core region. Reducing the uncertainty

on this parameter would allow a more reliable comparison. Also the present model should be used

more extensively in H-mode plasmas, to be compared directly with the ITPA database.
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APPENDIX A

NORMALISATION OF THE HEAT EQUATION

The heat flux is linked to the gradient via the Fourier law

(A1)

It is also the radial integral of the heat source Pheat

(A2)

where

(A3)

We now solve the heat equation Eq.(A2) with the transport model Eq.(1). It is convenient to introduce

a normalised spatial coordinate

(A4)

(the magnetic axis is located at ρ = ρmax = 5κca/2R and the edge at ρ = 0, also ρ/ρmax = 1-r/a). The

parameter

(A5)

characterises the relative degree of stiffness and is supposed to be smaller than 1. Finally we define

a normalised temperature

(A6)

and a normalised heat flux g(ρ) = G(r)/G(a) with

(A7)

The relation

(A8)

defines the temperature TgB. The flux ΓT(a) is equal to the heating power P divided by a surface

ΓT = -nχT∂rT

1�

<|∇r|2>V'
drV'Pheat(r)

0

r

ΓT =

V' = 2πψ'
dθ

B.∇θ
0

2π

5�

2
ρ =

a - r�

R
κc

χ0�

κcχs
λ0 =

τ =
T�

TgB

5/2

1�

n(r)[q(r)]ν<|∇r| >V'(r)
drV' (r)Pheat(r)

0

r

2G(r) =

TgB�

eB
ΓT(a) = χsκc2qaνnaTgB

ρs,gB�

R2
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S = Cs2πR2πa, qa the edge safety factor and na the edge density. The shape factor Cs is defined as

(A9)

For an elliptical geometry, <⏐∇r⏐2> = (1 + κ2)/2κ2, V′ = 2πR2πκr and Cs = (1 + κ2)/2κ, where κ
is the elongation.

The temperature TgB exhibits the usual “gyroBohm” scaling. It will play an important role in

this calculation. It may be recast in a more convenient way when the geometry is elliptical

(A10)

We also define a reference “gyroBohm confinement time” τgB

(A11)

The shaping factor Csh is Csh = CvCs
-2/5 where the volume form factor Cv is such that V = Cv2πRπa2.

In elliptical geometry Cs = (1 + κ2)/2κ and Cv = κ, so that Csh = κ7/5((1 + κ2)/2)-2/5. The units are

lengths in meters, BT in Teslas, the density in 1019 m-3 and the power in MW. εa = a/R is the inverse

aspect ratio. As an illustration, the values κc = 5 and εa = 1/3, (i.e. rmax = 5) will be chosen in the

following. Typical values are χ0 ≈ 0.1, χs ≈ 1, and κc = 4÷6. The normalised ratio λ0 = χ0/κc
χ

s is

therefore a small number. The value λ0 = 0.025 is chosen as an example in this paper. With the

normalisation above, the heat law becomes particularly simple (τ′ = ∂ρτ)

(A12)

<|∇r|2>r=aV'a�

2πR2πa
Cs =

1 + κ2�

2κ
TgB,keV = 1.89 χs

-2/5κc
-4/5M-1/5εa

-2/5qa
-2ν/5BT

4/5na,19PMW

-2/5
-2/5 2/5

3na TgB V�

P
TgB(s) = = 0.179Cshχs
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-4/5M-1/5R3εa

8/5qa
-2ν/5BT

4/5na,19PMW
3/5 -3/5
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APPENDIX B

ANALYTIC SOLUTION FOR CONSTANT OR EXPONENTIAL FLUX

If the heat flux γ(ρ) is a constant (=1), the solution of Eqs.(11) is analytic, i.e. using the change of

variable cosh(u) = (1 - λ0)2    +1):

Above the threshold, 0<ρ<ρcr, τa<τ<1/λ0

(B1)

(B2)

(B3)

Approximate expressions of the function F are the following

    τ>>1,  F(τ) ≈ Log(τ)/(1-λ0)   ;      τ<<1,  F(τ) ≈ 2τ1/2

Below the threshold, ρ>ρcr,τ>1/λ0

(B4)

If the heat source is exponential g(ρ) = exp((1-λ0)ρ), one may make the change of function

(B5)

Above the threshold, the function θ is then solution of the equation

(B6)

This equation is close to Eq.(12). Its solution is

(B7)

τ
2

τ
2

τ2

4

τ2

4

+ (1-λ0) + τ

+

(1-λ0)21

(1-λ0)
F(τ) =

ρ = F(τ) - F(τa)

Log 1 + (1-λ0)2

τ
2

+ τ(1-λ0)2 -(1-λ0)

1/2

1/2

1�

(1-λ0)
ρcr =  - Log(λ0) + 1 - F(τa)

ρgB = F(1) - F(τa)

1 + ρ - ρcr�

λ0
τ =

τ = θe(1-λ0)ρ ; τa = θa

θ'2 + θ(1-λ0)θ'-gθ = 0

ρ = G(θ) - G(θa)

G(θ) = F(θ) + (1 − λ0)θ
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The transition between the stiff and core region occurs when θ = 1/λ0 , i.e. at the position

(B8)

Note that this value is much larger than in the constant g case. This confirms that a more peaked

heating source induces a stiffer profile. The solution in the core region is

(B9)

1�

(1-λ0)

1�

λ0
ρcr =  - Log(λ0) + - G(θa)

1�

1-λ0

1�

λ0
τ = g(p) - g(ρcr)
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APPENDIX C

ASYMPTOTIC EXPRESSIONS OF THE EDGE, CORE AND STIFF REGION

CONTRIBUTIONS TO THE CONFINEMENT.

Edge region

The edge contribution, which corresponds to τa<τ<1, can be approximated by the expression

(assuming a small radial extend in the edge so that g ≈ 1 and J ≈ 2)

(C1)

The expression (C1) can be recast as

(C2)

It is interesting to note that this expression depends sensitively on the edge temperature The reason

is that the transport model is a non linear function of the temperature, thus leading to some profile

resilience, even if there is no threshold involved.

Core region

An approximate expression can be found assuming g≈a/r,

(C3)

When there exists a stiff region, one has τcr ≈ a/(rcrλ0) and the pedestal contribution is negligible.

The core contribution to the form factor is then an increasing function of the edge temperature.

Stiff region

In the general case, the profile is stiff within a layer. The contribution of a stiff layer [ρcr, ρgB]

(temperature [τcr,1] ) is

(C4)

In presence of edge and core regions τcr = gcr/λ0 where gcr is the normalised heat flux at the

transition to the core region. Thus this contribution varies as the width ρcr- ρgB of the stiff region.

When the edge temperature increases, the edge non stiff region disappears and this width increases.

It then shrinks because the core region broadens.
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Figure 2: Profiles of the normalised temperature T/TgB
and its logarithmic derivative for Ta/TgB = 0.5 and λ0 =
0.025. The dashed lines correspond to a stiff profile T =
Tae

ρ (and -R∂rT/T = κc). The vertical dotted lines are the
boundaries of the “non stiff” regions τ<1 (edge) and
τ>g(ρcr)/λ0 (core).

Figure 1: Logarithmic derivative of the temperature
versus T/TgB for Ta/TgB = 0.5, λ0 = 0.025 and 3 values of
the heat deposition localisation (xs = 0.1, 0.3, and 0.5).
The horizontal line is the threshold.

Figure 3: Stiffness layer (rcr/a, rgB/a) for λ0 = 0.025 and
increasing values of the edge temperature.

Figure 4: Profiles of the normalised temperature T/TgB
and its logarithmic derivative in a stiff case Ta/TgB=2.0
and λ0 = 0.001. Same conventions as in figure 1.
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Figure 5: Form factor CITPA as function of the edge
temperature for 3 cases: strongly stiff (λ0 = 0.001),
medium stiff (λ0 = 0.05) and non stiff (λ0 = 0.9) cases.

Figure 6: Variations of Ctedge, Cτstiff, Cτcore, and CτITPA

as function of the normalised edge temperature for λ0 =
0.025.

Figure 7: Electron stiffness χs,e versus ratio Te/Ti. deduced
from modulation experiments in ASDEX-Upgrade and
JET, and from a scan of the position of ECRH heating in
FTU. The values of Te and Ti are taken on the magnetic
axis.

Figure 8: Comparison of TgB with Te profiles in ASDEX-
Upgrade (L-mode) in Ohmic and ECRH heated plasma.
Left panel: Ip = 400kA, PECRH = 0 (Ohmic), 0.35, and
1.35MW, no sawtooth. Right panel: Ip = 1MA,PECRH = 0
(Ohmic), 0.8, and 1.6MW, sawtoothing. Solid horizontal
lines indicate TgB given by Eq.(8), while horizontal dashed
lines are the values of TgB calculated with the values of
stiffness parameter and threshold deduced from the ITPA
two term scaling law Eq.(29).
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Figure 9: Experimental ECE Te profiles for two JET
discharges with on-axis and off-axis ICRH heating. Pulse
No: 55802 (red):3.6MW ICRH on-axis, 3.2MW NBI;
55809 (black): 3.7MW ICRH off-axis, 9.1MW NBI. The
reference temperature is indicated in the plot, the lines
are the borders between edge, stiff and core regions
(compare with Fig.8) .As expected, the pulse with on-axis
heating has a wider stiff region

Figure 10: -R∇Te/Te versus Te/TgB in ASDEX-Upgrade

Figure 11: -R∇Te/Te versus Te/TgB in JET. Figure 12: Contour lines of the form factor CITPA versus the
normalised edge temperature and degree of stiffness l0.
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Figure 13: Pedestal temperature Ta versus the scaling
temperature TgB. The lines indicate the identities
Ta=0.5TgB (dashed), Ta=TgB  (solid), and Ta=2TgB (dotted).
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