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ABSTRACT.

Simulations of four JET type I ELMy H-mode discharges in a triangularity scan are carried out

using the JETTO integrated modeling code with a predictive core and pedestal model that includes

the effect of ELMs. The pedestal width is calculated using a theory-motivated model based on

magnetic and flow shear stabilization and the pressure gradient is limited by MHD ballooning

instability. The Mixed Bohm/gyro-Bohm anomalous transport model is used in the plasma core

while ion thermal neoclassical transport is used in the pedestal. It is found that the predicted plasma

profiles reproduce the observed plasma profiles. An MHD stability analysis is carried out for the

discharges in the triangularity scan using HELENA and MISHKA codes, which include infinite-n

ideal ballooning, finite-n ballooning, and low-n kink/peeling modes. It is found that higher

triangularity plasmas have easier access to the second region of ballooning mode stability, which

allows the edge pressure gradient to increase to higher levels.

1. INTRODUCTION

Predictive integrated modeling codes, such as the JETTO code [1] and the BALDUR code [2], are

used to predict the time evolution of the temperature, density and plasma current profiles in tokamaks.

Many of the simulations that have been carried out with these codes predict the core plasma profiles

using boundary conditions taken from experimental data [3, 4]. For H-mode simulations, the

boundary conditions have generally been taken from experimental values at the top of the pedestal

[4]. The pedestal is a narrow region located near the separatrix, typically occupying less than 5% of

the plasma minor radius. The height of the pedestal has a strong influence on the performance of H-

mode plasmas due to the stiffness of the core transport [5, 6, 7, 8]. For future experiments, such as

ITER [9] and FIRE [10], where pedestal data is not available, it is important to have a reliable

methodology for predicting the boundary conditions [11].

Several approaches have been developed to compute the boundary conditions that can be used

in predictive integrated modeling codes [12, 13, 14]. One approach is to assume that the pressure

gradient is uniform within the steep gradient region of the pedestal [13]. The temperature at the top

of the pedestal, Tped, is then expressed in terms of the pedestal density, nped, the pressure gradient

within the pedestal, ∂p/∂r, and the pedestal width, ∆. The notation used in this paper is described in

Table I. It is assumed that pressure gradient within the pedestal is limited by the ideal ballooning

stability, where the critical pressure gradient of ballooning mode instability is estimated using a

simple analytical model for the critical normalized pressure gradient. The RMS errors that were

obtained in Ref. [13] indicate that the plasma processes near the separatrix are ps;bably more

complicated than those used in the simple model and a somewhat more sophisticated approach is

required than the one used in Ref. [13].

A more advanced approach described in this paper for the pedestal has been developed and used

in the integrated predictive modeling code JETTO. This approach allows for a self-consistent

calculation of the plasma equilibrium and transport, which takes into account the evolution of the
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edge pressure gradient and the edge current density. Both the edge pressure gradient and the edge

current density have a strong influence on stability of the ballooning modes. In particular, a strong

pressure gradient leads to a strong edge current density, which can possibly result in access to the

second stability region of ballooning modes in the s-α plane. In the JETTO code, it is assumed that the

edge pressure gradient is limited by the ballooning instability. The JETTO code is linked with ideal

MHD stability codes, HELENA and MISHKA, to evaluate the critical pressure gradient limit, αc. The

HELENA code is used to evaluate plasma stability against infinite-n ideal ballooning modes at the

time before each ELM crash. In addition, the stability criterion used in the JETTO code is veried using

the MISHKA MHD stability analysis code to determine the stability of infinite-n ballooning and low-

n kink/peeling modes, which play an important role in limiting the pressure gradient. If the HELENA

and MISHKA analysis indicates a normalized pressure gradient greater than the value of αc used in

the JETTO simulation, the value of αc used in JETTO code is then increased, and the simulation is

repeated. The process continues until the value of αc used in the JETTO simulation is consistent with

the maximum pressure gradient indicated by the HELENA and MISHKA stability codes.

In the simulations of the JET discharges that are presented in this paper, edge boundary conditions

are imposed at the separatrix and a predictive pedestal model is used together with a core transport

model in the JETTO code. One assumption made about the pedestal physics is that the turbulent

transport is completely suppressed in the region between the top of the pedestal and the separatrix. All

the diagonal elements of the transport matrix within the pedestal are taken to be the ion neoclassical

thermal conductivity, calculated at the top of the pedestal using the NCLASS module [15]. This

assumption implicitly implies that electron transport is still anomalous and is supported by recent

studies of short wave length turbulence associated with the electron temperature gradient mode [16].

The assumption regarding the uniformity of neoclassical transport within the barrier is merely a

reflection of the fact that the pedestal width is usually of the order of the ion orbit width (or banana

width), which implies limited variation of the neoclassical transport across the edge transport barrier.

The reduction of transport within the pedestal region results in a sharp pressure gradient and an

associated bootstrap current, computed using the NCLASS model, that builds up within the pedestal

region. Another assumption regarding the pedestal model is that the pedestal width is given by a

pedestal model based on magnetic and flow shear stabilization [12, 13].

The organization in this paper is as follows. The details of the four discharges considered in this

paper are described in Section  II, together with some other relevant experimental data. The description

of the pedestal width model is presented in Section  III. The details of the integrated transport code

JETTO and of the transport model are presented in Section  IV. Simulation results and a discussion of

these simulations are given in Section V. MHD stability analysis of the simulated profiles are described

in Section VI, followed by conclusions in Section VII.

2. EXPERIMENTAL DATA

Predictive simulations using the JETTO code are carried out for 4 JET discharges that have similar
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plasma current, magnetic field and elongation, but have different triangularity [17]. The pulse

numbers for these four discharges are 53186, 53187, 53298 and 52308. The plasma current, Ip, is

fixed at 2.5MA while the toroidal magneticeld, BT, is in the limited range from 2.6 to 2.7T. The

elongation at the separatrix is approximately 1.7 and the triangularity at the separatrix ranges from

0.25 to 0.49. More details about these discharges are shown in Table. II.

These four discharges are all quasi-stationary type I ELMy H-mode plasmas. Figure 1 shows the

time history of the Dα signal measured at the edge of the plasma and Fig. 2 shows the stored energy

and the heating power for each of the discharges. The stored energy for discharges 53186 and

53187 is roughly constant during the period from 20.5 sec to 25.5sec. For discharge 53298, the

stored energy is constant during the period from 17.0 sec to 23.5sec, and for discharge 52308, the

stored energy is constant from 17.0sec to 19.5sec. Note that the stored energy is approximately the

same in all of the discharges during the quasi-stationary period, and the confinement time is consistent

with the H-mode scaling τIPB98(y;2) [18]. High resolution Rogowskii coils are used to measure the

time evolution of the diamagnetic energy. Figure 3 shows the variation in the stored plasma energy

between two consecutive type I ELMs for JET discharge 53298, together with the Dα signal. It can

be seen that the total plasma stored energy decreases about 10% during an ELM crash. Also, the

characteristic ELM frequency is approximately 17Hz.

The experimental pressure profiles used in the comparisons presented in this paper were taken

from the core LIDAR Thomson scattering measurement and from the Charge Exchange (CX)

spectroscopy. Note that the LIDAR and CX diagnostics do not have sufficient resolution near the

edge of the plasma to resolve the width of the pedestal. As a result, it is difficult to compute the

exact width of the pedestal from the experimental data. Instead, in this work, measurements at the

top of the pedestal with these diagnostics were used as a way to compare experimental results with

the results obtained in the simulations. In Fig.4, the experimental and simulated pressure profiles

are plotted for all four discharges. The smoothed experimental data curves are obtained by mapping

the raw experimental data onto the JETTO computational grid using a spline routine.

3. THE PEDESTAL WIDTH MODEL BASED ON MAGNETIC AND FLOW SHEAR

STABILIZATION

The fundamental physics associated with this pedestal width is that the turbulence within the pedestal

is suppressed by the Er ××××× B flow shear. The pedestal is formed in the region where the stabilizing

Er ××××× B shearing rate, γγγγγEr ××××× B, exceeds the turbulence growth rate, γs, so that the stabilization condition

can be written as

        γ        γ        γ        γ        γEr ××××× B ≥ γγγγγs          (1)

Within the pedestal of well-developed H-mode plasmas, it is assumed, see for example Ref. [12],

that the radial electriceld, Er, is determined by the pressure gradient, ∂p/∂r;

E;th
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(2)

where n is the plasma density and e is the electron charge. This results in an Er ××××× B drift velocity

given by

(3)

where ∆ is the width of the pedestal, ρi is the ion gyro radius and cs is the ion sound velocity. As a

result, the Er ××××× B shearing rate, γγγγγEr ××××× B, can be approximated as

(4)

An estimate for the growth rate for the turbulence due to drift modes, taking into account of the

reduction associated with the magnetic shear in the pedestal region [12], is given by

(5)

where s is the magnetic shear. The scaling of the pedestal width is obtained by substituting Eqs. 4

and 5 into Eq. 1 and solving for ∆. The resulting pedestal width is given by

(6)

The constant of proportionality in Eq. 6 is found to be 2.42 where the magnetic shear, s, is calculated

using the shear prescription described in Ref. [13]. Note that the calculation of the magnetic shear,

s, involves a non-linear iteration, and the constant of proportionality in Eq. 6 was chosen to minimize

the RMS deviation between predicted pedestal temperatures based on the width scaling described

above and the corresponding experimental pedestal temperatures for 533 data points. Further details

can be found in Ref. [13].

4. THE INTEGRATED PREDICTIVE TRANSPORT CODE JETTO

The 11/2D transport code JETTO is used to simulate the time evolution of plasma profiles such as

current density, temperatures and particle densities in both the core and pedestal regions. The edge

boundary conditions, such as the electron and ion temperature, are imposed at the separatrix in the

JETTO code. The electron and ion temperature at the separatrix is taken to be 200eV while the

electron density at the separatrix is assumed to be 2×1019m-3. It was shown in Ref. [19] that for

type I ELMy H-mode plasma without strong gas puffing, the modeling results are not sensitive to

the choice of boundary conditions at the separatrix. Two main assumptions are made in the modeling

∂p

∂r
neEr =

Er  =    1      ∂p         1     p      ρics

BT neBT  neBT ∆� ∆�∂r
vEr × B = ≈�= =

  ∂vEr × B      ρics

∆2∂r
γEr × B = ≈� .

cs    1
s2∆�

γs ∝� .

∆  ∝  ρis2.
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of the pedestal: The first assumption is about the transport within the edge barrier, both between

ELMs and during ELMs, and the second assumption is related to the scaling of the width of the

pedestal, which was discussed in the previous section.

As noted in Section I, it is assumed that anomalous transport is suppressed within the edge

transport barrier between ELMs. For the anomalous transport in the core plasma, the Mixed Bohm/

gyro-Bohm model [20] is used. The reduction in the transport coefficients within the pedestal results

in the development of a steep pressure gradient in the pedestal region, which causes an increase in

the bootstrap current density within the pedestal. The steep edge pressure gradient and the resulting

edge current density eventually lead to destabilization of either a ballooning mode [21, 22] or a

peeling mode [23, 24, 25, 26]. The destabilization of these modes then triggers an ELM crash,

which results in a loss of plasma energy as well as the particles to the wall. The effect of the

removal of the plasma energy and particles associated with ELMs is included in these JETTO

simulations, as described below. The computed normalized pressure gradient, [α ≡ -(a0µq2/∈BT)(∂p/

∂ρ)], is compared with the prescribed critical normalized pressure gradient, αc, above which the

plasma is considered to be unstable with respect to the ballooning instability. When the value of α

anywhere inside the pedestal region exceeds the value of αc, all diagonal transport coefficients in

the JETTO code are temporarily increased by a factor of Aparticle; thermal above the ion neoclassical

transport level within the pedestal for a specified time interval τELM = 0.4ms, which is of the order

of a typical ELM duration in JET type I ELMy H-mode discharges (see Fig.3). The details of the

increase in the transport during an ELM crash are as follows: The increases occurs linearly during

the first quarter of the duration of the ELM, that is during ∆t = τELM/4. The transport remains at this

maximum level during one half of the ELM crash time interval. Finally, the transport decreases

linearly back to the neoclassical level during the final quarter of the ELM crash time interval. The

factor for the increase in particle transport during an ELM crash is 100 (Aparticle = 100). The thermal

transport during the ELM is taken to be 300 times that of the ion neoclassical thermal transport at

the top of the pedestal (Athermal = 300). The rapid increase in the transport coefficients within the

pedestal results in a pulse of particles and energy leaving the plasma. This burst of particles and

energy depletes the plasma edge and returns the system to an MHD-stable state α with  less than αc.

This cycle of edge instability, which represents the ELM activity, repeats throughout the simulation.

Note that the width of an ELM crash in the simulation is approximately the width of the pedestal.

The ELM transport model, described above, has a number of ad hoc parameters that determine

both ELM amplitude and its repetition rate. This model, which has been comprehensively tested

against a wide range of JET data (see, for example in Refs. [27, 28]), leads to the following

conclusions: The ELM amplitude (taken as the ratio of the energy loss during the ELM to the

average plasma energy) scales linearly with the parameter Hparticle; thermal ∝ Aparticle; thermal τELM

and the ELM frequency scales inversely proportional to H. Both the ELM amplitude and its duration

are controlled by non-linear MHD phenomena. The values of Aparticle; thermal and τELM are adjusted

in order to bring the modeling results into closer agreement with experimental data since the model
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for ELMs are not fully developed. It is found that the time averaged total plasma energy content

does not depend sensitively on the parameter Hparticle; thermal. Instead, the thermal energy confinement

time is almost entirely controlled by the core transport (which in turn depends on plasma parameters

at the top of the barrier as a result of the profile stiffness associated with core transport).

5. JETTO SIMULATION RESULTS

The simulations of 4 JET discharges (see discharge parameters in Table II) are carried out using the

JETTO code during the quasi-stationary period of the H-mode phase of the discharge (see Fig.2) in

order to avoid the influence of initial conditions such as the current density profile redistribution.

The anomalous transport in the core is calculated using the Mixed Bohm/gyro-Bohm transport model

[20], which has been tested in simulations of a variety of discharges with different plasma conditions

in different tokamaks. For example, the results of simulations using the Mixed Bohm/gyro-Bohm

transport model yield agreement with experimental data within 15% normalized RMS deviation for

L-mode and H-mode plasmas [3, 4]. For simplicity, the effects of sawtooth oscillations have not been

included in the simulations shown in this work. This simplication can lead to an overestimation of

central plasma pressure, although it should be noted that sawteeth were quite benign in these shots,

with a mixing radius not exceeding 20% of the plasma radius. The width of the pedestal is calculated

using the pedestal model, which is ∆ = 2.42ρis
2. The bases of this pedestal width model were briefly

discussed in previous section. Note that the value of magnetic shear, s, for the pedestal width is

calculated using the prescription that involves a non-linear iteration, described in Ref. [13].

Figure 4 shows the comparison between the experimental pressure profiles and the predicted

pressure profiles at a time just before an ELM crash for discharges 53186, 53187, 53298 and 52308,

using the Mixed Bohm/gyro-Bohm for the core and the ion neoclassical transport within the edge

barrier, where the pedestal width is given by the model. The over-prediction in the core profiles is

probably caused by the absence of sawtooth oscillations, which periodically reduce the central

profile of the core profiles. However, it is worth noting that the over-prediction in the pressure

profiles near the center of the plasma does not signicantly affect the overall connement, because of

the small volume occupied by the central part of the plasma.

It is also found that the average pedestal width prior to an ELM crash in the simulations for the

JET triangularity scan in Fig.4 ranges from 3.9cm to 4.4cm, which is about 5% of the minor radius.

Unfortunately, there is not enough radial resolution in the edge profile measurements to do a direct

comparison between the pedestal width given by the model and experimental data.

In Fig.5, the ion temperature, electron density and ion diffusivity at the top of the pedestal is

plotted as a function of time for a simulation of the high triangularity discharge 53298. Note that

peaks in ion diffusivity can be used as a signature of the ELM crashes in the JETTO simulations. It

can be seen that during each ELM crash (indicated by a high value of the ion diffusivity), both

temperature and density at the top of the pedestal decrease dramatically, and then recover after an

ELM crash. In the simulation for the JET high triangularity discharge 53298, the ELM frequency is
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found to be about 16.5Hz, which is close to the experimental ELM frequency observed in the Dα
signal for discharge 53298 shown in Fig.3, approximately 17Hz.

In Fig.6, the simulated HH98(y;2) factor and the stored thermal plasma energy are plotted as a

function of time for the JET discharge 53298. The HH98(y;2) factor is dened as HH98(y;2) ≡ τE,th/τE

where τe.th is the thermal energy confinement time. It is found that the average HH98(y;2) factor in

the simulations is approximately 1.0 during the interval from 21.0 sec to 22.0 sec. The values of the

HH98(y;2) factor are consistent with the experimental values obtained in the JET discharges (HH98(y;2)

1.0). It can also be seen from Fig.6 that the decrease in the simulated thermal energy due to each

ELM crash is about 10% of the plasma thermal stored energy before the crash, which is approximately

the same as that observed in the experimental data, which is shown in Fig.3.

Figure7 shows the predicted plasma current density profile (Jz) and the simulated bootstrap

current density profile (Jbs) in each discharge, at a time just before an ELM crash. It can be seen that

the bootstrap current density is dominant at the edge of the plasma. The maximum peak of the

bootstrap current density is located around 98% flux surface in each of the four discharges. The

maximum peak value of the bootstrap current density is the highest in discharge 52308, which is

the discharge with the highest triangularity, and the maximum peak of the bootstrap current density

is the lowest in discharge 53186, which is the discharge with the lowest triangularity. The increase

in the the maximum peak of the bootstrap current density with triangularity results from the increases

in the value of the critical normalized pressure gradient, αc, used in each simulation. Note that the

value of αc is initially arbitrary chosen in each simulation. The stability analysis is then carried for

that simulation using the HELENA and MISHKA stability codes. Then, the value of αc is adjusted

so that it agrees with the maximum possible pressure gradient allowed by the stability analysis.

This procedure is carried out until the JETTO result is self-consistent with the stability analysis of

the HELENA and MISHKA codes. In accordance with neoclassical theory, the bootstrap current

density is approximately proportional to the pressure gradient and varies inversely with the

collisionality. Since the bootstrap current density appears predominantly in the strong pressure

gradient region of the pedestal, it follows that the two driving forces for MHD instabilities, the

pressure gradient and the edge current, are coupled. This complex system requires a more

sophisticated stability analysis. Such an analysis is carried out and is discussed in the next section.

6. STABILITY ANALYSIS

In order to check the validity ofthe analytical ballooning stability criterion used in the JETTO code,

the code is linked with the HELENA and MISHKA MHD stability analysis codes. The HELENA

code takes the self-consistent equilibrium produced by the JETTO code, that is the pressure gradient

and the current density profiles, together with the corresponding magnetic configuration, at a time

just before an ELM crash occurs. The HELENA code then refines the equilibrium in order to

provide the resolution required for the stability analysis. This refined equilibrium is used in the

HELENA code to generate a ballooning stability s-α diagram. Furthermore, the MISHKA code is

E,th

r
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used to evaluate the stability criteria for finite-n ballooning and low-n kink/peeling modes. In this

study, the stability analysis is carried out in MISKHA for toroidal mode numbers in the range of n = 1

to n = 14. Note, the version of the MISHKA code employed in this paper is based on the ideal MHD

model without dissipation or flow shear.

Stability analyses are carried out with the HELENA and MISHKA codes to evaluate the edge

stability at the time just before an ELM crash. Figures 8, 9, 10 and 11 show the stability s-α diagram

for the discharges 53186, 53187, 53298 and 52308, respectively. In each figure, the stability s-α

diagrams are plotted for the 93%, 94%, 95% and 96% flux surfaces. In each plot, the circle symbol

represents the location of the operational point for the pressure gradient at that flux surface. The

region of instability associated with the infinite-n ideal ballooning modes is indicated with crosses

and the numbers indicate the most unstable mode of finite-n ballooning and low-n kink/peeling

modes at each location on the s-α plane. Note that only unstable modes with the growth rates

greater than 0.03 of the Alfvén frequency are included in Figs 8, 9, 10 and 11. A weakly unstable

mode might be stabilized if finite Larmor radius or ion diamagnetic drift effects were included. A

discussion of this stabilizing effect is beyond the scope of this study.

Figure 8 shows the stability s- diagram for the low triangularity JET discharge 53186 (δ = 0.25).

It can be seen that the edge pressure gradient is limited by an n = 2 toroidal mode. It is also found

that there is no access to the second stability region of ballooning modes, since the access is closed

by finite-n ballooning and low-n kink/peeling modes. The normalized pressure gradient at the 95%

flux surface for this simulation is approximately 3.7.

The stability s-α diagram for the slightly higher triangularity JET discharge 53187 (δ = 0.32) is

shown in Fig.9. It can be seen that the edge pressure gradient is limited by an n = 3 toroidal mode.

There is a limited access to second stability region of ballooning modes. The normalized pressure

gradient at the 95% flux surface for this simulation is approximately 5.3. It can be seen that the

pressure gradient at the 95% flux surface increases by 43% above the value of the low triangularity

discharge 53186 (∂ = 0.25).

Figure 10 shows the stability s-∝ diagram for the higher triangularity JET Pulse No: 53298 (δ =

0.45). It can be seen that there is a wide access to the second stability region of ballooning modes. The

edge pressure gradient appears to be limited by an n = 2 toroidal mode, but very close to the finite n =

10 ballooning mode as well. The normalized pressure gradient at the 95% flux surface obtained in this

simulation is approximately the same as that obtained in the simulation for the δ = 0.32 plasma.

Finally, the stability diagram from the MISKHA code produced for the highest triangularity discharge

52308 (δ = 0.49) is shown in Fig. 11. It can be seen that that there is access to the second stability

region of ballooning modes for this simulation. The access to second stability of the edge pressure

gradient is limited by thenite n = 14 ballooning mode. The normalized pressure gradient at the 95%

flux surface for this simulation is approximately 6.2. Thus, when δ = 0.49, the normalized pressure

gradient at 95% flux surface is 68% higher than the value obtained in the simulation of the δ = 0.25

low triangularity discharge.
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CONCLUSION

Simulations of four JET type I ELMy H-mode discharges in a triangularity scan are carried out

using the integrated modeling code JETTO. In all of these simulations, the pedestal width is calculated

by using the magnetic and flow shear stabilization model and the edge pressure gradient is limited

by ballooning mode instability. The transport within the pedestal between ELM crashes is assumed

to be only ion neoclassical. It is found that the simulations using the pressure gradient limited by

MHD ballooning stability approximately reproduce the experimental data for the pressure profiles.

A stability analysis indicates that an access to second stability in low triangulairty is closed by low-

n kink/peeling modes while there is limited access to second stability region of ballooning modes

in high triangularity discharges. For the high triangularity discharges, the pressure gradient is limited

by finite-n ballooning modes. Since there is an access to second stability region of ballooning

modes in the simulations of high triangularity discharges, the pedestal normalized pressure gradient

in these discharges can achieve higher edge normalized pressure gradients than that achieved in

low triangularity discharges.
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TABLE I: Notation used in this paper.

TABLE II: List of discharges used in this paper

a�

r�

R�

�

κ�

δ�

BT�

Ip�

nped�

Tped�

∂p/∂r�

∆�

ρi�

s�

α�

αc�

v*�

AH�

ρ

m�

m�

m�

�

�

�

Tesla�

MA�

m-3�

keV�

Pa/m�

m�

m�

�

�

�

�

AMU

Plasma minor radius (half-width)�

Flux surface minor radius (half-width)�

Major radius to geometric�

Center of each flux surface�

Plasma elongation�

Plasma triangularity�

Vacuum toroidal magnetic field at R�

Toroidal plasma current�

Pedestal density�

Pedestal temperature�

Pressure gradient�

Pedestal width�

Ion gyro radius�

Magnetic shear�

Normalised pressure gradient�

Maximum normalised pressure gradient�

Normalized collisionality�

Hydrogenic isotope mass�

Toroidal flux co-ordinate

Symbol Units Description

R�

α�

κ�

δ�

BT�

Ip�

AH�

Zeff

2.91�

0.94�

1.69�

0.25�

2.61�

2.50�

2.00�

2.03

Pulse No:�
53186

Pulse No:�
53187

Pulse No:�
53298

Pulse No:�
52308

2.92�

0.92�

1.74�

0.32�

2.61�

2.50�

2.00�

2.03

3.01�

0.89�

1.72�

0.45�

2.68�

2.49�

2.00�

2.59

2.99�

0.90�

1.74�

0.49�

2.69�

2.50�

2.00�

1.60
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Figure 1: The time history of the Dα signal, measured at
the edge of the plasma, is shown for JET Pulse No: 53186,
53187, 53298 and 52308.

Figure 2: The time history of the stored plasma energy
(solid lines) and that of the heating power (dashed lines)
is plotted for JET Pulse No’s: 53186 (top panel), 53187
(second panel), 53298 (third panel) and 52308 (bottom
panel).

Figure 3: The measured stored plasma energy (top panel)
and the Dα signal (bottom panel) are plotted as a function
of time between two consecutive type I ELMs for Pulse
No: 53298.
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Figure 4: Predicted and experimental pressure are plotted as a function of normalized minor radius at a time just
before an ELM crash for Pulse No’s 53186, 53187, 53298 and 52308.
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Figure 5: The ion temperature (top panel), electron
density (middle panel) and ion diusivity (bottom panel)
at the top of the pedestal are plotted as a function of time
for Pulse No: 53298 (δ = 0.45).

Figure 6: The HH98(y;2) factor and the stored energy (Wth )
are plotted as a function of time for the JET Pulse No:
53298 (δ = 0.45). The HH98(y;2) factor is defined as HH98(y;2)
≡ τE;th /τ IPB98(y;2), where τE;th is the thermal energy
connement time.

Figure 7: The simulated plasma current density, Jz, (top
panel) and the bootstrap current density, Jbs (bottom
panel) are plotted as a function of normalized minor
radius, at a time just before an ELM crash, for JET Pulse
No: 53186, 53187, 53298 and 52308.
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Figure  8: Stability results obtained using the HELENA and MISHKA codes are plotted for 93%, 94%, 95% and 96%
flux surfaces on an s-α stability diagram for Pulse No: 53186 (δ = 0.25). The region of instability associated with the
infinite-n ideal ballooning modes is indicated with crosses. The numbers indicate the most unstable finite-n ballooning
and low-n kink/peeling modes at each location on the s-α plane. The region without numbers or crosses is the region
where all modes are stable.
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Figure 9: Stability results obtained using the HELENA and MISHKA codes are plotted for 93%, 94%, 95% and 96% flux
surfaces on an s-α stability diagram for Pulse No: 53187 (δ = 0.32). The region of instability associated with the
infinite-n ideal ballooning modes is indicated with crosses. The numbers indicate the most unstablenite-n ballooning
and low-n kink/peeling modes at each location on the s-α plane. The region without numbers or crosses is the region
where all modes are stable.
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Figure 10: Stability results obtained using the HELENA and MISHKA codes are plotted for 93%, 94%, 95% and 96%
flux surfaces on an s-α stability diagram for Pulse No: 53298 (δ = 0.45). The region of instability associated with the
infinite-n ideal ballooning modes is indicated with crosses. The numbers indicate the most unstablenite-n ballooning
and low-n kink/peeling modes at each location on the s-α plane. The region without numbers or crosses is the region
where all modes are stable.
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Figure 11: Stability results obtained using the HELENA and MISHKA codes are plotted for 93%, 94%, 95% and 96%
flux surfaces on an s-α stability diagram for Pulse No: 52308 (δ = 0.49). The region of instability associated with the
infinite-n ideal ballooning modes is indicated with crosses. The numbers indicate the most unstable finite-n ballooning
and low-n kink/peeling modes at each location on the s-α plane. The region without numbers or crosses is the region
where all modes are stable.
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