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ABSTRACT

The mechanisms of nonlinear interaction of external helical fields with a rotating plasma are

investigated analyzing the results of recent systematic experiments on JET that widen the previous

data base collected on Compass-D, DIII-D and JET. The empirical scaling laws governing the

onset of “error field” locked modes are re-assessed and interpreted in terms of existing driven

reconnection theories and with new models. In particular the important mechanism of plasma rotation

braking and spin up associated with error fields are analyzed in detail and interpreted.

I. INTRODUCTION.

The ideal tokamak configuration of nested toroidal isobaric magnetic surfaces desired for plasma

confinement, is well known to be susceptible to non axisymmetric magnetic perturbations that are

resonant with closed field line surfaces. On dissipative time scales even an ideally stable plasma

can respond to imperfections of the magnetic geometry that tear the ideal configuration deteriorating

particles and energy confinement and leading frequently to disruption of the discharge. In addition

error field locked modes can be seed neoclassical tearing modes (NTMs) and lead to a  limit  to

high βp performance.

Therefore it is important to understand the appearance of resistive locked magnetic islands caused

by the helical component of  unavoidable “error fields” . The basic mechanism to be understood is

the non-linear response of magnetic reconnection at rational-q surfaces driven by resonant “error-

fields” and the possible screening effect provided by plasma rotation. There have been a number of

experimental studies [1-4] of locked modes driven by error fields showing this screening effect implies

a threshold in error field amplitude to form a locked mode.

These comments anticipate the motivation of the systematic work undertaken recently on the JET

device [5] to widen existing data bases on the subject, that is relevant for the ITER design [6], with the

aim, in particular, to establish the threshold of the amplitude of external helical magnetic fields as

function of the main plasma equilibrium parameters. The appropriate scaling laws are identified

including as a novel feature the dependence on the plasma toroidal rotation frequency (ω0).

Further motivation comes from the comparison of the effects of “externally” driven modes with

those resulting from  “spontaneous” reconnection. Namely it has long been known [7], but not yet

explained, that the onset of locked modes often has a strong “non-local” effect on the plasma

toroidal rotation profile. This aspect is related to the “anomalous” nature of the perpendicular plasma

viscosity as well as to the possible appearance of a toroidal viscous force due to broken axisymmetry

[8].

The paper is organized into a Section presenting the set-up of the JET experiment, a description of

the data analysis employed to obtain the threshold power laws , in comparison with the best known

theoretical models and previous results from other experiments. The following Section discusses

the limitations of conventional models and points out the discrepancies with the experimental

observations, isolating the key questions to be addressed. The third and fourth Sections contain the
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outline and a discussion of possible models for the anomalous plasma braking and spin-up. The last

section gives  conclusions and  perspectives for the understanding and controlling realistic forced

reconnection phenomena in tokamak experiments and fusion devices.

II. ACTION AND RESPONSE EXPERIMENTS WITH HELICAL ERROR FIELDS ON JET

The flexibility of the JET device has been used to improve the understanding of the response of

tokamaks to very small accidental (“error”) external field perturbations that are generally observed

to lock rotating modes causing rapid amplitude growth to disruptive conditions on a variety of

tokamaks [1-4,7,10].

The JET tokamak is fitted, within the vacuum vessel, with a system of saddle coils (see Fig.1)

that can be fed with variable polarity by an appropriate power supply and controller, and were

originally meant to test concepts of electro-dynamic feedback control of tearing modes [11]. The

objective of the work presented here is however to single out as much as possible the essential

physics of the linear and non-linear reconnection response on the basis of systematic experiments

in which a DC external helical field having a large component with poloidal and toroidal pitch

numbers (m =2, n=1) is applied by the saddle coils (Fig.2)

Previous experimental results and a number of theoretical arguments indicate that when the

amplitude of the static external perturbation resonant at a certain q=m/n surface exceeds a critical

value, the driven linear reconnection process bifurcates, leading to a non-linearly amplified state

forming a magnetic island. The onset of this non-linear stage is commonly referred to as “penetration”

of the external field perturbation, in partial analogy with the phenomenon of penetration of a time

varying magnetic field into a conductor [2,12] although in the case considered here the characteristic

time scales are hybrid expressions involving electrical resistive times, inertial times and fluid viscous

times. For a fixed aspect ratio R/a and safety factor q aB RBa = ϕ θ , the dependence of the normalized

threshold value for penetration b Bpen  on plasma parameters can be expected to be represented by

a power law scaling b B n B T Ppen
a a

e
a

aux
an B T P∝  where n is the plasma density, B the toroidal field, Te

the electron temperature and Paux the auxiliary,non-Ohmic power density.

According to similarity principles applied to tokamaks [16] the operational  independent variables

are B and Paux, From the point of view of both the theoretical models of forced reconnection and

tokamak operation it is preferable to investigate a scaling of the form b B n Bpen
a an B∝ ωη

0  that

involves explicitly the density and the plasma rotation frequency, which is related to a condition of

local competition of the electro-dynamic and viscous torques that oppose reconnection [12]. In the

initial stage of the field penetration the plasma velocity deviates strongly from the equilibrium

profile only in the vicinity of the rational surface. The observed rotation is really in the toroidal

direction, as in the poloidal direction the phase velocity of the perturbation, coincident with that of

the plasma trapped in the island is strongly damped by the neoclassical viscous force. The toroidal

rotation is most frequently observed to be in the electron drift direction (opposite to direction of the

plasma equilibrium current), hereafter to be labeled as “positive” direction. The application of
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external torque, via Neutral Beam Injection or external fields may alter in either way the rotation

direction.

The experiments on JET considered here were performed in plasmas with low power neutral

beams (NBI) momentum injection, operating at constant q95~3.5 with the toroidal field B in the

range from 1 to 3 T, and with densities in the range 1.4 – 3.3 1019 m-3  in a Single Null separatrix

configuration (see Table I). A slow ramp of “error’ field is applied (Fig.3a) with the helical component

m=2, n=1 reaching an amplitude of B T2 1
46 5 10, .≈ ⋅ −

 at the q=2 surface. As apparent from Fig.3b,

3c the amplitude ramp of the magnetic perturbation produces an electro-dynamic torque that brakes

the toroidal plasma rotation at the q=2 surface located at the major radius position R mq = =2 3 7.

and when the local angular rotation frequency ω ω0 2 0≡ = =( , )R R tq  has been reduced to a critical value

ω ≈ ω0/2 (Fig.3c) the initially linear driven response, measured in the laboratory frame by a set of

peripheral magnetic pick-up coils, is non-linearly amplified (Fig.3b). The start time of  the  coils current

ramp is t0 .  This indicates field penetration and formation of a magnetic island, that is subsequently

“locked” as shown on the temperature profile measured by ECE (Electron Cyclotron Emission), in

Fig.4. When the external field is switched off and the natural error field is suitably compensated (Fig.3a),

the locked mode is observed to spin up either in the e- or the i- drift direction (Fig.3b) because of viscous

restitution of momentum from the underlying plasma flow.

The scaling of the threshold on density and field is related to the underlying dependence of the

rotation on those variables; this is a machine-dependent aspect of the problem that needs being sorted

out with some care for specific experimental conditions. For the shots at constant

PNBI multiple regression on the data leads to the scaling b B n Bpen ∝ ± − ±0 97 0 05 1 2 0 06. . . .  in line with that

found previously on JET [3] in absence of rotation. With NBI momentum injection of power PNBI the

rotation frequency scales as ω α β
0 ∝ ( )B P nNBI / in agreement with previous observations in JET discharges

with NBI power input [7]. Multiple regression analysis of the data gives for the rotation frequency the

power law scaling displayed in Fig.5 with exponents α β≅ ≅0 56 0 63. , . . Furthermore it is observed

that the density depends on B  as n B∝ 0 3. . Theory predicts different scaling of the threshold with

frequency depending on the prevalent dissipative regimes [12,13]. In the so called visco-resistive regime

defined by the condition ω ω τ τ τ0
1 3 2 3 2 3<< ≅ − −

I V R H
/ / / , where the time constants appearing in the definitions

are τ µV a= ⊥
2  the anomalous perpendicular viscous time of the order of the energy confinement time,

τ µ ηR a= 0
2  the resistive diffusion time and τH Aa v= , the Alfvén time.

In this regime‘expected dependence of b Bpen  on frequency is linear [4,5] and the best fit of the

data with this assumption is b B n Bpen ∝ ± − ±0 55 0 03 1 25 0 03
0

. . . . ω  as displayed in Fig.6.  A much better fit is

given by b B n Bpen ∝ ± − ±0 58 0 02 1 274 0 02
0
0 5. . . . .ω  (Fig.7).

The non-linear scaling with ω0  is in agreement with the scaling in the ideal viscous regime [12]

defined by ω ω0 > I . This implies that the effective (anomalous) viscous time should have values of

the order of τ τ τ ωV R H s≈ ≈ −2 2
0
3 210 .

We can actually argue that the scaling shown in Fig. 7 is the most consistent and physically

meaningful. It should be recalled that in absence of rotation the threshold scaling is
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b B n Bpen
a an B∝ 0 0  with a an B0 00 97 1 207= = −. , . . Since ω α β

0 ∝ B n/ , then b B n Bpen
a an B∝ ′ ′ ω0

0 5.

with ′ = + =a an n0 0 5 1 285. .β  and ′ = − = −a aB B0 0 5 1 487. .α . Considering that for the present data

n B∝ 0 3.  and that the data regression of Fig.7 gives an = 0 58. , one can write

a a a aB B n n= ′ + ′ − = −0 3 1 275. ( ) .  and obtain b B n Bpen ∝ −0 58 1 275
0
0 5. . .ω  that shows a remarkable

consistency of the present results  with those  obtained in absence of rotation [4].

In Table II a summary of results of different previous experiments and some theoretical predictions

is presented for comparison.

The analysis of the data shows substantial agreement with the empirical scaling of the threshold

of the field penetration found in previous experiments on JET (see Table II) and supports the view

that externally driven magnetic reconnection at rational-q surfaces is contrasted by plasma rotation,

which is therefore beneficial. However behind the global result of this experiment much more

complex physics is hidden that need to be discussed in detail. The process appearing as a nonlinear

“penetration” of the external field, with consequent island formation, has been studied in detail in

Ref [12] within a Rutherford regime [14] and is associated with the torque balance conditions that

may occur in a viscous plasma subject to electrodynamic forces.

The experiments confirm strikingly the fact that as the threshold for nonlinear reconnection is

reached the rotation frequency is approximately one half of its initial value, according with the

formula

(1)

as shown in Fig.8 for a single discharge (52067) and in Fig.9 for a group of discharges.

This interpretation is consistent with a picture of the islands’ motion in the plasma fluid similar

to that of a rigid body, with no net plasma flow across the separatrix [2,12]. In a single fluid plasma

model this “no slip” constraint leads to the assumption that the flux surface averaged deviations of

the fluid (poloidal and toroidal) angular velocities ∆ωθ, ( )z r  from the  “natural” values due to a

single magnetic island be hindered by perpendicular viscosity and therefore governed by a diffusion

equation with suitable conditions on axis and at the edge. In steady state the resulting toroidal

velocity shift is then expected to be rigid body like between the axis and the inboard radius of the of

the island separatrix (roughly 0 ≤ ≤r rs) and sheared for larger radii [12].

The evidence provided by the JET experiments, as well as that of other machines is however in

contrast with this idealized picture and requires a new point of view that will be described in the

next paragraphs. The main observation, presented in Fig.3c and in Figs.10,11,12 is that as the non-

linear mode amplification (“penetration”) takes place, the toroidal velocity profile V r t r t Rϕ ω( , ) ( , )=
collapses everywhere self-similarly, which is incompatible with a viscous decay. In detail Fig.3c

shows a superposition of the magnetic pick-up coils signal monitoring the growth of the m=2, n=1

signal and the traces of the charge exchange measurement (CXSM) of plasma rotation. The CXSM

traces giving the time history of rotation at all radii are visibly collapsing together at the onset of the

ω
ω0

2 1 2

1
2

1
2

1= + −


















b
b

ext

thres

/
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non-linear reconnection (at t =18.4 s from the start of the discharge); thus the braking appears

sudden and uniformly across the plasma cross section. The rotation frequency is normalized to the

value at the starting  time point  of the “error field” ramp. The interpretation of this fact is not

trivial, as it appears also from the CXSM plots of the radial rotation profiles with superposition of

the (2,2) (3,2) and (1,1) rational surfaces identified by the EFIT magnetic reconstruction code ;

Fig.10 shows for shot 52067 that during the subcritical part of the external field ramp, t< tric
(Fig.3a) a seemingly diffusive slow reduction of velocity occurs, with clear localization of the

braking torque at the resonant radius of the (2,1) surface. At†“field penetration” time the braking is

abrupt and distributed across the whole plasma body.

More precisely as apparent from  Fig.11, for shot 52067, and in Fig.12 for several discharges,

the  no-slip condition on the variation of toroidal angular frequency

∆ω ω ω( ) ( , ) ( ) .r r t r consts≡ −( ) ≅0 for 0 < r < rq=2 [2,12] is not met, the variation being larger in the

central part than near the q=2 surface where the torque has a resonant peak. No other resonant

torque appears to influence the rotation profile at other rational surfaces so the direct effect of a

mode coupling mechanism seems unlikely in this case.

Data for shot 52061 (Fig.13) show  that after the instant in which the coils have been switched

on (tstart), there is a quite long phase in which only  the q=2 (R=3.7) surface undergoes a significant

braking. This is interpreted as the effect of the localized electromagnetic torque which develops at

this surface. The global braking of the plasma velocity happens rapidly, associated with the

reconnection of the q=2 surface.

Thus  the characteristics of the braking observed are not diffusive and indeed an analysis of the

scaling of the observed braking rate suggests that the anomalous rotation damping can be described

by

(2)

associated with some mechanism depending on the field perturbation as  bθ
α
, with  a close to 2.

In Eq. 2 ν ϕ0 is an appropriate damping coefficient.

A nonlinear MHD problem for the m=2,n=1 mode has been solved numerically for a plasma of

constant density, rotating toroidally with an initial velocity profile V r0 ( ) and with boundary

conditions that include an external helical current field perturbation IE . The  resistive MHD equations:

(3)

(4)

(where ρ is the mass density, η( )r  the resistivity and µ⊥  the perpendicular viscosity) have been

solved in a customary RMHD model in the tokamak ordering, where the equilibrium and perturbed

magnetic and velocity  fields B B b= +0 ( ) ( , , , )r r tθ ϕ and    v v= + ⊥V r t e r t0ϕ ϕ θ ϕ( , ) ( , , , )
r

 are

represented through flux and stream functions [14] in the form

d V r t V r dt b B V r t V rϕ θ
α

ϕ ϕν( , ) / ( ) ( , ) / ( )0 0 0 0[ ] = −

∂
∂

η
µ

η
µ

B
v B B B

t
+ ∇ ∧ ∧[ ] = ∇ − ∇ ∧ ∇ ∧

0 0

2

ρ µ µd
dt

p
v

B B v= −∇ + ∇ ∧ ∧ + ∇⊥0
2
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and

with suitable direction vectors and metric coefficients  tied to the m,n helical path on a cylinder of

radius r.

Up to four (complex) harmonics of the flux and stream functions are considered and each harmonic

is governed by Reduced MHD equations obtained from Eqs. (2,3) and also the background toroidal

plasma velocity and equilibrium poloidal magnetic field are evolved in time  by the quasi-linear

equations

The numerical simulation of the driven reconnection problem with a simple viscous damping of the

toroidal rotation is performed using a finite difference scheme over a suitable non-uniform radial

grid and a two step implicit-explicit method in time [15]. Even though this model goes beyond the

constant y  approximation of the Rutherford regime [14],  it leads to a result in substantial agreement

with the “no–slip” expectation. As shown in Fig.14 the non-linear amplification (“penetration”) of

the helical flux Re[ ( ) ]( / )ψ θr ei m nz R−  occurs when V Vϕ ϕ= 0 2/  and the variation of the velocity profile

∆ ∆V r t r t Rϕ ω( , ) ( , )= ⋅ shown in Fig.15 tends to be pretty much uniform. The inadequacy of the

diffusive model and a qualitative agreement of model (2) with the observations is shown in Figs. 15

and 16 with  b for m nθ
2

0 0( , )≠ ≠ ,or  b for m nϕ

2
0 0( , )= ≠ for the reasons explained in next

section.

The discrepancy with the experimental observations and the scaling of the braking rate suggest

a conjecture on additional braking mechanisms linked to the radial and helical structure of the

perturbation. As discussed below in detail the breaking of axisymmetry due to resonant and non-

resonant helical field perturbations can in fact give origin, in general, to a toroidal viscous force,

normally identically zero in axisymmetry [17].

III. NEOCLASSICAL VISCOUS FORCE

The neoclassical toroidal viscous force [8,17] is a good candidate to explain the global braking of

the plasma rotation. This effect is present in non-axisymmetric plasmas only, and in our case it

could appear when the magnetic perturbation induced by the saddle coils become important. Its

flux-surface averaged expression is [17]

(5)

B e e e= + + ∇ ∧ ( )− +( )∑B B C ez z m n
m n i m nz R

m n
m n

m n

0 0θ θ
θ ϕψ,

,
,

,

,

v e e≅ + ∇ ∧ ( )− +( )∑V r t C ez m n
m n i m nz R

m n
m n

m n

ϕ
θ ϕφ0 ( , ) ,

,
,

,

,

ρ
µ

ψ ψ ρ φ φ µϕ
ϕ0

0

0 0

2
0

2 2
0

1
2

∂
∂

= ∇( ) − ∇( ) + ∇∑ ⊥

V

t R
n

n Vm n m n m n m n

m n

Im Im* *, , , ,

,

∂
∂

= − ∂
∂ ( ) + ∇ +∑ψ φ ψ η

µ
ψ0

0
0
2

0 0

1
2t

m
r r

Em n m n

m n

Im , ,

,

*

e
p

v
V

e B

B
b q

m nq
i

Ti

m n

m n
φ φ

φπ ∂
∂φ

⋅ ∇ ⋅ =
⋅ ∇

−≠
∑Π 2 1 2

0

/ ,

,
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where pi is the ion pressure, vTi is the ion thermal speed and B is the magnetic field magnitude,

whose perturbations are denoted bm,n:

(6)

The notation m,nπ0 means that the toroidal and poloidal mode numbers cannot be simultaneously

zero. In (5) we have discarded a term proportional to the plasma poloidal velocity, under the

assumption of a strong poloidal flow damping. All the resonant and non-resonant magnetic

perturbations produced by the saddle coils must be taken into consideration in (5), including the

m=0 component. For this reason we have to model the magnetic perturbation in the plasma to

higher order than usual in the aspect ratio ε = r R/ . To this purpose it is convenient to adopt the

notation developed in [19] for a cylindrical plasma with periodicity 2 pR in the z direction. In this

case f=z/R is a simulated toroidal angle and the equilibrium magnetic field B0 0 00= ( ), ( ), ( )B r B rθ φ

and current J0  are  related by the force balance equation J B0 0 0× = ∇P  and AmpËre’s law

∇ × =B Jµ0  that give

(7)

Defining the pressure gradient and the parallel current density profile as

g r
B

dP
dr

( ) = µ0

0
2

0
   and σ µ( )r

B
= ⋅

0
0 0

0
2

J B
 equation (7) gives

(8)

The linearized form of the curl of the force balance equation determines the perturbed field b

(9)

Introducing direction vectors em n m nC n r R m, , , ,= ( )0  tied to the m,n helical path on a cylinder of

radius r the divergenceless perturbed field consistent with torque balance (9) and Ampére’s law can

be expressed as an expansion of the type

(10)

where the Fourier coefficients are expressed in terms of a scalar flux function

(11)

where ym,n is a real amplitude and jm,n its phase. Moreover ψ ψ− − =m n m n, ,  and ϕ ϕ π− − = − +m n m n, ,

ensure that   b is real.

B r B r b rm n

m n

, , ( , , ),

,

θ φ θ φ( ) = ( ) +




≠

∑0
0

1

∇ × = ⋅ − ∇ ×
B

J B
B

B
0 0

0 0

0
2 0 0

0 0

0
2µ µ

B
P

B

µ σ σθ φ φ θ0 0 0 0 0 00J = + −( ), ,B gB B gB

b J J b B j j B⋅ ∇( ) − ⋅ ∇( ) + ⋅ ∇( ) − ⋅ ∇( ) =0 0 0 0 0

b e e= + ∇ ∧− +( ) − +( )∑∑b e C em n i m nz R

m n m n
m n i m nz R

m n
m nm n

m n m n

//
,

, ,
,

,
,,

, ,θ ϕ θ ϕψ

ψ ψ θ ϕ= − +( )∑ m n i m nz R

m n

e m n,

,

,
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The metric coefficients C r m nm n,

/
( ) = +( )−2 2 2 1 2

ε  and the “parallel” amplitude b Cm n
m n

m n
//

,
,

,= σψ are

determined by the condition ∇ ⋅ =b 0
Consequently the explicit perturbed field components for m,n≠0 are to all orders in  ε

(12)

(13)

(14)

Here F mB n Bm n, = −0 0θ φε  and G mB n Bm n, = +0 0φ θε . Note that m, n are integers.

For the present purposes we specialize the above expressions to the tokamak

ordering in ε0 = a R   m,n = O(1), 
B
B

O0

0
0

θ

φ

ε= ( ) , σ ε= O( )0 and may neglect the finite pressure

gradient  term g a O≈ =β ε/ ( )0
2  . However contributions for which |m |<<|ne| must be considered

with care

For  |m |>|ne|  we have:

: (15)

(16)

(17)

             But for m=0 a strong scaling of the field perturbation with ε−1 appears

             : (18)

(19)

(20)

b
i
rr

m n m n
r

m n, , ,= ⋅ =b e ψ

b
m n

m
d

dr
n n g

G
F

m n
m n

m n
m n

m n
m n

θ ε
ψ εσψ ε ψ,

,
,

,

,
,=

+
− + +





1
2 2 2

b
m n

n
d

dr
m mg

G
F

m n
m n

m n
m n

m n
m n

ϕ ε
ε ψ σψ ψ,

,
,

,

,
,=

+
+ +





1
2 2 2

G mBm n, ≈ 0φ F mB n B om n, = − ≈ ( )0 0 0θ φε ε

b
m

d
dr

m n
m n

θ
ψ,

,

≅ − 1

b
m

n
d

dr
m mg

G
F

o bm n
m n

m n
m n

m n
m n m n

ϕ θε ψ σψ ψ ε,
,

,
,

,
, ,( )= + +





≈1
2 0

b
n

g
G
F n

n n
n

n
n n

θ ε
σψ ψ σ

ε
ψ0 0

0

0
0 01, ,

,

,
, ,= +





≅

G n B on0
0 0

2, ( )= ≈ε εθF n Bn0
0

, = − ε φ

b
n

d
dr

n
n

ϕ ε
ψ0

01,
,

=
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The b field is a real quantity, so we can write

(21)

(22)

(23)

It is easy to show that in the formula (6)

(24)

and

(25)

Therefore the general expression for toroidal viscous force arising from helical perturbations is

(26)

Considering now the tokamak ordering with  m, n =O (1) we have for mπ0 the following contribution

to the toroidal viscous force is

(27)

Note that the quantity in the squared bracket is O (1). In the vicinity of the rational surfaces there

are helical current sheets related to the jump in d drm nψ ,   and the radial current perturbation is

negligible; in this limiting case  Ampere’s law gives  b n m bm n m n
ϕ θε, ,≈ −( )  (see also Ref. 12) that in

Eq. (26 ) cancels the bm n
θ

,  contribution. The residual term ∝ g  presents an apparent singularity;

however in  the non-linear stage with a magnetic island, due to the pressure profile flattening

(p’=p”=0) across the island  width it is expected that  g m nq≈ −( )2 . Then to this order the viscous

force in the island region would vanish, but non resonant components (m<0, n>0, and m>0, n<0) in

the summation would still give a contribution.

For m=2,n=1 the contribution to this viscous force due to the
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 term influences a region of plasma substantially wider [8] that the island formed at  reconnection

at the rational surface as can be seen qualitatively from Figs. (16) and (17) contributing to damping

of rotation over a wide radial interval.

A more significant effect is due to the m=0 perturbations for which  we have obtained different

expressions. In this case (19) and (20) give for the m=0 contribution to the toroidal viscous force

the expression

(28)

If we assume constant kinetic terms, also the quantity K is constant across the minor radius. In fact

for m=0  the marginal stability mode condition (9) reduces to

    → (29)

A0,n=0 in order to avoid  a singularity of the radial field at r=0 (see definition (12)). Therefore we

have:

(30)

with ε0 = a R/ . The neoclassical viscous force is associated to the damping time scale e Vφ φρ⋅ ∇ ⋅ Π / .

A comparison between Eqn. (27) and (30) shows that the m=0 contribution to the neoclassical viscous

force is a factor O(1/e4) greater than the mπ0 term. Asssuming  typical JET values e=0.37, Ti=3KeV

and a normalized perturbation ψ φ/ aB = −10 3, which is actually the maximum reasonable value,for

the mode resonant at the q=2 surface (therefore adding both the harmonics m=2, n=1 and m=-2, n=-

1) the damping time scale is of several second, which is too long. While the same calculation for the

m=0, n=1 and m=0, n=-1 modes brings the time scale to~ 50 ms.

Moreover the m=0 term produces a uniform influence across the minor radius, which virtually

explains the global braking of the plasma velocity, while the mπ0 term varies substantially with r.

As shown in Fig.2 the mode spectrum produced by the saddle coils contains m=0 harmonics with

non negligible amplitudes. Therefore the neoclassical viscous force associated to the m=0 modes is

a good candidate to explain the experimental braking data. The flux-surface averaged equation of

motion along the toroidal direction is then written as

(31)

where ωf=Vf/R0 is the toroidal angular velocity, Tf the flux-surface integrated electromagnetic torque

and Sf a momentum source, which provides the equilibrium velocity profile ω0:
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(32)

Assuming  ρ µ, ⊥  constant and  considering that the electrodynamic torque is rensonantly peaked on

the the q=2 rational surface then for the bulk of the plasma outside Tϕ ≅ 0. The experimental data

during the braking phase suggest a separable solution of equation (31):

    ; (33)

Thus

(34)

Note that the m=0 modes gives just a K constant with r. Defining S Rφ αµ ω/ 0
2

0= ⊥ , from (32) one

gets α = ( )j a0 1

2

, / , j0,1 being the first positive zero of the Bessel function J0 . So we can write (34) in

the form

(35)

where τ ρD K= / , and τ ρ
µµ = a

j

2

0 1
2

,
 . The consistency of this equations implies that the coefficients

are independent of  r. Note that the m=0 modes gives just a K constant with r and we have assumed

also  K independent of time. The solution of (35) is

(36)

A necessary condition for substantial slowing down of the plasma  is

(37)

In this case the time asymptotic value of Eq.(36) is ybrak ≤ 1 2/  and the exponential braking time is

(38)

which are both consistent with the experimental observations. shown in  Figs.(8) and (9 ). As can be

seen from (30) the dominant contributions to K comes from the n=1 and n=-1 harmonics. Adding

these two terms the criterion (37) becomes

(39)

∂
∂
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An estimate with the values e=0.37, Ti=3KeV, t m=0.5s, brings ψ φ
0 1 43 8 10, / .aB( ) ≥ ⋅ − , which is

indeed in qualitative agreement with experiment. Moreover the inclusion of higher toroidal harmonics

in K increases the braking effect and lowers this threshold. An apparently similar slowing down of

plasma rotation associated with  a Transit Time Magnetic Pumping  (TTMP) effect of non resonant

helical field has been reported in the DIII-D tokamak [3,21].

IV.  MODE UNLOCKING AND SPIN-UP

In about 50% of cases, after the external field is turned off, removing the electromagnetic braking

torque, the locked mode is observed (on Mirnov coils signals) to spin up in the e- or i- drift direction

by viscous restitution of momentum by the rest of the plasma. Simultaneously the island decays

away on a resistive time scale since it is no longer driven by the external field and it is damped by

the effect of the eddy currents generated in the vessel wall. A simple interpretation is given  in terms

of the standard Rutherford model [14] for the evolution of magnetic islands of width W rbm n r
m n

,
,∝ ,

that after switch off of external fields is   governed by the equation:

(40)

Here island rotation effects and resistive wall boundary conditions [2] are included. In the customary

notation  m, n are the mode numbers, ′∆0m  and  ω  the tearing mode instability index and island

rotation frequency, rs   and d the rational surface and vessel minor radii and τ τR w,  the plasma and

vessel wall resistive time constants. The last term on the r.h.s represents the wall eddy current effect

on the mode amplitude.

Before the application of the external field , for 0 < <t ton , the plasma can be assumed to be

(marginally) stable, with  for all W .

With the external field ramp forced reconnection eventually occurs at a critical  value of the external

current IE  and mode grows to a forced saturation amplitude Ws1 where

After turn off of external field ramp the locked mode with amplitude Ws1 finds itself again with

and decreases as it spins, due to the wall eddy currents term . The decay of the velocity shift profile

during spin-up can  then be explained in elementary terms considering the solution of equation (34)

when the external torques due to the external field are off:

  for   t toff≥ (41)

that gives explicitely

(42)

0 822 2
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2 2

2.
/ ( )

( )
, 'τ ωτ

ωτR
m n s

s
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m
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d W r

dt
r m

r
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( )
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ω ω ω
τµ

Mirnov t
off

off

t t
≈ +
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If there is a mode in  the laboratory frame its  observed magnetic Mirnov signal frequency is

ωMirnov and if the plasma is rotating toroidally with frequency ω  then ω ωMirnov =

From  Fig.3 it appears that at t t= 0 , before mode onset, ωMirnov 0
0=  but ω ω ϕ= =0 0V R , while

at  the end of the braking ramp, t toff=  the plasma rotation  plasma rotation is ω ϕt off
V R<< 0

(but not completely vanishing, in general ) .

 Then from the equation (42 ), in the laboratory frame we get , shortly after  t toff> :

(43)

Therefore the spin-up difference from the initial frequency can be positive

 (e-drift) or negative (i-drift) according with the sign difference between ω ωt off
and 0 .

In  the frame of reference of vanishing electric drift, defined by

 the mode frequency is ′ = −ω ω ωMirnov E  and from eq. 43)  one has

Therefore in this frame the sign of the mode frequency  may depend on the amount of pressure

and temperature flattening in the  island  region at  t toff≥ .

The partition of e- and i- drift cases according to magnetic field illustrated in Fig. 18 does not

appear to have a causal relation  with the threshold for reconnection.

CONCLUSION

A series of systematic experiments with external “error field” in JET has led to the reassessment

and understanding of the empirical scaling laws governing the onset of “error field” locked modes

and has shed light on the important physics of plasma rotation braking associated with a toroidal

viscous drag originating from broken axisymmetry. In particular a very satisfactory match of   basic

theoretical concepts with data has been achieved, namely concerning the non-linear mode

amplification occurring after slowing down to half the original frequency, and a direct test of a new

theory of global plasma braking associated with helical modes has been provided. For ITER-like

devices operating at a high fraction of the Greenwald density limit n I a B qRG p∝ ∝π ϕ
2  the

empirical scaling obtained takes the form b B Bpen ∝ −0 69
0
0 5. .ω  that shows a mild, favorable effect of

driven plasma rotation in raising the threshold for locked mode onset. On the other hand the potential

danger of the anomalous braking discussed above and of its consequences can be enhanced by the

natural occurrence of (0,n) perturbed components of the magnetic field due to strong elongation

and shaping of the plasma cross section [6].

ω ω ω
τµ

Mirnov t
off

off

t t
≈ +

−( )
0

ω ∂
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ϕ
θ

φ

θ θ
E

r

i

iE
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Table I - Relevant discharges  numbers:  values of toroidal field B in tesla , line averaged density

ne (10
19

), external saddle coils  current  IE (A) at reconnection, initial toroidal angular frequency ω0

(rad/s), spin-up toroidal angular frequency ωspin (rad/s), plasma temperature Te|q=2 (rad/s)at q=2

surface, neutral beam power (in MW)

Pulse No: B [T]     ne (10
19

) IE (A)     ω0 (rad/s) ωspin (rad/s) Te|q=2 (eV) PNBI (MW)

52066 1       1.39 2200         2500     -8.29      348 0.9

52065 1.5      1.51 2275         2264         38      651 0.9

52068 2.0      1.93 2672         3092      -149      461 0.9

52069 2.0      1.89 2559         3028       167      476 0.9

53610 2.0      1.65         2242      862 0.9

52058 2.5      2.27 1744         3000       191      673 0.9

52059 2.5      1.99 1631      -825      795 0.9

52060 2.5      2.00 1735    -1071      705 0.9

52061 2.5      1.85 2243         3231      -990      910 0.9

52062 2.5      1.84 2844         4848    -1172      1082 1.8

52063 2.5     1 .86 2253         3199    -1426      637 0.9

52067 3.0      1.90 1849         2681    -1506      627 0.9

Table II - Values of exponents of scaling law bpen/B ∝ n
an B

a
B ω0

η 
 for the normalized reconnection

threshold and rotation frequency  ω0 ∝
 
B

α 
(PNBI /n )

β
 in different experiments [3,4,13].  For JET–

2000  the data of Fig. 7 are considered

  an   aB  α  β η
COMPASS  [2] 0.55 -2.2 n.a. n.a. 1

JET-98   [4] 0.97 -1.2 n.a. n.a. 0

JET-2000 0.58 -1.274 0.562 0.652 0.5

    Theory  2/3  -7/3         1/21

 Ideal-viscous

 regime  [12]

Visco-resistive 7/12 -13/6 1

  regime [12]
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Figure 1: JET-Saddle coils system used in the experiments

described. An external field with m.n helical components

can be generated by suitable coil connections.

Figure 2: (m, n) external field component, normalized

over saddle coils current vs. pitch numbers ratio m, n=1;

open squares are for n>0, diamonds for n<0.
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Figure 3: (a) Typical external magnetic field waveform;

the coils current ramp here starts at t0=16.4s after the

discharge start time t=40.s; at end of ramp compensation

of natural error field allows mode spin-up  in e- or i-drift

directions; (b) magnetic signals showing linear and non-

linear response (t=18.04s); (c) charge exchange

spectroscopy signals showing plasma rotation frequency

at different radii normalised over frequency at the start

time of the coils ramp. At field “penetration” sudden

braking occurs
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Figure 6: Scaling of the penetration threshold normalized

over the toroidal field B vs power law ~ / /n B1 2 5 4
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− ω

where ω0  is the local  angular rotation frequency at the

q=2 surface.
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Figure 8: Braking of plasma toroidal rotation (charge

exchange diagnostic) at the q=2 surface. Penetration

occurs when the local  angular rotation frequency at the

q=2 surface is ω = ω0/2. Full dots are the calculated

values of theoretical formula (1); circles are the

experimentally observed values of ω/ω0. The coils current

ramp starts at  t0=16.4s  from the discharge start  time

t=40s.

Figure 9: Occurrence of braking of plasma toroidal c) at

the q=2 surface for all the discharges. Full dots are the

calculated values of theoretical formula (1); circles are

the experimentally observed values of ω/ω0.

Figure 10: Experimental plasma toroidal angular velocity

profile evolution. There is the clear evidence of  the e.m.

torque localization at q=2 surface and evidence of the

global braking after island formation at t ~ 18.04s

Figure 11: Profile of the toroidal angular velocity shift

along the major radius R for Pulse No: 52067 at

penetration time t~18.04 s. It is apparent that the no slip

condition is violated. R=2.8 m is the machine axis.
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Figure12: Profile of the relative toroidal angular velocity

shift [ωmin (R) - ω0 (R)]/ω0 (R) (normalized over initial

profile )  for several discharges at time of island

formation. R=2.8 m is the machine axis. It is apparent

that the “no slip condition” is not  met, as it would require

constant toroidal angular velocity shift.

Figure13: Braking of rotation in JET Pulse No:0 52061

Figure 14: Theoretical RMHD model of driven reconnection

of the helical flux ψs in presence of toroidal rotation. Non-

linear mode amplification occurs when rotation velocity

is halved. Here The velocity is indicated with in the units

of the corresponding angular frequency and time is a

multiple of Alfvén time.

Figure 15:Theoretical model of evolution of the plasma

toroidal rotation in presence of viscosity. The variation

of the velocity profile  is pretty much uniform, in contrast

with the experimental data of Figs 10 and 11.
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Figure 16: Theoretical model of evolution of the plasma

toroidal rotation in presence of a braking effect ∝|bθ|
2
Vζ,

in qualitative agreement with the typical experimental

observations  (e.g. Fig. 10)

Figure 17: Radial extension of typical m=2, n=1 br and

bθ perturbations; the plasma toroidal rotation is affected

by a a braking effect ∝|bθ|
2
Vζ, over a radial range wider

than the island size (see Fig.15) .

Figure 17: Partitioning of e-drift and i-drift modes

according to B. The ordinates are the averaged mode spin-

up angular frequencies of the Mirnov signals averaged

and the abscissae are the values of toroidal field scanned

in the experiment.
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