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Figure 1: Radial structure of the Shear Alfvén continuous
spectrum for the (m, n) and (m - 1, n) modes in the case
r0 /R0 〈〈 ΩA,m + ΩA,m-1 ≤ 1. The value of q2R2

0 k||
2
m, n is

shown vs. x ≡ √nq0
||(r - r0). The frequencies of the (m, n)

and (m  1, n) modes are also shown as they are expected
from Eq. (3).

Figure 2: Magnetic spectrum in the pre-heating phase of
a JET RS plasma with non monotonic q-prole [5]. See
also Ref. [6].

Figure 4: Radial structure of the Shear Alfvén continuous
spectrum for the (m, n) and (m - 1, n) modes in the case
ΩA,m + ΩA,m-1 〈〈  -r0 /R0. The value of q2R2

0 k||
2
m, n is shown

vs. x ≡ √nq0
||(r - r0). The frequencies of the even parity

double EPM (toroidal mode) is also shown  where it could
be expected.

Figure 3: Radial structure of the Shear Alfvén continuous
spectrum for the (m, n) and (m - 1, n) modes in the case
ΩA,m + ΩA,m-1 ≈ r0 /R0. The value of q2R2

0 k||
2
m, n is shown

vs. x ≡ √nq0
||(r - r0). The frequencies of the even parity

toroidal mode is also shown as they are expected from
Eq. (9).
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Figure 5: Radial prole for q (solid line) and βH (broken
line).

Figure 6: Radial prole for s = rqI/q (solid line) and αH
(broken line).

Figure 7: Local values of growth rate (solid line) and
real frequency (broken line) of an EPM at r=a = 0:2. The
two horizontal lines indicate the toroidal gap in the Alfvén
continuum. [5]

Figure 8: Radial proles of q and βH that are used in the
non-linear simulations with the HMGC code [11, 12].
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Figure 9: Contour plot (left) of the EPM scalar potential fluctuation intensity in the (r/a, ωτA) plane at τ = t/τA = 120,
in the linear destabilization phase. Here, H0 = 0:008 and τA = R0 /vA is the Alfvén time. The shear Alfvén

continuous spectrum is also shown for reference in the background. The initial fast ion radial distribution (right),
(r/a)(nH /nH0), is also shown as a function of r/a.

Figure 10: Same as Fig. 9, but at t = 354τA, in the fully non-linear saturated phase. The fast ion radial distribution
(right), (r/a)(nH /nH0), does not indicate signicant modications from that of the initial state.
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Figure 11: Same as Fig. 9, but with a stronger drive. Here, βHo = 0:022 and t = 45τA, in the linear destabilization phase.

Figure 12: Same as Fig. 11, but at t = 132τA, in the fully non-linear saturated phase. The fast ion radial distribution
(right), (r/a)(nH /nH0), shows strong modications when compared with that of the initial state, conrming signicant and
rapid radial particle transport.
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