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ABSTRACT

The radial extent of a magnetised boundary plasma, or Scrape-Off-Layer (SOL), is determined by

competition between transport processes parallel (||) and perpendicular (⊥) to the magnetic field B

[1]. Whereas most aspects of || transport are well understood, ⊥ transport is generally anomalous,

determined largely by turbulent processes [1], a situation common to many areas of plasma physics,

eg. planetary magnetospheres, solar corona, wind, prominences and flares, magnetic accretion jets

and many industrial plasmas. In nuclear fusion devices, the radial extent of the SOL determines the

peak heat flux on the divertor tiles which poses a key constraint on the design and successful

operation of a next-step tokamak, such as ITER [2]. In order to improve our predictive capability,

physical understanding of the underlying ⊥ transport mechanisms is essential, especially in the

reference regime of ITER, the so called ELMy H-mode [3]. With this aim, a series of experiments

were carried out on JET in which power deposition widths  λq were measured in several D and He

plasmas, including scans in toroidal Bφ and poloidal Bθ fields, neutral beam power PNB and line

average density <ne>. The aim of this letter is the interpretation of the above experiments, specifically

the comparison of experimental q with predictions of ~ thirty candidate models of ⊥ energy transport.

EXPERIMENTAL RESULTS.

Power widths  λq were measured for twenty discharges in total (14 D, 6 He). The nine discharges (3

D, 6 He) selected for the present study based on lack of Bφ or Bθ variation in the D data [4] and

quality of diagnostic data are listed in Table 1. They represent the only data set of its kind on a large

tokamak [5]. All plasmas have identical shape and the direction of toroidal field such that B x ∇B

points towards the divertor. The selected set contains several He H-modes with variation of and the

magnetic safety factor q95 ~ aBφ/RBθ, as well as two D H-modes and three L-modes. The line-

average density varies by a factor of two, which spans the Greenwald fraction fGW from ~0.3 in L-

mode, through ~0.6 in D H-modes, up to the ITER relevant values of 0.8-1.0 in He H-modes.

ELM-averaged power deposition profiles were obtained for each of the above discharges using

the swept strike-point Thermo-Couple (TC) technique [4,6], which agrees closely with the Infra-

Red (IR) diagnostic [7]. Since ELMs are responsible for only ~20-30% of the energy reaching the

divertor targets [8], these profiles are dominated by inter-ELM energy transport. In addition, electron

power profiles were measured using the divertor Langmuir Probes (LP) [6,9]. The profiles are

parametrized in terms of two variables: peak heat flux q0 and the integral width, defined as λq  ≡∫qdr

/q0. The results for the outer target are summarised in Table 1 (q0
inner is up to five times smaller). All

heat fluxes are expressed as wall loads, i.e. per unit area of the divertor target; heat fluxes || to the

magnetic field are related to target fluxes by q||/qt ~ 1/sinθ⊥, where  θ⊥ ~ 4-5o is the field line angle

normal to the target. Profile widths are mapped from the target to the outer mid-plane (omp) or

upstream location using  λq[omp] =  λq[z]/Φ, where Φ ~ 4 is the flux expansion factor obtained

using EFIT reconstruction.
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The ion contribution to q0 may be estimated as the difference between the TC and LP

measurements. Ions dominate q0 in D H-modes, which is evidently not the case for helium. This

fact is largely explained by examining ion υ*i and electron υ*e collisionalities, defined as the ratio

of upstream-to-target connection length L|| ∝ Rq95 to upstream α-β mean-free-path with α,β,∈
{e,i}: υ*αβ ≡ L||/λαβ  = L||(3Tα/mα)-1/2 υαβ; note that, υee:υii: υie = 1:Z3 ϑ -3/2 (me/mi)

1/2 :Z2 me/mi

(where ϑ Ti/Te) are ordered by (me/mi)
1/2 <<1, while  λee:λii:λie = ϑ2 Z -3 :Z -1:1 are of the same order

of magnitude [10]. These have been calculated using modified two-point model estimates [11,12]

of upstream separatrix temperature Te,u and density ne,u (assuming ϑu = 2), based on target LP

measurements of Te,t and ne,t, Table 1. It is clear that in D H-modes ions are only marginally collisional

(υ*i < 3), whereas in He plasmas υ*i ≅ υ*ei ~ 30, which precludes Ion Orbit Loss (IOL) and implies

strong coupling between ion and electron channels (hence q0
TC ~ q0

 LP in helium).

Table 1 also gives the estimate of the power entering the SOL (PSOL ~ PΩ + PNB -Prad) and the

total power deposited on the outer target (TC). The in-out power asymmetry is nearly constant for

all the discharges, Pt outer /PSOL ~ 0.6-0.7. This is consistent with previous D results where in-out

asymmetry was shown to be a function of only the B x∇B direction [8]. The fact that PSOL / PNB is

greater in helium reflects the increase in ohmic heating power PΩ with plasma resistivity,η|| ∝ Z.

STATISTICAL ANALYSIS.

Standard regression analysis was performed on TC and LP widths with respect to ion mass A and

charge Z, Bf, q95, Pt and ne,u. Since A/Z=2 for both D + and He++ , one of these variables is redundant

in the regression; we shall denote this by writing A(Z). The choice of Pt and ne,u as the two plasma

variables was dictated by three factors:

a) continuity with literature [3],

b) accuracy of estimates,

c) comparison with theory.

Whereas Pt was directly measured, upstream (Ti, Te, ne)u are calculated based on target quantities

(Te, ne)t and the diagnostically unavailable ϑ = Ti/Te ratio. Comparison with theory complicates the

matter further, since most models depend on both Ti and Te, the former of which is unknown. In

what follows, we present regression with respect to all variables but exclude the scaling with plasma

variables (Pt, ne,u) from the comparison with theory (this does not alter the conclusions of the

study).

The regression was performed on five sets of discharges: all D + He; selected data (Table 1); H-

mode only; D only and He only. The resulting scalings are summarized in Table 2; they may be

approximated as λq
TC∝A(Z)q95 

3/4Bφ
-1 Pt

-0.4 ne,u
0.15. Since the A(Z), Bφ and q95 exponents show

only a mild variation between the data sets, we incur only a small error by a particular choice of

data set (e.g. the exclusion L-mode shots). Consequently, the first entry in Table 2 was chosen as

the reference experimental scaling to be compared with theory.
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The LP width is roughly proportional and slightly larger than its TC equivalent,  λq
LP/ λq

TC ~

1.25±0.23. The two widths exhibit similar scalings, aside from a stronger density and weaker power

dependence in case of  λq
LP. However, the LP width is less well correlated with the regression

variables, as indicated by the regression error, Table 2. This error may be reduced by including the

effect of  υ*ie, which suggests that a large fraction of power is coupled to the electrons from the ion

channel. In what follows, we restrict our analysis to λq
TC only.

THEROETICAL DERIVATION OF SOL WIDTHS.

Local power balance in the SOL may be written as  ∇||q||α + ∇⊥q⊥α = Sq, α, where q||α = 1/2(mαvα 2+

5Tα)nαv||α -nαχ||α∇||Tα and q⊥α =  -nαχ⊥α∇⊥Tα are the || and ⊥ energy fluxes for species ∝ ∈{e,i},

χ||α ∝Tα τα/mα and – are the || and  heat diffusivities, and Sq, is the net energy source [1]. The above

may be simplified by replacing the || and ⊥ gradients by inverse lengths 1/L|| and 1/λqα, where λqα

is the power e-folding length in the SOL. This yields an expression for λqα ~ {n⊥Tαχ⊥α/|q||α/L||-

Sqα|}1/2 which scales as (nαTαL||χ⊥α/q||α)1/2 when either L||Sqα << q||α or L||Sqα ∝ q||α . Introducing

the convective and conductive times (τvα ~ L||/v||α, τχα ~ L||
2/χ||α), one can express the condition for

|| heat transport being dominated by convection as  Ξ ≡ τv/τχ < 5/2. We approximate the former as

τv ~ L||/Mcs where cs = {(ZTe+Ti)/mi}
1/2 is the plasma sound speed and M = v||/cs is the Mach

number; over the range 1<Z<2, cs scales as {Zξ/A}1/2 with ξ =0.6 for ϑ =1 and ξ =0.42 for ϑ =2.

The latter becomes τχ ~ L||
2/χ||e since χ||e /χ||i ~ 35A0.5 Z3  ϑ-2.5, which gives ~ 10 for D + and ~ 100

for He ++ (M~0.5 and ϑ~2 will be assumed henceforth in light of evidence for strong SOL flows

and energetic ions in the SOL [7,13]). In the convective regime ( < 5/2), the power width becomes

λqv,α, ~ (χ⊥αL||/cs)
1/2; in the conductive regime (Ξ < 5/2), one obtains  λqv,α,~ L||(χ⊥α/χ||e)

1/2 (Tα/Te)
1/2.

On the basis of Ξ evaluated at both the upstream and target locations for all discharges of Table 1

(Ξu ~ 10, Ξt ~ 1), we expect conduction to dominate in the upstream SOL (q|| ~ neχ||e∇|| Te) and

convection in the divertor region (q||α ~ 2.5TαnαMcs). Both expressions for  λq are thus relevant for

the present study.

MODELS OF  ⊥ ENERGY TRANSPORT.

Following the approach of Connor et al. [14,15], two dozen models for ⊥ heat diffusivity χ⊥were

considered. Their scaling with A, Z, Bφ, L|| ∝ Rq95, λq, ne and Tα is summarised in Table 3. The

model notation of [14] was retained, with three notable additions: the classical A1 and neo-classical

A2 ion conduction, as well as classical electron conduction A3. For a detailed description of the

underlying physics of each model, the reader should consult [14] and the citations contained therein.

Also included in Table 3, are scalings of ion toroidal ρi(Y1) and poloidal ρθi(Y2) gyro-radii, and

electron toroidal ρe(Z1) and poloidal ρθe(Z2) gyro-radii. Finally, the footprint of IOL on the outer

target was obtained via numerical simulations of JET plasmas using the ASCOT code [16]. Over

thirty simulations were performed with 1.5 T < Bφ < 3.5 T, 2.6 < q95 <5.2, A ≤12 and Z ≤ 2, to yield

the following expression: λq
IOL [mm-omp] = 2.2A0.35±0.03 Z-0.8±0.06  Bφ

-0.89±0.04 q95
0.88±0.04. Not
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surprisingly, the resulting width, denoted by X in Table 3, scales roughly as the poloidal gyro-

radius ρθi(Y2) ~ banana width, the differences arising mainly from topological effects associated

with the X-point. The above models can be categorized into four families of increasing order of

complexity: a) Q,χ⊥= constant; b) X-Z, λq~ gyro-radii; c) A, (neo-)classical conduction, d) B-O,

anomalous.

COMPARISON WITH EXPERIMENT

In order to compare the predictions of various theoretical models with experimental results, it is

necessary to introduce the χ⊥ scalings of  Table 3 into the  λq,v and  λq,χ, expressions derived

previously. For a general scaling χ⊥ ∝  AµZηBξL||
ζne

ψTα θλq
σ after some simple algebra, one obtains

the results λq(Ax Z y Bz L||
 wne 

uTα
v)s where x =(µ +0.5)/2, y =(η -0.21)/2, w =(ζ +1)/2, u =(ψ +1)/2,

v=(θ-2.5)/2 for λq,v; x =µ/2, y = η /2, w = 1+ ζ/2, u = ψ/2, v =(θ -0.5)/2 for λq,χ, and z = ξ/2, s = 1/

(1+ σ/2) for both. In what follows, we introduce the following notation: ⊥ model A with || assumption

a will be termed a mechanism and denoted as A:a. As a figure of merit of the comparison we take

the RMS difference ∆ between the predicted (model) and measured (regression, 1st entry in Table

2) exponents. This quantity ∆ is plotted in ascending order for the best ten models assuming ||

convection, λq,v, Fig.1, and || conduction, λq,χ, Fig.2. By far the best match to the experiment is

offered by classical ion conduction A1(∆A1:v=0.12, ∆A1:χ=0.19), followed by resistive MHD

(interchange E and drift ballooning turbulence H), classical electron conduction A3, Bohm N, poloidal

gyro-radius Z2, endplate MHD (B2, G2), skin depth I and others. Of all the mechanisms, only A1:v

agrees with each exponent to within the regression error, Table 2, and only A1 shows significant

improvement over the null model Q, the ∆ of models B-Z following a trapezoidal distribution about

∆Q (∆<B:Z>:v~0.70 vs. ∆Q:v~0.73 and ∆<B:Z>:χ~0.74 vs. ∆Q:χ~0.79). The breakdown of ∆ into primary

components, reveals that over models B to Z, ∆AZ is by far the largest source of discrepancy. Nearly

all models under-predict the A(Z) exponent (on average by unity), over-predict the Bφ exponent (on

average by a half), with q95 scaling the best matched on average. Hence, the conclusions of this

study are based primarily on the A(Z) and Bφ scalings.

DISCUSSION.

The above results point to two leading A1:{v,χ} and several secondary, ∑= {E,H,A3,N,B2,…}:{v,χ },

energy transport mechanisms in the SOL plasmas considered. Radial transport is thus dominated

by classical ion conduction, with an addition of electron conduction. The latter contains both classical

and turbulent-electrostatic (resistive, ballooning, interchange) contributions. Net energy flow from

the ion into the electron channels is implied, eg. A1(i):χ(e). On the particle scale, A1 involves

diffusion of energy with radial steps of the ion gyro-radius occurring with  i-i collision frequency,

χ⊥
i~ ρi

2υii, which implies a quiescent plasma (consistent with the observed reduction in fluctuations

of density and potential in the vicinity of the separatrix in H-modes [17]) of sufficient collisionality

to assure several diffusive steps. The average number of diffusive steps N⊥,α, for species α ∈ {e,i}
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is just the ratio of || and collisional times, N⊥,α, ~ τ||α/ταα, so that N⊥,e ~ L||
2 /χ||e τe ~ υ*

e
2 while N⊥,i

~ L||/csτi ~ υ 
i. Consequently, the diffusive approximation is valid for all but one discharge in Table

1 ( N⊥,e > 30-900,  N⊥,i > 1.5-30). Both numbers approach unity as υ*
α → 1 and zero as υ*

α → 0. In

this limit, the power width should reduce to a combination of gyro-radii expressions X-Z. In fact,

ion orbit loss X ~ ρθi(Y2) has been identified as the cause of deposited power profile peaking

(narrow λq) in high power D H-modes (eg. 50397), for which υ*
i ~ 1 [7]. Consequently, under

quiescent conditions classical ion transport reduces to IOL in the collisionless limit, A1:v→X as υ*
i

→ 0. The composite picture can be drawn as follows,

(υ*
e > 3, υ*

i > 3) ⇒ A1:v > {A1:χ ,∑}

(υ*
e > 1, υ*

i < 1) ⇒ A1:v → X >> {A1:χ → 0, ∑}

Note that ion and electron channels become de-coupled as υ*
i < 1, since υ*

e,i << υ*
i,i.

In neo-classical conduction A2 the diffusive steps take place with a poloidal gyro-radius ρθi ~

banana width [10]. This process should be negligible in the SOL, where due to the open topology of

magnetic field lines nearly all ion orbits terminate at divertor targets, precluding the existence of

banana orbits for all but a small fraction of ions. In the collisionless limit, neo-classical effects appear in

the SOL in the footprint of IOL X on the target, which scales as ρθi (Y2) rather than ρi (Y1).

So far only the scaling of λq was considered. One can also compare the magnitude of predicted

and measured power widths for selected models. On average, λq
TC is roughly three times smaller

than λq
A2:v, two times larger than λq

A1:v and ρθi, five times larger than λq
X , and thirty times larger

than  λq
A3:  and ρθe. The measured widths are well matched by λq

TC ~ (2.66±0.32)λq
A1:v. Extrapolating

based on this expression from JET shot 50397 to ITER using reference values for a D+ plasma cited

in [6], yields λq
ITER/~ 4±0.5 mm-omp (in general, ion widths {A1,A2,X,Y1,Y2} predict λq

ITER/

λq
50397~0.75±0.1, while electron widths {A3,Z1,Z2} yield ~ 0.9±0.2). The same value is obtained

using the regression results of Table 2, replacing Pt ⇒ Pt/R
2 and q95 ⇒ Rq95. For a mixture of D, T

and He in the ratio 5:5:1, both widths increase by ~ 15%. It is worth noting that  λq
TC → λq

X as υ*
i

→ 1 (best fit obtained as λq
TC ~ (1.48±0.13)λq

X υ*
i
0.4 ) supporting the hypothesis that A1:v→X in

the collisionless limit. Since υ*
i
ITER ~ 1, we expect a significant IOL contribution in ITER.

Extrapolating the IOL expression yields λq
ITER ~ 2.50.5 mm-omp. The two mechanisms may be

combined into a transitional estimate,

λq = ξ xCA1:vλq
A1:v + (1-ξ)λq

X, ξ ≡ υ*
i/ (1 +υ*

i)

which scales as  λq
A1:v and λq

X in the appropriate limits. This expression provides a good match to

JET data with CA1:v ~ 2.8, and predicts λq
ITER ~ 3.30.5 mm-omp, cf. the ITER design value of 5

mm-omp. Since the above estimates do not account for the increased closure (higher plasma/neutral

compression) of the ITER divertor, they represent  λq at the entrance into the divertor volume, and

thus a lower limit on the deposited power width.
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CONCLUSIONS.

Analysis of recent JET experiments presented in this study provides conclusive evidence for the

suppression of ion turbulence in the vicinity of the separatrix in ELMy H-modes. Radial transport

is dominated by classical ion conduction for υ*
i > 3 which reduces to ion orbit loss for υ*

i < 1.

Based on these results, the ITER power width can be estimated as 3-4 mm-omp at the entrance into

the divertor volume. The accuracy of this prediction will be improved in a future study, by including

the above mechanisms in an existing edge transport code.
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Table 1:
Summary of selected discharges; also L

||
[m]≅50  (q

95
 /2. 6); n

i,u
 = n

e,u 
/ Z; ϑ

u
 = (T

i
 /T

e
)

u
 = 2 assumed; ν*

ei
 = Zν*

e

Ions Mode Ip Bφ q95 <ne> PNB PSOL Pt q0
TC q0

LP λq
TC λq

LP ne,u Te,u ν*
i ν*

e

>95% MAT 1019m-3 MW MW MW MW/m2 MW/m2 mm mm 1019m-3 eV

50415 D L 2.5 2.4 2.6 3.3 4 2.5 1.8 2.7 2.8 8.5 13 2.45 59 7.4 29

50386 D H-I 2.5 2.4 2.6 6.0 10 6.0 4.0 7.0 3.3 7.5 8.5 1.58 77 2.7 11

50397 D H-I 2.5 2.4 2.6 6.5 16 9.0 5.8 14 4.2 5.5 9.5 1.30 94 1.5 6

53981 He L 2.5 2.4 2.6 3.8 2.5 2.9 2.1 1.9 1.6 14.5 14 1.12 54 32 16

53982 He L 2.5 2.4 2.6 4.2 5.4 4.7 3.4 3.3 2.7 13.5 14.5 1.59 63 34 17

54140 He H-III 1.5 1.45 2.6 6.1 9.2 7.0 5.35 3.8 2.7 18.5 20 1.54 65 30 15

54142 He H-III 1.5 1.45 2.6 6.3 10.3 7.5 5.8 4.1 3.0 18.5 23.5 1.51 66 28 14

54149 He H-III 1.5 2.2 3.8 4.7 11.5 7.2 4.1 3.1 3.3 17.5 20 1.17 68 30 15

54150 He H-III 2.1 2.0 2.6 6.7 11.5 7.2 4.8 4.5 3.3 14 19 1.47 68 26 13

    α+β         γ       δ         ε       ϕ

   λTC
selected 0.91±0.14 -0.99±0.27 0.71±0.25 -0.26±0.11 0.13±0.19

   λTC all D+He 0.94±0.08 -1.18±0.16 0.79±0.19 -0.39±0.05 0.15±0.05

   λTC H-mode 0.97±0.16 -1.17±0.28 0.69±0.27 -0.49±0.08 0.12±0.06

   λTC D        -          -        -   0.41±0.07 0.14±0.06

   λTC He        - -1.08±0.13 0.81±0.15 -0.35±0.11 0.27±0.19

   λLP
selected 0.77±0.24 -1.00±0.35 0.75±0.37 -0.16±0.13 0.54±0.36

Table 2:
Regression results: exponents in  λ

q
∝ Aα Zβ Bφ

γ q
95 

δP
t 

εn
e,u

ϕ.



8

Model   µ   η  ξ       ζ       ψ         θ  σ

A1(i)  0.5   1 -2  0  1   -0.5   0

A2(i)  0.5   1 -2  2  1   -0.5   0

A3(e)  0   0 -2  0  1   -0.5   0

B1(i,e)  0.5 -2 -2  1  1.5  0   1

B2(i,e)  0   0 -2  1  1.5  0   1

C(i,e)  0.5 -2 -4  3  2.5  1   2

D(i,e)  0.5 -2  0 -1  0.5 -1   0

E(i,e)  0   1 -2  2 -0.5  1   1

F(i,e)  0.5 -2 -2 0.33  1.5  0 1.33

G1(i,e)  0.5 -1.5 -2  0  1  0   1

G2(e)  0.5 -0.5 -2 0.33  1.33  0 1.33

G3(i,e)  0.5 -1 -2  0  1.5  0   1

H(e) -0.33 2.33 -2 3.33 -1.83 1.66  2.66

I(e)  0  1  0  0 -1.5  0   0

J(i,e) -0.5  0  0  0  0.5 -1   1

K1(i,e)  0.25 -2 -2 0.5  1.5  0 1.5

K2(i,e)  0.33 -1.66 -2 0.66  0.83 0.33 1.33

L1(i,e)  0.5 -2 -2 0.33  1.5  0 1.33

L2(i,e)  0.5 -1 -2 -1  1.5  0   0

M(i) -0.5  0  0  0  0.5 -1   0

N(e)  0  0 -1  0  1  0   0

O(i,e) -0.5  0  0 -1  0.5 -1   0

Q(-)  0  0  0  0  0  0   0

X(i)  0.35 -0.80 -0.89 0.88  ?  ?   -

Y1(i)  0.5 -1 -1  0  0 0.5   -

Y2(i)  0.5 -1 -1  1  0 0.5   -

Z1(e)  0  0 -1  0  0 0.5   -

Z2(e)  0  0 -1  1  0 0.5   -

A:Q 0.19 -0.52 -1.52 0.50  0.80 0.07 0.76

Table 3
Theoretical scalings: exponents in χ⊥∝ Aµ Zη Bξ q

95 
ζn

e
ψTα 

θλ
q

σ  for models A-Q and λ
q
∝ Aµ Zη Bξ q

95 
ζn

e
ψTα 

θλ
q
σ for

models X-Z; n
e
=Zn

i
 assumed in derivation. Primary species given in brackets. <A:Q> denotes average over models

A to Q.
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Figure 1: RMS difference ∆ between the model and
regression exponents, assuming || convection (:v), along
with contributions from Z(A), q95 and Bφ exponents.
Dotted line represents RMS regression error.

Figure 2: Same as Fig.1 but assuming || conduction (:χ).
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