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ABSTRACT.

Plasma parameters, like the internal inductance li and the diamagnetic poloidal beta βDIA, are of particular

relevance for a reliable real-time control system of next step Tokamaks. These and other quantities

have been obtained at JET (Joint European Torus) with a method that uses the Shafranov integrals S1,

S2 and S3. Indeed they allow the direct calculation of the Shafranov parameter Λ = βMHD + li/2 and of

βDIA. Moreover, in discharges with a sufficiently high elongation (k > 1.3 typically), the internal

inductance can be separated from the MHD poloidal beta βMHD and calculated independently, through

the Shafranov integrals, with a precision which is more than satisfactory for real-time applications. It

is worth mentioning that, since S1, S2 and S3 are integrals defined on the plasma boundary, a specific

algorithm, depending on the fast code XLOC, has been expressively developed to determine this

quantity.

The method to determine the plasma parameters has been verified off-line, benchmarking its outputs

with the estimates of the most sophisticated equilibrium codes available. The results of this systematic

comparison have been very encouraging both in the limiter and x-point phases of the discharges and

on all the investigated plasma configurations. The computational time, necessary to determine the

plasma boundary and about 50 signals, is only about 1.5 ms on a PC equipped with a 400 MHz

Pentium II, well below the 10 ms constraint of JET real-time applications. The code has therefore

been implemented on-line and its outputs have already been exploited to achieve the feedback control

of some plasma parameters.

1. INTRODUCTION

In the last years the need of a reliable real-time control system of Tokamak plasmas has become

increasingly evident. The new perspectives opened by the advanced scenarios have emphasised the

requests on the feedback control of several plasma parameters. This necessity is of particular relevance

in the case of plasma scenarios aimed at the study of Internal Transport Barriers (ITBs), which are

very promising in terms of performances and could benefit from the use of feedback control tools [1].

Both the achievement and the sustainment of these ITBs can be very demanding and a reliable feedback

control of these plasma scenarios would be a major breakthrough in this research programme. In

addition, there is also the need to develop new techniques for the avoidance of MHD instabilities, the

control of the edge localised modes (ELMs) and of the plasma density. With all these long term

programmes in view, not only local values, like the current density and the q profiles [2], but also

integral quantities like the internal inductance and the confinement parameters are of great interest. In

JET it has therefore been decided to develop a fast algorithm, BetaLi, to determine these parameters

in real-time and make them available to the applications that need them for the feedback control.

Since the plasma boundary, or last closed flux surface (LCFS), is a prerequisite to the determination

of the integral parameters, a new algorithm has been developed in order to compute it. This algorithm

is based on the poloidal magnetic flux Ψ reconstruction obtained by the external magnetic measurements

(section 2). Once the boundary has been identified, crucial surface-dependent quantities can be
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calculated in addition to obvious geometric parameters like the elongation k or the poloidal cross-

section area A. In particular, the Shafranov integrals (S1, S2, S3) and moments (Yi, i = 1..n) can be

evaluated (section 2). The formers are integrals of the poloidal magnetic field on the LCFS and constitute

a prerequisite to the determination of the diamagnetic poloidal beta βDIA and of the plasma internal

inductance li (section 3), quantity needed also to calculate other main global parameters, like the

stored MHD energy WMHD and the confinement time τE (section 3).

The results of the described application have been extensively compared with the estimates of

more complex off-line programs, like the equilibrium code EFIT [3], which solves the complete

Grad-Shafranov equation, and FAST [4], and the agreement has been more than satisfactory, as described

in section 4. In this section the computational performance of BetaLi is also reported, showing the

compatibility of this code with JET real-time requirements.

An example of BetaLi real-time application is reported in section 5. The BetaLi diamagnetic

normalised beta has been given as input to a model based feedback code. Using the additional heatings

as actuators, it has been possible to obtain the real-time control of this quantity for all the discharge.

After a brief summary, the future prospects and applications of the described algorithms are discussed

in section 6.

2. IDENTIFICATION OF THE PLASMA BOUNDARY AND OF THE RELATED

INTEGRAL QUANTITIES

The boundary algorithm developed to determine the LCFS is based on the knowledge of the Ψ function

on a cross-section of the machine. The spatial distribution of this quantity is calculated in real-time in

JET by the code XLOC, using the least square method to fit the available magnetic measurements

with the model [5,6]. Since this application is aimed only at the identification of the plasma boundary

and at measuring its distance from the first wall, the flux equation can be solved in the vacuum region

outside the plasma. The real-time requirements are matched by approximating Ψ with a sixth order

Taylor expansion [5,6]. Once the spatial function Ψ(R,Z) has been determined, it is quite straight to

find out the value of ΨLCFS, the poloidal flux at the boundary. Indeed in the limiter configurations

ΨLCFS is given by the maximum value of Ψ at the first wall, while in the case of x-point plasmas the

LCFS is defined as the flux surface of the x-point and so ΨLCFS is the x-point flux [6].

Using Ψ given by XLOC and solving the equation

Ψ(R, Z) = ΨLCFS        (1)

on the vessel cross section allows then to find the points P(R, Z) belonging to the LCFS.

It has been decided to discretise the plasma boundary, dividing it in 100 points, in order to simplify

its calculation. This has been achieved considering 100 radial segments, called Gaps, whose layout is

shown in fig.1. The chosen number of segments is due to a compromise between accuracy and

computational speed. Equation 1 is then solved along each of the Gaps. The univocity of the solution
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of equation 1 on each Gap is guaranteed by the reason that Ψ(R, Z) is monotonic from the centre of the

plasma to the outside (although the values of Ψ(R, Z) inside the plasma are not correct due to the

vacuum region approximation).

There is however an exception, which is due to the non-monotonicity of the flux in the region near

the x-point. To solve this problem, the solution adopted consists in using the information about the

position of the x-point (also supplied by XLOC). The nearby segments are clipped by taking the

orthogonal projection of the x-point on them [7]. From the projection point on, the flux is monotonic

and, due to the Gap layout, no point of the LCFS can be below the projection points.

The bisection method has been exploited to find the solution of equation 1 in a fast way suitable to

the real-time constraints. It foresees to compare, on each cycle, the flux on the current segment centre

withΨLCFS, and to discard the part of the Gap where ΨLCFS is not contained. The length of the

investigated  segment halves as the number of cycles increases, which, as far as it is concerned,

depends on the discretisation degree of the Gap (in this case the Gaps have been subdivided in N =

150 equispaced points each; the reason is always that of a compromise between accuracy and short

computational time). The search terminates when the length of the segment to check is equal to one

point: this means the flux of the remaining point is equal to ΨLCFS, and so its coordinates are the

coordinates of the LCFS along that segment. This search method is fast because on average its efficiency

(i.e. the order of magnitude of the number of searches for each Gap) is equal to O(logN), whereas the

efficiency of a linear search would be equal to O(N). Two results of this procedure can be examined in

fig.2, where a surface for the limiter configuration (dotted line) and another for the divertor configuration

(solid line) are shown.

Once the points of the LCFS have been determined, it is immediate to provide the required

geometrical quantities like the plasma volume V, the minor and major radii a and R0, the elongation k

and the triangularity.

The next fundamental step in BetaLi is the calculation on the LCFS of the integral quantities used in

the determination of the plasma confinement properties. In particular, the so-called Shafranov integrals

S1, S2 and S3 [8,9], are necessary to determine li and some of the main plasma confinement quantities

(see next section). S1, S2 and S3 are integrals of the various components of the poloidal field on the

LCFS and are defined as [9]:

(2)

(3)

(4)

where Bθ is the poloidal magnetic field, S is the plasma surface, R and Z the radial and vertical

∫S1 = Bθ (ReR + ZeZ - Rc eR) • ndS
1

Bpa V
2

2

S

∫S2 = Bθ Rc eR • ndS
1

Bpa V
2

2

S

S3 = Bθ ZeZ • ndS
1

Bpa V
2

2∫
S
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 coordinates (eR and eZ the respective vectors), Rc a constant major radius (taken equal to 2.96 m, the

radial coordinate of the vessel geometrical centre), Bpa1 the poloidal field for normalisation and n the

vector normal to the plasma surface. To assess the quality of the results, our evaluation of the Shafranov

integrals has been compared with the same quantities provided by EFIT, used generally in JET to

obtain information on the magnetic configuration. In fig.3 a typical example of S1, S2 and S3 evolution

during a discharge is reported, showing the good agreement between our calculation and EFIT outputs.

Other essential quantities, which can be determined from the knowledge of the magnetic field at the

LCFS, are the Shafranov moments [10,11,12], whose definition is:

(5)

where Γ is the contour of the plasma cross-section, and Fm is a weighting function satisfying ∇×∇
×Fmeϕϕϕϕϕ  = 0, where eϕϕϕϕϕ  is the toroidal coordinate vector.

In BetaLi a particular role is assumed by the first two moments Y1 and Y2. The expression for Y1 is the

following:

(6)

where Bτ and Bn are respectively the tangential and normal coordinates of the poloidal magnetic field.

This quantity allows the determination of the radial (Rt) and vertical (Zt) coordinates of the current

centroid [10]. The expression for Y2 is given by:

(7)

where f2 is:

(8)

and g2 is:

     ( )( ) ( ) ( ) ( )
2

3
2

2
3

2
2

t

t
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R
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+−−= .        (9)

Y2 is important because can be directly correlated to li (see below).

3. INTERNAL INDUCTANCE AND CONFINEMENT PARAMETERS

If the plasma is sufficiently elongated (k > 1.3 in JET — see section 4), the Shafranov integrals lead to

the calculation of the plasma internal inductance li [9] according to the relation:

∫Ym = FmBp dl
1

µ0 IP S

∫
Y1 =

R-Rc+           (R-Rc)
2 dl

µ0 IP 

Γ

1

2Rc
Bτ +           Bn

RZ

Rc

∫
Y2 =

[ƒ2Bτ + Rg2 Bn]dl

µ0 IP 

Γ

f2 =
2

(R - Rt )  1 + R-Rt

2Rt

2
- (Z - Zt ) 1 + R-Rt

Rt

1
Bpa = , where Ip is the current and µ0 is the diamagnetic parameter in the vacuum

 µ0 RC 
IP

2V

22
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(10)

where

(11)

Rt is the radial current centroid and the parameter α is defined as

(12)

In the determination of the internal inductance the most delicate point is the evaluation of the

α volume integral: since XLOC, and so BetaLi, cannot get the values of the magnetic field inside the

plasma, (12) is unusable. So another expression of α becomes indispensable. Even if this quantity can

be approximated by [9]

(13)

expressing the volume integral in terms of the elongation, unfortunately this expression turned out to

be not completely satisfactory for JET plasmas. In order to reduce the errors on the internal inductance

below 10%, a better estimate of this quantity proved to be necessary. To this end, a systematic analysis

of the parameters influencingα has been performed. In this perspective, a so-called ideal parameter

αID has been defined and it has been calculated from (10) using all BetaLi quantities except li, that has

been taken from EFIT, since this is the value that has to be reproduced. From a careful correlation

analysis, it has been recognised that αID shows a strong and clear dependence on k, Y2, αS and on their

mixed products. αS has been defined as the analogous of (12) but computed on S instead than in V:

(14)

The αID parameter has been approximated as a linear combination of the three main quantities k, Y2,

αS and of their mixed products. Its dependence on the six aforementioned quantities is testified in

table 1, where the correlation coefficients are shown: the closer to one the absolute value of a coefficient,

the more the related quantities are correlated. The expression of αID becomes the following:

(15)

A database of 21 pulses, representative of the most typical plasma configurations, has been used in

order to derive the linear combination coefficients ci by inversion of the following over-determined

matrix equation:

[ ]321 2
1

1 SSSli −+
−

= δ
α

c

t

R
R−=1δ

1
2
2

2

+
≅

k
kα

SSSID YckckYccYckc αααα 265243221 +++++=

αS = 2   Bθ • eZ 
  

 dV / Bθ dV
S

22∫



6

. (16)

In (16), [X] is the 6-column matrix containing the parameters on which αID depends and [C] is the

vector containing the 6 unknown coefficients. The number of rows, i.e. the number of patterns

considered, is about 3000. The inversion of the equation and the determination of the coefficients

have been performed with the Singular Value Decomposition method. The coefficients determined in

this way have then been used to perform the calculation of α in real-time. In particular, it is worth

mentioning that the adopted method allows an optimisation of the coefficients valid both for the

limiter and the x-point phase of the discharge.

The time evolution of a BetaLi estimate of li and the corresponding signal from EFIT is reported in

fig.4, showing the good agreement between the two values during the entire shot. It can be seen that

the time variations ofli during the discharge are well reproduced and this is a fundamental point for the

real-time control purposes. Once the plasma internal inductance has been properly estimated, it can

be used to determine the MHD beta, βMHD, from the following relation [8]:

(17)

and to provide the MHD energy, WMHD, calculated from [13]:

(18)

In its turn βDIA can be expressed just in terms of S1, S2 and of the plasma diamagnetic parameter µ,

which is supplied directly by XLOC, as follows [8]:

(19)

whose related diamagnetic energy, WDIA, is given by [13]:

. (20)

From WDIA several important confinement parameters can be derived, like the diamagnetic toroidal

beta βTOR and the diamagnetic normalised beta βNORM [14]:

(21)

(22)

MHDpMHD IReW β2
0

771.4 −=

µδβ ++= 21 SSDIA

DIApDIA IReW β2
0

771.4 −=

βTOR =
19.123e

-6 
• WDIA R0

B
VAC

V

2

βNORM =
56.605

 
• WDIA aR0

IpBVACV

βMHD =      + S2   1 -    -     
S1

2

li
2

δ
2

[αID] = [X] • [C].
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where BVAC is the toroidal field in the vacuum computed at Rc and supplied by XLOC. Combining at

last the results from li and βDIA, alsoτE can be evaluated [4]:

(23)

where PT is the total input power, given by the sum of the ohmic input power and the powers coming

from the additional heatings, namely the neutral beam injection (NBI), the radio-frequency heating

(ICRH) and the lower hybrid (LH). The ohmic input power itself can be evaluated by means of li [4].

As an example, in fig. 5 the time evolution of βNORM during a shot is compared with the same quantity

given by EFIT. Even in this case the agreement is more than satisfactory for real time applications.

4. OVERVIEW OF THE RESULTS AND PERFORMANCES OF THE CODE

4.1. OVERVIEW OF THE RESULTS

A summary of the quantities calculated with the described application is given in table 2. To give

some indications about the accuracy of our estimates, in fig. 6 and 7 a statistical comparison between

the results of the BetaLi and EFIT codes are shown for li and βNORM. It must be pointed out that in fig.6

the points most far from the bisectrix belong to the final part of the pulse, when both the current and

the elongation are low. The database comprises 54 discharges, mainly of the kind used in optimised

shear, ITB, high triangularity, and next-step Tokamak configurations, and that cover a wide spectra of

the main plasma parameters, such as the plasma current and the toroidal magnetic field.

The application has been benchmarked successfully on a large variety of discharges and can be

considered of general validity. The important condition for the applicability of these routines is on the

elongation: it must be sufficiently high (a typical value for JET is k > 1.3) in order to have a reliable

value of S3, an α greater than 1 (for circular plasmas k = 1 and α equals 1) and therefore a consistent

value of li. The mean relative error (MRE2) and the mean squared error (MSE3), with respect to EFIT,

of some of the evaluated plasma parameters, are summarised in table 3. Error bands of a few percent,

with respect to the off-line analysis code, must be considered more than satisfactory for real-time

control applications, keeping in mind that the reference EFIT values have by themselves an error band

of a few percent. Similarly table 4 shows the errors with respect to FAST for two others confinement

parameters, namely the total input power and the confinement time. In this case the values are worse,

but two issues must be pointed out: a) the determination of these parameters is more difficult since it

involves the real-time calculation of derivatives; b) FAST itself gives, for these signals, a level of

accuracy of 20-25%.

4.2. COMPUTATIONAL PERFORMANCES

BetaLi has been written in C++ and the machine used to test it has been a PC with a 400MHz Pentium

II as processor and Windows NT as operative system. The calculation of the LCFS is very fast with

the described code, taking on average 600 µs per cycle. The accuracy in the determination of the

dt
dWP

W

DIA
T

DIA
E

−
=τ

 Si  - Si

Si

2
MRE =           / N where SR is the reference off-line signal, SB is the analogous

realtime signal from BetaLi, and N is the total number of samples

Σ
Nl

i=1

R

R

B

 (Si  - Si  )
3
MSE =           / N.Σ

Nl

i=1

R B 2
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boundary spans from ∼1 cm near the equatorial plane at Z = 0m, to ∼4cm in the upper and lower

regions of the plasma. This is mainly due to two reasons: the approximation of Ψ with a Taylor

expansion and the uncertainty in the field measured by the magnetic probes. On the other hand, all the

parameters listed in table 2, plus other temporary parameters necessary for the calculations (altogether

about 50 signals), can be evaluated in about 900µs per cycle. It turns out that the overall updating time

is about 1.5ms. This value is well below the sampling period of 10ms at which BetaLi is requested to

supply data to the other JET control applications.

5. EXAMPLE OF REAL-TIME CONTROL OF THE DIAMAGNETIC NORMALISED

BETA

Due to the positive indications obtained from a wide database of discharges, an online version of

BetaLi has been implemented into the JET real-time control system and is currently running on a PC

with the same characteristics as the one used in the test phase.

The outputs of the code have already been used in the last experimental campaigns. In particular,

the estimate of the diamagnetic energy has been given as input to a feedback control code aimed at

controlling this quantity using NBI heating systems as actuators.

5.1. RESULTS

The control model implemented to drive the actuators foresees a traditional proportional-integral

gain, and can be expressed with the formula:

 (24)

where P is the heating power at time t, P0 is the power at the initial control time t0 and ∆ρ is the

difference between the target value and the computed one.

The achievements have been encouraging and the results are shown in the following. In fig. 8a

there are the estimates of BetaLi and EFIT WDIA, while in fig. 8b the NBI power is reported; the pulse

is the 58955 one.

CONCLUSIONS AND FURTHER DEVELOPMENTS

Given the accuracy in the results and the computational speed reported in section 4, the performances

of BetaLi can be considered suitable to real-time control applications in big Tokamaks like JET. If the

plasma elongation is above 1.3, the presented algorithm is potentially capable of providing in real-

time the main topological and confinement quantities of a Tokamak plasma, also for those scenarios

that can present quite involved profiles, as the reversed shear discharges. It is also worth mentioning

that the code is very robust and applicable to both limiter and x-point configurations.

The real-time control of some plasma parameters has already been positively tried using feedback

control algorithms and the heating systems as actuators. For example, as shown is section 5, the

∫P(t) = P0 + GP∆ρ + G1    ∆ρdt,
t

t0
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feedback control of the diamagnetic normalised beta has been successfully achieved and this result

is very encouraging for the future, especially when having in mind the Tokamak advanced scenarios

and ITER.

The BetaLi performance in the calculation of the internal inductance and of the magnetic axis

radial position has been compared to that of two neural networks, expressively developed to determine

in real-time the aforementioned quantities. The relevance of this alternative approach resides mainly

in the generalisation capabilities of neural networks, which could be reflected in an improvement of

the accuracy in the determination of li and Rm, especially in particular discharges with ample margins

of variation of these parameters. The performance of the neural networks proved to be better than the
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Table 1: Correlation coefficients between the parameters k, Y2, αS, their mixed products and αID.

TYPE OF CORRELATION COEFFICIENT VALUE

Between k and αID 0.96

Between Y2 and αID -0.82

Between αS and αID 0.83

Between k*Y2 and αID -0.87

Between k*αS and αID 0.94

Between Y2*αS and αID -0.85
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Shafranov integrals and internal inductance parameters first Shafranov integral S1

second Shafranov integralS2

third Shafranov integral S3

internal inductance li

Geometric parameters minor radius a

major radius R0

elongation k

triangularity δ

boundary length L

poloidal cross-section area S

volume V

radial current centroid Rt

vertical current centroid Zt

Confinement parameters radial magnetic axis Rm

diamagnetic poloidal beta βDIA

diamagnetic energy WDIA

diamagnetic toroidal beta βTOR

diamagnetic normalised beta βNORM

MHD beta βMHD

MHD energy WMHD

ohmic input power PΩ

total input power PT

confinement time τE

Other parameters Greenwald density limit NGW

first Shafranov moment Y1

second Shafranov moment Y2

toroidal magnetic field in plasma B0

loop voltage at plasma boundary Vp

Table 2: list of the main quantities calculated by BetaLi.



12

Table 4: mean relative errors (MRE) and mean squared errors (MSE), with respect to FAST, of some of the plasma

parameters evaluated by BetaLi.

Plasma parameters         MRE (%)         MSE

li 2.59 0.0012

S1 3.3 0.001

S2 4 1.87e-4

S3 2.82 0.0001

βDIA 10.79 0.0007 [%]2

βTOR 11.14 0.0023 [%]2

βNORM 10.96 0.0029 [%]2[m]2[T]2/[MA]2

WDIA 11.43 1.96e10 [J]2

Rt 0.2 4.2e-5 [m]2

Zt 0.86 1.1e-5 [m]2

Rm 0.33 0.0001 [m]2

R0 0.16 2.98e-5 [m]2

a 0.98 0.0002 [m]2

k 1.26 0.0007

Plasma parameters MRE (%) MSE

PT      7.42 2.82e11 [W]2

τE    17.16 0.022 [s] 2

Table 3: mean relative errors (MRE) and mean squared errors (MSE), with respect to EFIT, of some of the plasma

parameters evaluated by BetaLi.
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Figure 1: Layout of the 100 Gaps used to determine the
last closed flux surface.

Figure 2: Example of two last closed flux surfaces
determined by the boundary code: a limiter surface
(dotted line) and an x-point one (solid line).

Figure 3: Estimates of the Shafranov integrals as
computed by BetaLi and EFIT for Pulse No: 51523; Ip is
the plasma current and Bphi is the toroidal magnetic field.

Figure 4: Estimates of the internal inductance as
computed by BetaLi and EFIT for Pulse No: 51780; Ip is
the plasma current and Bphi is the toroidal magnetic field.
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Figure 5: Estimates of the diamagnetic normalised beta
as computed by BetaLi and EFIT for Pulse No: 51780; Ip
is the plasma current and Bphi is the toroidal magnetic
field.

Figure 6: Statistical comparison of the estimates of the
internal inductance as computed by BetaLi and EFIT.

Figure 7: Statistical comparison of the estimates of the
diamagnetic normalised beta as computed by BetaLi and
EFIT.

Figure8: a) Estimates of the diamagnetic energy computed
by BetaLi and EFIT for Pulse No: 58955; Ip is the plasma
current and Bphi is the toroidal magnetic field; b) the
NBI heating power used to feedback control the energy.
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