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ABSTRACT

The internal inductance li and the magnetic axis radial position RMAG are important elements in the

development of a reliable real-time control system.

Specific algorithms have been developed to obtain these quantities and, with the aim of comparing

the relative performances, li and RMAG have also been determined with suitable Neural Networks.

Both procedures rely on the Shafranov Integrals, which have been computed on the plasma Last

Closed Flux Surface using an updated version of the fast boundary code XLOC.

The two approaches have been verified on several classes of equilibrium and both in the limiter

and x-point phases of the discharges. Their results have been measured against the estimates of the

off-line JET equilibrium code EFIT and it has been found that they provide quite good evaluations

of the required quantities, since the differences between their estimates and the EFIT ones are of the

order of a few percent. They also provide similar performances in terms of accuracy and

computational speed and are quite robust in case of poor quality signals.

Both methods are consequently suitable for reliable real-time control systems in JET.

1. INTRODUCTION

In the last years a remarkable progress have been achieved in demonstrating the feasibility of real-

time control of Tokamak plasmas. Particular emphasis on this subject is also a consequence of the

increased sophistication of new scenarios, like the advanced Tokamaks with extreme shaping (ITER-

like) ones. The complexity of these advanced configurations is making increasing demands on the

real-time control systems, which have to be at the same time more complex and more reliable.

In this context, the need for a robust real-time determination of the internal inductance li and of the

magnetic axis radial position RMAG has emerged in JET. Indeed li is a fundamental prerequisite to

the calculation of important confinement quantities [1] and is of great help in the control of the

magnetic configuration and the current profile [2]. The magnetic axis radial position allows a much

faster and reliable assessment of the magnetic topology [3].

To determine the best way to provide these quantities in real-time, two different approaches

have been tested. The first consists in the development of specific algorithms, which work out the

requested quantities on the basis of the best analytical theory available and with computational

methods compatible with constraints for the real-time. The alternative method is a connectionist

approach based on specific Neural Networks (NNs), which have been trained with the same inputs

as the previous case. In both cases, the best off-line magnetic equilibrium code available, EFIT [4],

has been selected as the reference calculation.

The chosen algorithmic approaches and the NNs are based on the determination of the Shafranov

Integrals (SIs) S1, S2 and S3 [5,6]. These quantities are indeed required: a) they are a prerequisite to

the direct calculation of li [6] and RMAG (see later); b) being surface integrals of the poloidal magnetic

field (see next section for details), they can be computed on a sub-millisecond time scale compatible

with the design specifications of the JET real-time control applications.



2

The paper is organized as follows. A general introduction to the issue of determining the internal

inductance and the radial position of the magnetic axis is provided in section two. The main reasons

behind the strategic choices made are explained and the theoretical background is shortly presented.

The topic of determining the Last Closed Flux Surface (LCFS) is also addressed. The algorithm to

evaluate li is described in detail in section three; here a brief introduction to NNs is also given, as

well as a description of the NNs used in this work and the NN specifically designed to calculate li.

The results of both methods are then compared with the reference values provided by the EFIT

code. Then in section four the RMAG determination is addressed. Finally, section five provides an

overview of the relative merits and drawbacks of the two approaches for this kind of application.

2. LAST CLOSED FLUX SURFACE AND SHAFRANOV INTEGRALS

The JET external magnetic measurements are used as an input to the real-time algorithm called

XLOC [7]. This code has already been in operation for many years for controlling the plasma shape

in JET; it allows the fast determination of the poloidal magnetic flux ψ and consequently the

determination of the poloidal magnetic field, external to the plasma column, using the vacuum

region approximation. The knowledge of the magnetic field outside of the plasma makes possible

the calculation of S1, S2 and S3, integrals of the poloidal field at the plasma boundary. From these

quantities a calculation of li can then be inferred. The SIs can also be used to evaluate RMAG. However

li and RMAG could not have been obtained without having a fast method to compute in real-time the

LCFS necessary to derive the SIs, and this has been achieved with an upgrade of XLOC.

The three Shafranov integrals S1, S2 and S3 are defined over the LCFS by [6]:
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where Bp is the poloidal magnetic field, S is the plasma surface, R and Z the radial and vertical

coordinates (eR and eZ the respective vectors), Rc a constant major radius (taken equal to 2.96 m,

i.e. the radial coordinate of the vessel centre), V the plasma volume, Bpa the poloidal field for

normalization1 and n the vector normal to the plasma surface.

The main difficulty, in calculating these integrals, resides in the evaluation of the LCFS: this quantity

can be obtained by mean of the poloidal flux ψ external to the plasma. As already said, in JET the

spatial distribution of this quantity is given in real-time by the XLOC code. This code is optimized

to match the external magnetic measurements and provides a mapping of the magnetic field. In

particular, the poloidal magnetic field in the external region of the plasma is obtained with the

following relations:
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where BR and BZ are the radial and vertical components of the magnetic field.

The determination of the LCFS is then achieved with an upgraded version of XLOC [8], which

again satisfies the real-time constraints and can provide the plasma boundary in less than 1 ms

(value measured on an 400 MHz Pentium II). As Ψ is a function of R and Z, the procedure mainly

consists in tracking the boundary flux value ψLCFS (provided by XLOC) along one hundred predefined

radial segments, called Gaps, whose layout, together with a plasma LCFS, can be seen in fig. 1. The

flux has a monotonic trend from inside to outside the plasma: this is a crucial factor that allows the

use of the bisection as a fast search method. Indeed the monotonicity guarantees the existence of a

unique solution of the expression Ψ(R, Z) = ΨLCFS along each Gap, and the bisection allows to

found this solution with an efficiency of O(log2 N) cycles, where N is the number of points of each

Gap. Accordingly, the point of each Gap whose flux value is the closest to ΨLCFS can be considered

as belonging to the LCFS.

Having the coordinates of the LCFS and consequently the values of the magnetic field on it, the

required SIs can be evaluated accurately and rapidly. Fig. 2 shows a typical example of the SIs

evolution during a discharge in comparison to the EFIT calculation. In table I the performances

with respect to EFIT for the whole database2 are shown. The agreement with the EFIT outputs is

satisfactory and therefore these estimates of the Shafranov Integrals are suitable to the evaluation

of the internal inductance.

3. DETERMINATION OF THE INTERNAL INDUCTANCE

A) ALGORITHMIC METHOD

The rationale, behind the work devoted to the plasma boundary identification, resides in the fact

that, for elongated plasmas, the internal inductance can be expressed in terms of the Shafranov

Integrals. If this hypothesis is verified,

li is related to these integral quantities by the following expression [6]:
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The radial current centroid Rt [1,9] and the parameter α [6] are defined as

2
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In the previous relation eZ is the vector of the vertical axis and Y1 the first Shafranov moment

[1,9,10]:
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Bt and Bn are respectively the tangential and normal component of the poloidal magnetic field

along the boundary Γ of a plasma cross-section. It is worth noting that both Y1 and Y2 (see below)

can be determined using the LCFS coordinates and the magnetic field.

The most difficult point in the evaluation of li resides in the calculation of α. This volume

quantity is sometimes approximated and expressed in terms of the elongation k as [6]:
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Unfortunately relation (10) is not sufficiently accurate for JET applications. Indeed to reduce the

errors on li below 10% a better evaluation of this quantity had to be devised. To resolve this issue,

the calculation of an ideal αI has been performed, inverting (5), on a reduced database of 21 pulses,

using the li values provided by EFIT. This ideal αI has been found to depend mainly on k, on the

Shafranov moment Y2 [10] and on the quantity αS. The quantities αS and Y2 are defined as follows:
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It is worth noting that the expression for the Shafranov moment Y2 is strictly valid for configurations

that are symmetric with respect to the plane Z = 0. It turns out that in our case, mainly due to the x-

point configurations, its evaluation gives an approximated value, but however sufficient for our

purposes. The quantity αS, in its turn, contains the same integrand as relation (8), but is computed
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on the boundary surface S instead of being evaluated in the entire volume V. This parameter results

crucial for a good fitting. Indeed it is the only quantity that, in analogy with α, contains Bp
2, since

on the other hand Y2 is a function of Bp only and k depends merely on the plasma shape.

On the base of the results presented above it has been decided to approximate α with a linear

combination of the three aforementioned quantities and of their mixed products:

kYckcYckcYcc SSS 265243221 +++++= αααα (15)

To derive the linear combination coefficients the inversion of the following over-determined matrix

equation

      [ ] [ ] [ ]CXI ⋅=α (16)

has been performed. In (16), [X] is the 6-column matrix containing the parameters on which α
depends and [C] is the vector containing the 6 unknown coefficients. The data patterns considered

are about 3000 and come from the previously mentioned 21 pulses. For the inversion of the matrix

the Singular Value Decomposition method has been chosen. The coefficients determined in this

way have then been used to perform the calculation of α in real-time, providing much better results

than the approximation (10). In particular, it is worth mentioning that the adopted method allows an

optimization of the coefficients that is valid both for the limiter and the x-point phase of the discharge.

With the determination of the parameter α previously described, the plasma inductance can now be

calculated according to relation (5).

B) NEURAL NETWORKS

The same quantities used in the algorithmic technique previously described, i.e. the SIs, k, Y2, αS

and δ, have also been used as inputs to a specific NN, expressively designed to estimate the plasma

internal inductance.

NNs can be considered as non-linear mathematical functions [11] that can provide the

determination of a quantity when the expression to be computed is very complicated or even

unknown. Indeed they do not need the relationship between input and output to be known, since

their computational ability is based on how well they can learn it from the available examples. This

means that NNs must be trained to associate the right output to a certain input of the training set, in

order to be able to reproduce the right association for those inputs not belonging to the examples.

This kind of NNs is the most widely used by the applications, and these networks are known as

feedforward supervised NNs.

Topologically they are structured as a Multi-Layer Perceptron, i.e. they consist of a layer of

inputs, one or more inner (usually known as hidden ) layers, and a layer of outputs. Each layer is

made of units: each unit of a layer is connected to all the units of the previous and of the following
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layer. It can be demonstrated that at least in principle every continuous function can be reproduced

by a feedforward NN with a single hidden layer, for a finite range of values of the inputs.

From what stated before, it turns out that the most difficult and time-demanding phase is the one

devoted to the training of a NN, since during their actual use NNs can be considered as simple

transfer functions. Usually NNs are trained by back-propagating the error of their output with

respect to the output supplied by the examples. Several methods have been developed to propagate

this error. The Levenverg-Marquardt method is a very fast and robust one and it is well suited to

sum-of-squares error function, as in our case.

The database for the training phase consisted in an overall number of 6100 data patterns, of which

about 4000 were belonging to the training set and 2000 to the validation set. To check the goodness

of the NNs, a test set made of about 1400 patterns has been used. All these patterns belong to the

already mentioned database of 54 pulses.

C) COMPARISON OF THE RESULTS OF THE TWO METHODS

The NN structure for the determination of li is the following: from subsection 2b it turns out that the

NN has seven inputs; instead the number of hidden units has been chosen, after several tests, to be

ten; the number of outputs is obviously one.

The evolution of the li estimates during a shot is shown in fig. 3. The thin solid curve is the signal

computed by the algorithm; the dotted curve is the NN one; the thick solid curve is the result of the

off-line EFIT calculation. A statistical comparison between the results of the algorithmic method

and the NN approach for the real-time evaluation of li is reported in table II. The performances have

been computed on the same patterns of the test set, which are patterns neither used for the training

of the NN nor for the determination of the α coefficients. These results can be seen, graphically, in

fig. 4(a) (algorithm) and 4(b) (NN): on the x-axis the estimates from the algorithm/NN are reported,

while on the y-axis there are the ones from EFIT; the more the points are close to the bisectrix, the

more the real-time estimates are equal to the off-line ones.

Both techniques provide quite good performances, since the differences with respect to EFIT are

normally less than 3%, even if the NN accuracy seems to be on average better than the one of the

algorithm. This becomes particularly evident for discharges belonging to the equilibrium classes

contained neither in the NN training database, nor in the database used to extract the coefficients

for the α calculation.

A test has then been carried out to check the robustness of the two techniques to the noise

superimposed to a single input. The magnitude of the noise was +/- 5% with respect to the maximum

value of that input. The results are summarized in table III, and are averaged over all the seven

inputs. In this case the NN ability of generalize seems to be quite lacking (the MRE worsens of

about 40% with respect to the case without superimposed noise). To explain this, it must be considered

that the NN has not been trained with noisy data, and so the presence of a noisy input signal

becomes crucial when having inputs that are not redundant, as in our case.
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4 DETERMINATION OF THE MAGNETIC AXIS RADIAL POSITION

Once the plasma internal inductance has been determined, the Shafranov Integrals allow also

calculating the radial position of the magnetic axis. Indeed an estimate of RMAG is given by the

following (see [12]):
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(wherea is the plasma minor radius, R0 the plasma major radius and 0.01 is a correction factor

normally valid in JET discharges). But since the Shafranov Integrals can be used to estimate the

MHD plasma betaβMHD with [5]
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In this case, it has been possible to implement relation (19) directly without making recourse to

specific fitting procedures, as was the case for li. Moreover, a and R0 are quantities that can be

easily computed knowing the coordinates of the LCFS.

The evaluation of RMAG has been performed with a dedicated NN as well. The inputs to the NN

are the same five quantities appearing in (19), i.e. the two Shafranov Integrals S1 and S2, a, R0 and

δ. In this case, after several tests, the number of hidden units has been set to eight.

In fig.5 the two estimates (algorithm and NN — thin solid and dotted curve respectively ) of the

magnetic axis radial position are compared with the EFIT output (thick solid curve) for a typical

discharge. The results of a statistical comparison of the algorithm and of the NN performances is

reported in table IV. Also in this case the performances have been computed on the same patterns of

the test set. Again, fig. 6 shows graphically the statistical comparison between the real-time signals

and the EFIT one. Once more, both approaches give more than acceptable results and the higher

flexibility of the NN is also confirmed.

In this case a robustness test has been carried out too. The performances are reported in table V

and the same considerations as the li case are valid.

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

To summarize, it can be stated that both the algorithmic method and the NN approach give more

than acceptable results, satisfying the requirements of JET real-time control system. As far as the

time resolution is concerned, the code implementing the algorithmic calculation of li and of RMAG

provides these quantities in less than 1 ms on an off-line PC, equipped with a 400 MHz Pentium II,
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with Windows NT as operating system. The NN is even faster since, computationally, can be

considered equivalent to a simple transfer function.

From the point of view of the accuracy, both techniques give deviations from EFIT of the order

of a few percent in both the limiter and x-point phases of the discharge. These comparable

performances, in any case, were somehow expected, since the physical problem to study is well

identified and for the required parameters acceptable analytical formulas are available.

If in terms of accuracy and time resolution there does not seem to be great differences between

the algorithmic and the connectionist approach, the relative merits of the NNs become clear in

terms of adaptability to new equilibrium configuration. This has been interpreted as a higher capacity

of the NNs to generalize, compared to strict algorithms which are somehow more rigid in their

calculating procedures. It is also worth noting that, in the case that new equilibria or different

plasma configurations have to be included, the retraining of the NNs results much easier and less

time consuming than the updating of the algorithms.

On the other hand, in term of poor quality measurements, due to high noise or corrupted signals,

the performances remain still acceptable, even if the NN ability of generalization seem to weaken.

These positive aspects open very good perspectives for the actual use of these methods in JET real-

time system. In particular, the code with the algorithmic determination of li and RMAG has already

been implemented. The li computed with the algorithmic method has also already been used, with

success, in an experiment session devoted to the real-time control of li by mean of the Lower

Hybrid Current Drive power. The use of the NNs is also foreseen for the near future.
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Table I

Shafranov integrals MRE (%) MSE

S1      3.3 0.001

S2      4 1.87e-4

S3      2.82 0.0001

Mean relative errors (MRE) and mean squared errors (MSE), with respect to EFIT, of the

evaluated Shafranov integrals.

Table II

Internal Inductance MRE (%) MSE

Algorithmic method     2.84 0.0013

Neural Network     1.54 0.00059

Statistical comparison between the algorithmic and the NN estimates of li: mean relative errors

(MRE) and mean squared errors (MSE) with respect to EFIT.

Table III

Internal Inductance MRE (%) MSE

Algorithmic method      3.71 0.0027

Neural Network      2.14  0.00092

Averaged robustness, to a bad input, of the algorithmic and NN approaches for the

li calculation: mean relative errors (MRE) and mean squared errors (MSE) with respect to EFIT.

Table IV

Radial Magnetic Axis MRE (%) MSE

Algorithmic method      0.33 1.2e-4

Neural Network      0.073 1e-5

Statistical comparison between the algorithmic and the NN estimates of RMAG: mean relative errors

(MRE) and mean squared errors (MSE) with respect to EFIT.
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Table V:

Radial Magnetic Axis  MRE (%) MSE

Algorithmic method      0.66 1e-3

Neural Network      0.22 8.2e-5

Statistical comparison between the algorithmic and the NN estimates of RMAG: mean relative

errors (MRE) and mean squared errors (MSE) with respect to EFIT.

Averaged robustness, to a bad input, of the algorithmic and NN approaches for the RMAG

calculation: mean relative errors (MRE) and mean squared errors (MSE) with respect to EFIT.

(Footnotes)
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to the different plasma configurations;

b) all the comparisons have been performed by calculating the Mean Relative Error (MRE) and

the Mean Squared Error (MSE) of the evaluated quantities with respect to the ones from EFIT;

c) MSE =                              where SR is the reference off-line signal, SB is the analogous real-
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Figure 5: Comparison of the R
MAG

 estimates provided by the algorithmic approach implementing relation (19) (thin
solid curve), by the NN (dotted curve) and by EFIT (thick solid curve) for Pulse No: 53900; Ip is the plasma current
and Bphi is the toroidal magnetic field.
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Figure 6: Graphical statistical comparison between the R
MAG

 estimates provided by the algorithmic (a) / NN (b)
approach and the ones from EFIT.
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