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Abstract

In order to simultaneously control the current and pressure profiles in high performance
tokamak plasmas with internal transport barriers (ITB), a multi-variable model-based
technique has been proposed. New algorithms using a truncated singular value decomposition
(TSVD) of a linearised model operator and retaining the distributed nature of the system have
been implemented in the JET control system. Their simplest versions have been applied to the
control of the current density profile in reversed shear plasmas using three heating and current
drive actuators (neutral beam injection, ion cyclotron resonant frequency heating and lower
hybrid current drive). Successful control of the safety factor profile has been achieved in quasi
steady state, on a time scale of the order of the current redistribution time. How the TSVD
algorithm will be used in the forthcoming campaigns for the simultaneous control of the
current profile and of the ITB temperature gradient is discussed in some detail, but this was
not yet attempted in the present pioneering experiments.

1. Introduction

The control of so-called "advanced" plasma regimes [1-3] for steady state high performance
tokamak operation is a challenge, in particular because of the non-linear coupling between the
current density and the pressure profile, leading to the emergence and interplay between
internal transport barriers (ITB), large bootstrap current fractions and plasma rotation, and
weak or negative magnetic shear. In a burning plasma, the alpha-particle power will also be a
strong function of these profiles, and, through its effect on the bootstrap current, will be at the
origin of a large (though ultra-slow) redistribution of the current density. The possible
destabilisation of adverse toroidal Alfvén eigenmodes (TAE) - such as the drift kinetic modes
which are anticipated to appear at high values of the central safety factor [4] - as well as
potential thermal instabilities due to the ITB dynamics will further complicate the issue.

A strategy for reaching a high performance plasma state in an advanced tokamak scenario is
to preform an optimized current density profile early in the discharge by combining the skin
effect (fast ohmic current ramp) with off-axis non-inductive currents. During this phase of the
discharge, the low plasma density and pressure are beneficial for efficient current drive and
for avoiding pressure driven instabilities at rational magnetic surfaces, respectively. A slow
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interchange between the non-inductive current and the bootstrap component must then take
place while the density rises together with intense plasma heating.  Adequate plasma control
will be required in order to maintain the pressure and current profiles close to their optimum
shapes while approaching the steady state burn. Simulating the effect of feedback control
loops for ITER has shown that, when the fusion amplification factor, Q, is large, the rise time
of the bootstrap current is of paramount importance. Using a diagonal (uncoupled) 2-point
control of the safety factor profile (q-profile), at the plasma center (q0) and at mid-radius, it
was then found that the characteristic ramp up time of the plasma density and, hence, fusion
power and bootstrap current had to be at least as large as the full resistive current diffusion
time, for q0 to be controllable with reasonable amounts of external current drive power [5]. As
far as experiments are concerned, real-time control of the internal inductance parameter - a
measure of the current profile shape - has been achieved with LHCD on Tore Supra [6].
Improvement of plasma performance through active modification of the current density and
pressure profiles in advanced plasma regimes with ITB's, through heating and current drive,
or by inducing sheared plasma rotation, has also been the goal of intense research for example
on TFTR [7], JT-60U [8-10], DIII-D [11], Alcator C-Mod [12] and JET [13-15].
Experimental investigations regarding the real-time (closed loop) control– of, (i) lumped
parameters characterizing the pressure profile in ITB discharges [16], then (ii) of the full
safety factor profile during the ITB preforming phase [17-18] and, more recently, (iii) of the
full q-profile during the main heating phase of the discharges, have begun on JET. They will
ultimately have to be carried out in burning plasmas, with high bootstrap current fractions,
and over time scales which are much longer than the resistive diffusion time, in order to be
fully reactor relevant.

This article addresses the methods which are being implemented on JET to control the
pressure and current density profiles. Initial experimental results obtained with a combination
of neutral beam injection (NBI), ion cyclotron resonant heating (ICRH) and lower hybrid
current drive (LHCD) to control the q-profile are also presented. The proposed technique,
which should be well adapted to control a distributed parameter system such as a set of
coupled radial profiles, is described in the following section. It is based on a truncated
singular value decomposition (TSVD) of a model integral operator (e.g. diffusion-like) in
which the couplings between the pressure and current density profiles are intrinsically
imbedded. How the general technique can be applied for the simultaneous control of these
two profiles in advanced tokamak scenarios is discussed in some detail. In section 3, we
describe a preliminary experiment using the simplest version of the algorithm where only one
actuator (LHCD) was used. It will be shown that a satisfactory control of the q-profile can be
achieved within the one-parameter family of profiles accessible with only one actuator, i.e.
with a steady state offset between the requested profile and the achieved one which is
minimum in the least square sense. In section 4, the first experiments using a multiple-input-
multiple-output (MIMO) controller to control the q-profile with three heating and current
drive actuators, namely NBI, ICRH and LHCD, will be reported. A conclusion will finally be
given together with the prospects for future experiments aiming at the simultaneous control of
the current and pressure profiles in steady state plasmas with ITB's.

2. A model-based SVD technique for real-time control of plasma parameter profiles

Early experiments on real-time control of ITB plasmas in JET [16] were based on a lumped
parameter approach, i.e. on scalar measurements characterising the temperature profile, such
as the maximum value across the plasma radius of the normalised temperature gradient, ρT∗ max
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(where ρT∗  is the local dimensionless ratio between the ion Larmor radius at the sound speed
and the temperature gradient length [19]), and other global parameters such as the neutron
rate, RNT. But no attempt was made at estimating and controlling the current density profile in
real time and, as a consequence, its slow evolution led to the loss of the ITB control after
about 8 s, which is of the order of the current redistribution time. The coupled evolution of the
pressure and current density profiles in ITB discharges occurs through complicated non-linear
transport equations and the effect of feedback control loops on these profiles is not obvious in
such regimes. Simulations have shown the limitations of controller designs based on
decoupled loops, i. e. one-to-one correspondance between the available actuators (heating and
current drive systems) and various global parameters or values of the safety factor at
particular locations across the discharge (e. g. [5, 20]). More information on the spatial
structure of the system can be taken into account by considering the distributed nature of the
problem and the fact that various measured quantities at different radii are indeed related
through a nonlinear, possibly diffusion-like, operator. Model-based control techniques have
been applied to the design of MIMO controllers for nonlinear distributed parameter systems
governing chemical processes [21]. It is tempting to apply such techniques to control the
plasma profiles in tokamak discharges, in the aim of operating the device in the ITB regime
and in steady state.

There is no general method to take into account non-linearities of models in the design of
controllers, but to use linear response theory around an equilibrium which is assumed to be
the target equilibrium that the controller should hold despite various disturbances. When such
linearisation does not work, one can resort to specially adapted methods which are case-
dependent and can sometimes improve the design, although without any generality (it may for
instance happen that a system for which an analytical model exists becomes linear in some
other variables than those which are to be controlled and in this case a change of variable can
be appropriate). In the general case, the rationale underlying the use of linear response theory
is indeed based on the observation that, if the controller is to provide stability around the
required target, the system should never depart largely from the assumed equilibrium and
therefore a control matrix which has been defined through linearisation can in many cases
provide an acceptable solution to the problem. One can therefore anticipate that it may be
important to develop open loop methods to bring the system close enough to the target before
using the control algorithm to track the required setpoint and insure its stability. For triggering
ITB's and operating tokamak plasmas in a high confinement advanced regime, such methods
have been the subject of intensive research for the past few years. They are based on the
application of high power heating during a current ramp which is believed to provide optimal
ExB velocity shear and magnetic shear to stabilise microturbulence, and have now become
reliable enough [7-15].

In the present experiments, we have therefore investigated the possibility of exerting
linearised model-based feedback control in order to make further progress towards genuine
steady state advanced tokamak operation. The methods which will be discussed below for this
purpose can also, if necessary, be easily extrapolated to a more sophisticated technique known
as model-based predictive control which is generally more powerful when nonlinearities are
important, but at the expense of a larger computational power.

2.1 Truncated SVD, basis functions and model representation of a distributed parameter
system

The first task one has to face before the proper design of a model-based controller can be
started is to develop a suitable model to derive the approximate response functions of the
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system. Without any loss of generality, the linearised response function of the current density
and pressure output profiles (represented below by two functions of space and time, y1(x, t)
and y2(x, t), respectively, where x stands for the normalised radius, t for time) to the various
power input stimuli (e.g. LHCD, NBI and ICRH power deposition represented by functions
π1(x, t), π2(x, t), π3(x, t), respectively) can be sought under the integral form :

where Y(x, t) represents the vector [y1(x, t) , y2(x, t)], K(x, x', τ) is an unknown kernel and
P(x, t) represents the source power deposition profile vector [π1(x, t) , π2(x, t), π3(x, t)] from
three heating and current drive systems. Here we consider input and output variables which
are differences between the actual powers or profiles and a reference set of equilibrium
parameters and profiles around which the system is linearized. The functions π1(x, t) , π2(x, t),
π3(x, t), and y1(x, t), y2(x, t) are therefore not necessarily positive although we shall still refer
to them as the power deposition, safety factor (q) and pressure (or temperature gradient, ρT*)
profiles. The background process, which governs the plasma response to a change in the input
powers and is modeled by the operator K , is assumed to be time-independent. Therefore K
depends on τ = t - t' in equation (1), and a simple Laplace transformation with respect to time
yields the more tractable form :

where, for the sake of simplicity, we use the same symbols for the functions of time and their
Laplace transforms. We shall assume that the kernel K(x, x', s) is square-integrable so that it

admits of an infinite singular value expansion in terms of a set of complex orthonormal left
and right singular functions, Wi(x,s) being (2x1) matrices of functions, and V i(x,s) being

(3x1) matrices of functions, and of the corresponding positive singular values, σi(s) :

where + refers to the transconjugate of matrices. Truncating the above expansion to a finite
number of terms containing the largest singular values offers the best mean square
approximation of the infinite dimension distributed system kernel K(x, x', s) [22], according

to the norm and scalar product which are used to define the orthonormal set of singular
functions and which are to be specified later. It is therefore judicious to seek approximate
representations of the first left and right singular functions or, here, matrices of functions, and
to model the system by the truncated singular value decomposition (TSVD) of the operator
K(x, x', s). Identifying an approximate model for the system thus amounts to identifying its

principal components, i.e. the largest significant singular values, σi(s), together with the
corresponding functionsV i(x,s) and W i(x,s). This can only be done from the analysis of a

sufficient number of dedicated experiments or simulations, as will be shown later, but we can
already anticipate that, with three independent heating and current drive sources, only the first
three terms of the expansion can be identified. In what follows we shall therefore assume that
the TSVD is to be limited to these first three terms.
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For the representation of the left (respectively right) singular functions, a convenient choice is
to select a (non necessarily orthonormal) trial function basis which allows a good physical
approximation of the various possible output (respectively input) profiles. Assuming that the
system responds to three heating and current drive sources (LHCD, NBI and ICRH), one can
in principle write the input vector P(x, s) as :

where the C  i matrices are (3x3) trial function matrices built up with the three sets of

appropriate basis functions ui(x), vi(x) and wi(x) – which are not necessarily the same sets -
and defined by :

and Pi(s) are (3x1) corresponding input vectors. In order to model the system by its linear
response and if the vector Pi is to contain powers delivered by each actuator, then the space
spanned by ui(x), vi(x) and wi(x) should more or less contain the accessible power deposition
profiles, possibly divided by the plasma density profile when controlling the current density
(current drive efficiencies scale as the inverse of density) or temperature profiles. In equation
(4), we assume that a good representation of these profiles can be obtained with a small set of
M matrices of basis functions with an input vector corresponding to each of them. In practice,
the heating and current drive systems which are generally available on tokamaks have limited
active power deposition control and, for the purpose of initial experiments on JET, we shall
not consider the possibility that a variety of profiles can in principle be associated to each
heating system,  For the moment, we shall therefore take M = 1, u1(x) = u(x), v1(x) = v(x),
w1(x) = w(x),

and the vector P(s) = P1(s) will contain the three requested input powers. Thus we shall seek
representations of Vk(x), with k=1 to 3, as :

where the Vk(s) are (3x1) vectors. The matrix of the right singular vectors, Vk, will be called
V(s), i. e. V(s) =  [V1(s) V2(s) V3(s)]. This could be easily generalized to M > 1 if the power
deposition profiles were to be varied significantly through external control parameters such as
the phasing of the LHCD launcher, for instance, or the ICRH frequency on various antennas,
different neutral beam injection angles, different electron cyclotron launch angles, etc...
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A possible choice for the output trial function basis is to take a reasonable number (e.g. N = 5
to 10) of cubic splines, ai(x), to fairly describe the q-profile [note that 1/q could alternatively
be chosen, as in [5, 20], for it is an integral of the current density which may be more
"linearly" related to the various heating and current drive powers], and possibly the same
number of piecewise constant or linear functions, bi(x), to describe, for instance, the
normalised temperature gradient profile (ρT*) so as to allow for a region of large gradient
(ITB) where ρT* > 1.4 x 10-2 [19], surrounded by an inner and an outer region of smaller
gradients which may not need to be controlled. The choice of these particular dimensionless
profiles, q(x) and ρT*(x), is attractive as they take on shapes and absolute values which are
characteristic of the discharges as far as transport, turbulence and MHD stability are
concerned.

 Once the basis functions a i(x) and b i(x) have been defined, the output function matrix can be
written as :

with

and a finite order system which can be identified from experiments and which links the input
and output data can be formally written as :

Q(s) = K(s) •  P(s) (10)

where Q(s) = {Qj(s)} is a (2Nx1) column vector obtained by gathering the (2x1) Q j

components and represents for instance the safety factor and ρT* profiles in the selected basis,
K is a (2Nx3) matrix and P is the input power vector. We shall then also seek representations
of Wk(x), with k=1 to 2N, as :

where the ΩΩΩΩkj(s) are (2x1) vectors. For convenience, we combine the (2x1) vectors ΩΩΩΩkj(s), for
a given k, into a (2Nx1) singular vector, Wk, and the (2Nx2N) matrix made of the left singular
vectors will be called W(s), i.e. W(s) =  [W1(s) W2(s) W3(s) ... W2N(s)].

We shall show in subsection 2.2 that the reduction of the infinite system to a finite one, i.e.
the identification from experimental data (or from transport code simulations) of Vk, Wk and
σk can be done according to a Galerkin scheme in which the residuals are imposed to be
spatially orthogonal to each basis trial function. The orthonormality in the space of output
functions needs to be defined according to a scalar product and a norm which will ultimately
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provide the criterion under which the controller is to minimize the difference vector between
the measured profiles and the requested setpoint profiles. For the safety factor profile, q(x), a
simple mean square integral,

seems to offer an acceptable criterion. However, because the location of internal transport
barriers appears to be closely linked to particular features of the safety factor profiles such as
the location of minima or rational values [23, 24],  and due to the different time scales under
which the pressure and current profiles can evolve, it may be too constraining to impose on
the controller a criterion as stringent as (12), both on q and ρT*. One could choose for the ρT*
profile a criterion which leaves more flexibility on the radial location of the ITB, or else,
which focusses more on a particular region where the ITB is expected, dismissing the values
of ρT* elsewhere. For instance, if µ(x) is a positive weight function which is maximum in the
expected region of the ITB, a possible criterion could be :

Since ρT* is of order 10-2, the function µ(x) can also be used to scale expression (13) so that
the relative weights of q and ρT* in the minimization process are comparable. The
corresponding scalar product would then read :

and the orthonormality of the output singular functions can be written

with

where

This therefore translates into the matrix equation :
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the basis functions, made of the (2x2) blocks, Bj,j' , defined as

B  = [∆∆∆∆+•    ∆∆∆∆]]]] is its Cholesky decomposition, and Ŵk k= •∆∆ W . We thus also have
ˆ ˆ ˆ ˆW W W W+ +

2N• •=  = I  (identity) with Ŵ = •∆∆ W .

The orthonormality in the space of the input functions is defined through the usual scalar
product and norm :

with

This translates into the matrix equation :

where

V̂k k= •ΓΓ V   and

so that ˆ ˆ ˆ ˆV V V V+ +
3• •=  = I  (identity) with V̂ = •ΓΓ V. If u(x), v(x) and w(x) are suitably

normalized, ΓΓΓΓ  can be made unity. With such a normalization P(x, t) would not correspond to

the absorbed power density in the plasma, but this is of minor importance as the
multiplication factor can be taken care of by the kernel K .

2.2 Identification of the singular values and singular functions of the distributed system

Let us now return to equation (2) in which we insert the TSVD expansion (3) limited to three
terms, as well as the expansions (4), (7), (8) and (11). By left multiplying both sides
alternatively by Dl
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and summing, one obtains the important relation :
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which, after left multiplying by [∆∆∆∆+]-1, yields :

From the definition of the matrix K(s) which links Q(s) and P(s) in equation (10), we can also
write :

which, by comparing (26) and (27), and by virtue of the orthonormality of the vectors Ŵk  and

V̂k  (cf. eq. 18 and 22), and of the unicity of the SVD expansion, implies that σk, Ŵk  and V̂k

can be found by performing the SVD decomposition of the (2Nx3) matrix K̂(s) defined by :

Once a satisfying model has been experimentally identified for K(s) by relating the input-
output data corresponding to a given set of experiments, K̂(s) can be easily computed and its
SVD can be performed in a straightforward way, yielding :

and the top three rows of ΣΣΣΣ(s) form a (3x3) diagonal matrix Σ̃Σ(s) and contain the three

singular values, ˜ , ˜ ˜σ σ σ
1 2 3

and , of K̂(s), which approximate the three largest singular values,

σ1, σ2 and σ3, of the infinite dimension operator K(x, x', s), the other rows being zeros :

The vectors V =k
-1

kΓΓ • V̂  and W =k k∆∆-1 • Ŵ , k=1 to 3, then provide the best approximation

of the singular functions V i(x,s) and W i(x,s), on the trial functions basis (cf. eq. 7 and 11),

and this completes the identification of the model.

2.3 Pseudo-modal controller design

The TSVD described above has the advantage of providing a reduced order system which best
approximates the original system in the mean square sense and retains its distributed nature.
Using equations (10), (18), (23), (28) and (29), a truncated diagonal system can then be
obtained yielding decoupled open loop relations between modal inputs,

αααα(s) = V+(s)•  A •  P(s) (31)
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and modal outputs

ββββ(s) = W+(s)•  B •  Q(s) (32)

namely :

ββββ(s) = ΣΣΣΣ(s) •  αααα(s) (33)

Pseudo-modal control techniques can therefore be used by inverting the steady state gain
matrix Σ̃Σ(0) and defining αααα '(s) as V(0)+•  A •  P(s) and ββββ'(s) as W(0)+•  B •  Q(s) to insure
steady state decoupling of the feedback loops. Taking a simple proportional-plus-integral (PI)
feedback to eliminate steady state offsets, we thus choose the controller transfer function
matrix G(s) as follows :

αααα'(s) = gc [1 + 1/(τi.s)] •  ΣΣΣΣ0
(-1) •  [ββββ'setpoint - ββββ'(s)] = G(s) •  ΣΣΣΣ0

(-1) •  [ββββ'setpoint - ββββ'(s)] (34)

where ΣΣΣΣ0
(-1) is a (3x2N) matrix which left block is Σ̃Σ(0)[ ] −1

, the other columns being filled

with zeros, and where gc is the proportional gain and  (gc/τi) is the integral gain. An additional
derivative feedback term (PID control) could also be included if it proved necessary to reduce

oscillations or for closed loop stability reasons. Thus, setting V0 = V(0), W0 = W(0) and ΣΣΣΣ0 =
ΣΣΣΣ(0), we have :

P(s) = gc [1 + 1/(τi.s)] •  V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B •  [Qsetpoint - Q(s)] (35)

The resulting feedback control diagram is shown on figure 1.

JG
03

.2
43

-1
c

Qsetpoint δQ P Q

+
−

G(s) V0 Σ0
(-1) W0

+B Kplasma(s)

Fig.1. Pseudo-modal feedback loop derived from the TSVD of the kernel K(x, x', s).

When gc and τi are chosen such as to insure closed loop stability, the controller defined above
minimizes the difference between the steady state profiles and the requested ones in the
integral least square sense defined in eq.(14), i.e. it realizes :

min{(Q+(s=0) - Q+
setpoint) •  ∆∆∆∆+•  ∆∆∆∆ •  (Q(s=0) – Qsetpoint)} (36)

or, equivalently when Y(s=0) and Ysetpoint belong to the space spanned by the chosen set
of basis functions,
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min {[Y(s=0) – Ysetpoint] . [Y(s=0) – Ysetpoint]} (37)

The proof that the closed loop system does converge to this least square difference in steady
state, with no offset thanks to the integral feedback term, is given in the appendix.

3. Preliminary experiment on real-time control of the q-profile with LHCD

In order to proceed by small steps in implementing this technique in the elaborate control
environment of a device such as JET, it was first chosen to test an SVD pseudo-modal
controller based on a real-time reconstruction of the q-profile at 5 plasma radii, yet
considering the system as a lumped parameter system relating the normalized input power
differences (δP) to the five normalized q-differences (δQ). The differences were taken
between the measured parameters and their values at the end of the reference pulse, and are
normalized to these reference values [i.e., we consider the vector elements P'i = δPi /Pi, ref = (Pi

- P i, ref)/Pi, ref and Q' j = δQj /Qj, ref = (Q j – Qj, ref)/Qj, ref]. The SVD was performed on the
dimensionless matrix relating P' and Q' (Q' = Knorm •  P') and the least square minimization
will also concern the normalized vector (Q' - Q'setpointf). This choice is indeed arbitrary. When
the distributed character of the system is to be retained, functional representations of the q-
profile, e.g. with overlapping splines, will be more appropriate (if the real-time equilibrium
reconstruction uses linear combinations of a particular set of trial functions  - e.g. polynomials
- then one should also take the same set for the controller design). The distributed parameter
version of the algorithm will be tested in the near future when attempting to simultaneously
control the safety factor (or its inverse) and the ρT* profiles. The phasing of the launcher was
not varied so that M = 1, and u(x), v(x) and w(x) can be assumed normalised so that ΓΓΓΓ  and A
are also equal to the identity matrix, with a dimension which is the number of actuators used.

The q-profile reconstruction uses the real-time data from the magnetic measurements and
from the interfero-polarimetry, and a parameterization of the magnetic flux surface geometry
[25, 26]. Later, a more comprehensive real-time Grad-Shafranov solver (EQUINOX) will
provide a complete MHD equilibrium [27], but this was not essential for the purpose of the
present experiments since we shall assess the performance of the controller by comparing the
setpoint profiles with those deduced from the same algorithm as used in the controller. The
first, simplest - and in some sense trivial - application of the lumped parameter SVD control
scheme was to reach a predefined q-profile with only one actuator, namely LHCD. Since, in
this case, the accessible targets are restricted to a one-parameter family of profiles, it is
essential that the five q-setpoints are chosen reasonably so that the target q-profile lies close
to those in the accessible range. Using only one setpoint around mid-radius could lead to
difficulties if the q-profile tends to "rotate" around this radius when varying the power, which
is often the case. Using a global parameter such as the internal inductance could put too much
weight on the current flowing in the external plasma layers. So, although the control of this
scalar parameter could be perfect, i.e. with no steady state offset, some features of the q-
profile shape which can be essential for the plasma scenario could be missed (e.g. reverse or
weak shear in the plasma core for turbulence stabilization). Applying an SVD technique with
five setpoints may not allow to reach any one of the setpoints exactly, but could minimize the
error on the profile shape.
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The first experiments were performed during an extended LHCD preheat phase [17], a usual
prelude to the formation of ITB's in JET. The central electron density was between 1.8 and
1.5x1019m-3, a relatively low density which allows efficient LHCD. The toroidal field was 3T
and in order to be close to a non-inductive steady state regime and thus have a larger
flexibility for obtaining non-ohmic reduced-shear q-profiles, the plasma current was chosen to
be 1.5MA. The evolution of the main plasma parameters is shown for such a discharge on
figure 2a. A linearized lumped-parameter model which links the values of q(r) at five fixed
normalised radii (r/a = 0.2, 0.4, 0.5, 0.6, 0.8, with a the minor radius of the plasma and r the
radial coordinate) to the input LH power was sought and identified from simple step power
changes during dedicated open loop experiments (one without LHCD and the other one with a
constant LHCD power of 2.2MW). When only one actuator is used, the steady state gain
matrix Knorm(0) is a [5x1] matrix. Thus, in the truncated SVD process we simply write Knorm =
W•ΣΣΣΣ•V+, and retain only the first left singular (5x1) vector, W1, corresponding to the non-
zero singular value, σ̃1 , and ΣΣΣΣ = σ̃1  and V are therefore scalar matrices. The proportional gain,
gc, was equal to 0.5 and the integral gain, gc,/τi, to 1s-1.
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Fig. 2a. Time evolution of the plasma current, Ip,
central electron density, ne0, and temperature, Te0,
surface loop voltage, Vloop and lower hybrid power,
PLHCD (pulse #55873, BT = 3T).

Fig. 2b. Real-time control of the q-profile using
LHCD (pulse #55873, BT = 3T, Ip = 1.5 MA). The
profile is shown at three different times including the
start (4 s) and the end of the control phase (14 s). Open
circles represent the 5 q-setpoints at r/a = [0.2 0.4 0.5
0.6 0.8].

The global result is shown in figure 2b where the requested setpoints are marked as open
circles and the measured q-profiles are shown at 3 different times (t = 4 s, 9.5 s and 14 s). The
control is only effective after t=7s when the q-profile starts undershooting the setpoints so that
the LH power rises. The controller request was negative (so the power was set to zero) during
the early relaxation of the strongly reversed profile towards the target. One can see that the
target q-profile is fairly well approached at the end of the control phase (t = 14s), the
controller minimizing the difference between the 5 target q-values and the corresponding real-

http://figures.jet.efda.org/JG03.243-4c.eps
http://figures.jet.efda.org/JG03.188-4c.eps
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time measurements, in the least square sense. From current diffusion modelling using the
CRONOS code [28] the LHCD power deposition profile was found to be off-axis, centred
around r/a=0.5 and the fractions of inductive, LH-driven and bootstrap currents were 40%,
53% and 7%, respectively.
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Fig. 3. Time evolution of the plasma current, Ip, central electron density, ne0, and temperature, Te0, surface loop
voltage, Vloop and lower hybrid power, PLHCD  (pulse #57329, BT = 3T).

Other experiments of the same kind have been recently performed at the same magnetic field
(3T) and plasma density (1.5x1019m-3) but at lower plasma current (Ip = 1.3 MA, see figure 3)
so as to approach a full non-inductive regime during longer pulses and to have more
flexibility on the shape of the accessible q-profiles. They have confirmed the effectiveness of
the controller in achieving and maintaining in steady state various q-profiles chosen a priori
(though reasonably close to the accessible ones), for both monotonic and reversed shear
profiles [18]. An illustration of this is shown on figure 4a where the time traces of the real-
time measurements of the safety factor at the five selected radii (again, r/a = 0.2, 0.4, 0.5, 0.6,
0.8) are shown together with the setpoint values. The control is effective between t ≈ 8 s and t
≈ 17 s and the five datapoints follow quite nicely the setpoint values. Note that the loop
voltage, Vloop, is small and constant for about 7 s, as is the internal inductance parameter, li,
thus confirming the steady state nature of the magnetic equilibrium. CRONOS modelling also
indicates that the parallel electric field profile was fairly flat at the end of the control phase so
that stationary conditions were reached. A comparison between two pulses with different q-
setpoints and one pulse without closed loop control, in similar experimental conditions, is also
shown on figure 4b. It shows in particular that the gradual, controlled, application of the LH
power does, in real time, prevent the relaxation of the current density towards a more peaked
ohmic-like profile.

http://figures.jet.efda.org/JG03.243-3c.eps
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Fig. 4a. Real-time control experiment with LHCD
only (pulse #57329, BT = 3T, Ip = 1.3 MA). Top :
Time traces of the safety factor at the five radii
selected for the control, r = r/a = [0.2 0.4 0.5 0.6 0.8].
Centre : Time traces of the internal inductance
parameter, li, and of the surface loop voltage,
Vloop.(Volts). Bottom : Time trace of the coupled
LHCD power (MW).

Fig. 4b. Time evolution of the measured and
requested q-values at a normalised radius of 0.5 and
of the LHCD power waveform for 2 controlled pulses
(#57329 and #57324 BT=3T, Ip=1.3MA). A pulse
without feedback control is presented for comparison
(#57322). Control starts at 2s and stops at 17s.

4. Real-time control of the q-profile with combined LHCD, NBI and ICRH

The second set of experiments conducted so far and using the proposed model-based TSVD
control technique was a first attempt at using the three available heating and current drive
systems to control the q-profile during a strong heating phase, in an ITB scenario and with a
moderate fraction of the plasma current carried by the bootstrap current. Because of the long
current diffusion time scale, it was obvious that the plasma pulse length would have to be as
large as possible for the effectiveness of the controller to be assessed, and we therefore
selected an advanced plasma scenario which had been developed for long pulses studies. The
toroidal magnetic field intensity was 3T and the scenario started with a reversed shear 2.5
MW LHCD preheat phase at a central plasma density around 1.5 x 1019 m-3 in order to tailor a
reversed q-profile in the early stage of the discharge during which the plasma current was
ramped up to 1.8 MA. At t ≈ 4 s, 12.5 MW of NBI and 3 MW of ICRH power were applied
resulting in a central density of 3 x 1019 m-3 and in the triggering of an ITB. Then, starting at
t = 7 s, the plasma current was ramped down to reach 1.5 MA at t = 11 s, and it remained at
this level for another 2 seconds. The very low loop voltage  in the final 1.5 MA plateau,
indicated that a large fraction of the current was driven by non-inductive sources, including a

http://figures.jet.efda.org/JG03.07-4c.eps
http://figures.jet.efda.org/JG02.513-2c.eps
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significant fraction of bootstrap current. This provided a better target for having access to a
wider range of safety factor profiles, monotonic as well as reversed-shear ones.

The determination of the steady state responses to variations of the heating and current drive
powers was made from the analysis of four dedicated discharges, including the reference
discharge around which the system is to be linearized. In order to have enough flexibility
around the reference powers during the real-time control phase, we selected reference powers
of 2.5MW, 7MW and 3MW for LHCD, NBI and ICRH, respectively. The scenario described
above and which we used for choosing the main discharge parameters for our experiment had
shown quite an interesting hysteresis phenomenon when the NBI power was gradually
reduced down to 3 MW while the ITB was slowly moving towards the plasma core, but not
disappearing [29]. In the reference discharge, we thus chose to reduce abruptly the NBI power
from 12.5 to 7 MW at t = 7 s, hoping that the resulting reference plasma would still exhibit an
ITB in spite of a quite moderate total heating power. For reasons which may have had to do
with the time scale of the power reduction which was different in the two cases and with the
ramping down of the plasma current, the hysteresis did not seem to operate and therefore the
results which are described below were obtained in conditions with only marginal ITB's
(ρT* ≈ 1.5 x 10-2) and with a moderate fraction of bootstrap current. Nevertheless they form an
interesting basis for further investigations in future high power campaigns.

In the three discharges used for determining the plasma response matrix, Knorm, and to keep
away from the power limitations of the systems or from the appearance of strong
perturbations such as ELM's or MHD instabilities, the LHCD, NBI and ICRH powers were
alternately stepped down with respect to the reference ones, always at t = 7 s. The LHCD
power was stepped down to 0.5 MW, NBI was stepped down to 11.5 MW (but this
corresponds to a step-up with respect to the 7 MW of the reference discharge), and ICRH was
stepped down to 0.5 MW. It was found that differences of several megawatts were necessary
in order to determine accurately enough the changes in the q-profile, which were averaged
between around t ≈ 12.5 s and t ≈ 13 s. This was another reason for stepping down the powers
rather than up. The linearity of the q-profile response is of course questionable with
differences up to 4.5 MW in the heating power but, as will be shown now, plasma non-
linearities were not essential and the controller design, though perhaps not optimal, provided
satisfactory results. It will be interesting to check whether this is still the case with stronger
ITB's, larger bootstrap current, and when including the ρT∗  profile in the controlled
parameters, in addition to the q-profile.

In analysing the responses given by the real-time data, it was found that the data at r/a=0.8
was corrupted and not quite reliable on one of the previous pulses and we chose r/a = [0.2,
0.4, 0.5, 0.6, 0.7] for the closed-loop control experiments. At these radii, we obtained the
following approximate steady state response matrix, in MW-1 :

Kexp (0) =

0 0984 0 0543 0 1530
0 0849 0 0669 0 0658
0 0773 0 0707 0 0227
0 0606 0 0769 0 0104
0 0474 0 0786 0 0496

. . .

. . .

. . .

. . .

. . .

−
−
−
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where the actuators are ordered in the sequence [LHCD, NBI, ICRH], and its dimensionless
version relating P' and Q' was :
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Fig. 5. Respective influence of the 3 identified singular input vectors on the safety factor profile when using
simultaneously LHCD, NBI and ICRH as actuators. The full profile which appears in all frames corresponds to
the reference equilibrium obtained with PLHCD = 3MW, PNBI = 7MW, PICRH = 3MW, around which the system is
linearized. The open circles on the left, central, and right frames show the q-profiles estimated from the model
when adding the power combinations P1, P2, and P3, respectively, to the reference case powers. P1, P2, and P3, are
proportionnal to the singular vectors, V1, V2, and V 3, but normalized to 5MW. ˜ , ˜ ˜σ σ σ1 2 3and are the
corresponding singular values.

The singular value decomposition of Knorm(0) yielded σ̃1  = 0.72, σ̃2  = 0.22, and σ̃3 = 0.009
(which are approximations of σ1, σ2 and σ3, the largest singular values of K ), and the

following dimensionless singular vectors :

V0 =
− − −
−

−

















0 256 0 205 0 945
0 936 0 297 0 190
0 241 0 933 0 268

. . .
. . .
. . .

Knorm(0) =

0 132 0 325 0 247
0 095 0 332 0 088
0 076 0 310 0 027
0 052 0 292 0 011
0 034 0 249 0 042

. . .

. . .

. . .

. . .

. . .
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It was concluded from the ratio between the first and third singular values that the third term
in the SVD expansion of the linearized response operator was not significant enough and that
this expansion should therefore be truncated to two terms for calculating the controller gain

matrix, V0•  ΣΣΣΣ0
(-1)•  W0

+. Using the full operator would have resulted in large matrix elements

in the controller gain, due to the largest element in ΣΣΣΣ0
(-1). This means that the family of the q-

profiles which were effectively accessible with the available heating and current drive

systems was indeed a 2-parameter family spanned by W1 and W2, and obtained by different

linear combinations of the vectors V1 and V2, both combining the three LHCD, NBI and
ICRH powers. This is illustrated on figure 5 where the respective influence on the q-profile of
the three input singular vectors (multiplied by an appropriate numerical factor so that their
norms correspond to the same total power of 5MW) is shown, with respect to the reference
equilibrium. Clearly the third combination does not play any significant role with reasonable
power levels. This situation should change with the addition of the ρT∗  profile in the variables
to be controlled, thus enlarging the dimension of the output space in which the system is
evolving. We thus expect that all three components of the SVD will provide finite coupled
responses when we control the generalized [q(x), ρT∗ (x)] vector.
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Fig. 6a. Time evolution of the plasma current, Ip,
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emission (pulse #58474, BT = 3T).

Fig. 6b. Real-time control of the q-profile using
LHCD, NBI and ICRH (pulse #58474, BT = 3T, Ip =
1.8/1.5 MA). The profile is shown at four different
times between 7 s and 12 s. Pluses represent the 5 q-
setpoints at r/a = [0.2 0.4 0.5 0.6 0.7].
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Retaining the first two singular components of the K(0) matrix, the following controller gain
matrix was obtained (in MW) :
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Fig. 7a. Time evolution of the safety factor at the five
radii selected for the real-time control experiment of
Fig. 6 (pulse #58474, BT = 3T, Ip = 1.8/1.5 MA). The
setpoint values are indicated with dotted lines

Fig. 7b. Time evolution of the requested (dotted
traces) and delivered (full traces) LHCD, NBI and
ICRH powers during the real-time control experiment
of Fig. 6 (pulse #58474, BT = 3T, Ip = 1.8/1.5 MA).
Note that the LHCD request is applied on the
generator power, contrary to NBI and ICRH.

The control was applied between t = 7 s and t = 13 s, with initial powers at the start of the
control phase of about 3 MW for LHCD (generator power), 7 MW for NBI (injected power)
and 3 MW for ICRH (coupled power). This was assumed to be sufficiently below the limits of
the systems to possibly avoid hitting the saturation of an actuator, but in any case, the
controller design included a conventional anti-wind-up system to stop integrating the errors
when this occurs, or when a negative power is requested. Figures 6 and 7 show the result of a
closed-loop experiment in which the controller requests stayed within the bounds allowed by
the heating systems. Figure 7b shows a comparison between the requested powers and the
achieved ones. During most of the active control phase (i. e. except for short phases when it
was limited by protection systems), the LH generator power followed the controller request.
NBI was operated in the modulation mode according to which the integrated injected power
follows a continuous waveform request on the average. The coupled ICRH power was limited
to 6 MW during this pulse, but the controller request was not significantly larger than that.
The desired setpoints for q(r/a) at the five selected radii were [2.35 2.34 2.44 2.69 3.5]. The
proportional gain, gc, was equal to 0.1 while the integral gain, gc,/τi, was 1 s-1. The q-profile

Gfeedback (s) = gc 1+ 1
s

1 20 0 21 0 06 0 20 0 25
1 75 3.09⋅ ⋅

− − −
−
− −
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had a strongly reversed shape at the time when the control started. It then converged slowly
towards the desired profile, i.e. towards the closest achievable one, and a minimum of the
mean square error was reached at t ≈ 12 s (figure 7a). Despite the fact that the time allowed
for the control to be effective was somewhat smaller than the time scale for current diffusion
accross the full plasma radius, the selected gains were adequate and the technique was
effective. This successful experiment represents a significant result in view of future
applications.

5. Conclusion and prospects

A model-based multi-variable scheme is proposed for the real-time control of distributed
plasma parameters such as the pressure and safety factor profiles in tokamaks. First
experiments using the simplest lumped-parameter versions of the proposed algorithm have
been performed in JET. They have shown that the technique can be efficient for obtaining and
holding a pre-requested q-profile shape.

A first set of experiments was performed in the low density prelude to the advanced scenarios,
in which the current density profile, initially tailored by the application of a given amount of
off-axis LHCD current drive during the plasma current ramp up phase, was subsequently
controlled in real-time through the proposed SVD feedback scheme, and a steady state
magnetic equilibrium was obtained after full relaxation of the ohmic current component
throughout the plasma.

Then, more interestingly in view of future high power experiments, a second set of
experiments was dedicated to the control of the q-profile during the intense heating phase of
advanced scenarios where one expects high plasma performance in JET due to the formation
of ITB's, with a good steady state potential due to a large bootstrap current. Although the
distributed-parameter version of the algorithm was not yet used, and the various elements of
the control scheme (e.g. the identification of the lumped-parameter model and the choice of
the PI gains) could not be fully optimized within the allowed experimental time, the safety
factor profile was indeed shown to approach a requested profile (as defined by its desired
values at five radii) within about 5 s. This is a reasonable time with regard to the full current
diffusion time scale in these plasmas. Yet, this was achieved with a marginal ITB and a
moderate fraction of bootstrap current, and of course within the limited range of profiles
which were accessible with the combination of the ohmic current and of the LH, NBI and
ICRH driven currents, at the power levels which were available at the time when the
experiments were conducted. The experiments were also partially limited by the available
pulse length of the discharges but nevertheless, the achieved plasma state was not far from a
steady state equilibrium.

Further experiments in the fully developed ITB regime are definitely required, and will be
attempted in the future. Our next goal will be to control simultaneously the current and
electron temperature profiles through the generalized [q(x), ρT∗ (x)] vector, using the high
resolution real-time electron cyclotron emission (ECE) data, and the real-time magnetic
equilibrium reconstruction provided by a new Grad-Shafranov solver (EQUINOX, [27])
integrating the magnetic, interfero-polarimetric and also, later, the motional Stark effect data.
The proposed technique, including the identification of a distributed-parameter model with
appropriate basis functions, will also be fully exploited and possibly compared with its
lumped-parameter version. The ITB temperature gradient control will be attempted either
through the maximum value of ρT∗  accross the plasma radius, or through a partial
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reconstruction of the ρT∗ profile, retaining only the plasma region where an ITB is expected
(and requested) to emerge once a given setpoint q-profile has been chosen. The setpoint
ρT∗ profile will be defined using for instance a small set of triangular basis functions (e.g. 3 or
4) which cover this region. In order to retain as much spatial information as possible from the
ECE data, the approximate real-time decomposition of the measured ρT∗ profile on this
limited basis will be made according to the Galerkin prescription (i.e. by imposing that the
residual between the measured and approximate profiles be orthogonal to each basis
function).

The various results which are presented in this paper provide an interesting starting basis for a
future experimental programme on JET, aiming at the sustainement and real-time control of
ITB's in fully non-inductive plasmas and with a significant fraction of bootstrap current. They
could represent a significant part of a possible long term experimental programme, including
D-T operation on JET and on ITER. The potential extrapolability of the technique to more
complex systems with a larger number of controlled parameters (scalars as well as radial
profiles) and actuators (possibly with more flexibility in the current deposition profiles, pellet
fuelling, ...), is an attractive feature. If the nonlinearities of the system or the difference
between various time scales were to be too important, it could also be extended to model-
predictive control techniques, at the cost of a larger computational power, and by performing
the identification of the full frequency dependence of the linearized response of the system to
modulations of the input parameters, rather than simply of its steady state response. It is
therefore an interesting method to be considered for an integrated plasma control in view of
steady state advanced tokamak operation, including the control of the plasma shape, as in
conventional tokamak operation, but also of the primary flux for continuous operation, and of
the safety factor, temperature and density profiles, fusion power in a burning plasma, etc...
Achieving this goal will represent a major milestone towards the definition and viability of a
steady-state tokamak fusion reactor.
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Appendix

In this appendix we demonstrate that the pseudo-modal PI controller described in section 2.3
(and sketched in figure 1) minimizes the difference between the steady state output profiles
and the requested ones in the least integral mean square sense defined by equations (14) and
(37).

Assuming that the identification of the steady state gain matrix K(s=0) is ideal in that, when
multiplied by P, it allows to reproduce exactly the steady state output vector Q(s=0), then the
power vector which minimizes the bracketed expression in (36) is obtained when its variation
vanishes for any small variation δP of the vector P, and this occurs if, and only if :

K+(0) •  ∆∆∆∆+•  ∆∆∆∆ •  [K(0) •  Poptimal – Qsetpoint] = 0 (A1)
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i.e. :

or, with (28),

This is a (3x3) linear system which can be solved for Poptimal. Multiplying by [ΓΓΓΓ+]-1 and using

the SVD (29) and the unitarity of the matrices Ŵ  and V̂ , one comes up with :

Poptimal = V0• [ΣΣΣΣ0
+•  ΣΣΣΣ0]-1•  ΣΣΣΣ0

+•  W0
+•  B •  Qsetpoint = [V0•  ΣΣΣΣ0

(-1)•  W0
+•  B] •  Qsetpoint (A4).

We shall now show that this is indeed what the controller would achieve if the model were

ideal, i.e. if the plasma response through Kplasma(s) could be modeled perfectly with the
identified K(s) and the chosen set of basis functions. With this assumption, the closed loop
transfer function of the system is given by :

GCL(s) = [I + G(s) K(s) •  V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B]-1 •  [G(s) K(s) •  V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B]

= [τi s I + gc (1+τi s) K(s) •  V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B]-1

•  [gc (1+τi s) K(s) •  V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B] (A5)

and, in the steady state limit (s → 0), the controller achieves :

[K(0) •  V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B]•  Q(0) = [K(0) •  V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B]•  Qsetpoint (A6).

This does not ensure Q(0) = Qsetpoint because K is a (2Nx3) rectangular matrix and the
bracket is therefore singular. However, from eq. (35), the power input vector satisfies :

P(s) = [G(s) V0 •ΣΣΣΣ0
(-1) •  W0

+ •  B] •  [Qsetpoint - K(s) •  P(s)] (A7)

and therefore, with a finite integral gain,

[τ i s I + gc (1+τi s) V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B •  K(s)] •  P(s)

= gc (1+τi s) [V0 •  ΣΣΣΣ0
(-1) •  W0

+ •  B] •  Qsetpoint (A8)

which in the steady state limit (s → 0) yields :

[ΣΣΣΣ0
(-1) •  W0

+ •  B •  K(0)] •  P(0) = [ΣΣΣΣ0
(-1) •  W0

+ •  B]•  Qsetpoint (A9).

∆∆ ∆∆ ∆∆ ∆∆•[ ]+ • •[ ] •[ ]+ • •K K P = K Q(0) (0) (0)optimal setpo Aint ( )2

ˆ ˆ ˆ
int ( )K K K(0) (0) (0)•[ ]+ • •[ ] •[ ]+ • •ΓΓ ΓΓ ΓΓ ∆∆P = Qoptimal setpo A3
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After some algebra, equation (A9) can be rewritten as :

[ΣΣΣΣ0
(-1)•  ΣΣΣΣ0 •  V0

+•  A] •  P(0) = [ΣΣΣΣ0
(-1)•  W0

+•  B] •  Qsetpoint (A10).

Now, equation (A10) can be inverted by noting that both [ΣΣΣΣ0
(-1)•  ΣΣΣΣ0] and [V0

+•  A•  V0] are
equal to the (3x3) identity matrix, so that finally :

P(0) = [V0•  ΣΣΣΣ0
(-1)•  W0

+•  B] •  Qsetpoint (A11)

which, according to eq. (A4), is indeed the optimal steady state power input.
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