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ABSTRACT

Abstract Aperture, pin-hole and collimator detection systems are often used in plasma

diagnostics, for example in soft x-ray detection and bolometer systems. In this paper the

simultaneous optimization of viewing-beam overlap and light yield is considered in multi-

channel aperture and collimator systems for two-dimensional (2D) tomography. This paper

briefly highlights the relation between beam-width overlap and spatial aliasing in

tomography, and how aliasing can be avoided in theory and in practice. Three-dimensional

(3D) single-channel aperture and collimator systems can be approximated by a combination

of two planar systems if the aperture is rectangular. Three ways to optimize beam-width

overlap and light yield for planar aperture and collimator systems are considered in detail:

overlap of the angular étendue at the Full-Width at Half-Maximum (FWHM), overlap of

the geometric function at the FWHM a certain distance from the aperture, and arbitrary

overlap for a given maximum beam width. The combination of 2D effects from all three

optimization methods were used in the design of 3D apertures for a new mult i-channel

bolometer camera on the JET (Joint European Torus) tokamak. The resulting apertures

are complex, but the new camera has several advantages over the previous.

PACS numbers: 42.79.Ag, 52.70.-m, 42.30.Wb

I. INTRODUCTION

Apertures and collimators are used in radiation detection apparatus for parts of the

spectrum for which no optical imaging components are available or are practical, such as

in nuclear imaging, x-ray detection and bolometry. To avoid confusion in the following,

“detection system” will always mean a single detector and one or more apertures, whereas

“camera” will mean a collection of several detection systems. In this paper the optimization

of apertures and collimators in cameras for tomography will be discussed, in particular

for two-dimensional (2D) emission tomography in the field of plasma physics. Complex

collimators have been designed in the medical tomography field, for instance for single

photon emission computed tomography.[1,2,3] In plasma physics the apertures or

col l imators  a re  usual ly  re la t ive ly  s imple .  In  the  pas t ,  aper tures  in  cameras

have been optimized for  beam-width overlap for  a  given coverage,[4,5,6,7,8]

but  less  a t ten t ion  has  been g iven to  opt imiz ing  the  l ight  y ie ld .  Here ,  the
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simultaneous optimization of rectangular aperture or collimator systems in terms of several

parameters will be discussed. Three-dimensional (3D) rectangular aperture and collimator

systems can be described approximately as the combination of two independent planar (2D)

systems. Although the underlying geometrical mathematics is simple, when apertures and

collimators are optimized independently for two perpendicular planar systems the combined

situation becomes quite complex. In non-rectangular aperture and collimator systems the

geometrical description is far more complex 9 and it is more difficult to optimize various

quantities simultaneously; this is outside the scope of this paper. The approximate separation

of 3D aperture and collimator systems into two planar systems is particularly suited to 2D

tomography of poloidal cross-sections on tokamaks and other fusion devices, but can also be

applicable for tomography diagnostics in low-temperature plasma physics.

The structure of this paper is as follows. Section II introduces the quantities used in the

optimization of aperture and collimator systems. Furthermore, it considers for which overlap

of beam widths the level of spatial aliasing is acceptable in multi-channel cameras. Three

different methods to optimize planar aperture and collimator systems are discussed in Sec. III.

Section IV describes the consequences of these optimizations for the design of 3D systems for

a bolometer camera on the JET (Joint European Torus) tokamak. The results are summarized

in Sec. V.

II. CRITERIA FOR VIEWING-BEAM OVERLAP

In 2D tomography it is necessary to assume that the diagnosed quantity (here taken to be

emission from an optically thin plasma) does not vary in the direction perpendicular to the

reconstruction plane over a thickness that is measured by the 3D detection system (see Fig. 1

for the lay-out of detection systems and cameras). This thickness is determined by the

aperture/collimator and detector sizes in this perpendicular direction. The maximum thickness

for which this assumption is valid is an important parameter to optimize the light yield of the

detection system. The aperture/collimator and detector sizes are also finite in the
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reconstruction plane in order to achieve an acceptable light yield and signal-to-noise ratio;

this leads to detectors viewing along beams of finite width. Other beneficial effects of finite

beam widths in addition to a higher light yield are described below.

Convenient quantities to describe the beam widths in the reconstruction plane for 3D

detection systems and how to use these in algorithms for 2D tomography have been described

in Ref. 10: the angular étendue e(ξ), the geometric function (in real space) K(x,y) and the

étendue E. These quantities can be expressed in terms of the geometric function in projection

space k(p,ξ).9,10 Here p and ξ are parameters of a line of sight and are the distance from the

line to a chosen origin and the angle between the line and the positive x axis, respectively. For

a viewing direction in the reconstruction plane (p,ξ), the value of k(p,ξ) reflects the properties

of the viewing system in the direction perpendicular to the reconstruction plane. If the sizes of

the detector and apertures of the detection system are small with respect to structures in the

measured object, the angular étendue

∫
∞

∞−
= ppke d),()( ξξ (1)

conveniently describes the beam shape as a function of viewing angle ξ. This is particularly

useful if neighboring lines of sight form a viewing fan, i.e. if all average lines of sight of

neighboring channels go through one point. The geometric function (in real space) describes

the solid angle spanned by the entrance pupil of the detection system seen from the point

(x,y), integrated over the direction perpendicular to the reconstruction plane, and can be

calculated indirectly by10

∫ ∫
π ∞

∞−
−+=

0
dd)cossin(),(),( ξξξδξ pyxppkyxK , (2)

where δ is the Dirac delta function. Cross-sections of K(x,y) in a direction perpendicular to the

average viewing direction ξ  give the functional shape of the beam width. The light yield of

the detection system is characterized by its étendue, which is also called throughput, and can

be obtained from the angular étendue by10

∫
π

−
=

0
d

)cos(
)( ξ
ξξ

ξe
E . (3)
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If the detector and aperture in an aperture system are perpendicular and unshifted in the

direction perpendicular to the reconstruction plane, the étendue can be approximated by9

tp
ttpp

2

tptp 4
)cos()cos(

4
)cos()cos(

16
EE

L

PD

L

PD

L

PPDD
E dddd =−−=−−≈ ξφξφξφξφ , (4)

where D and P are the half detector and aperture sizes, the subscripts p and t denote parallel

and perpendicular to the reconstruction plane, the detector and aperture are at angles φd and

φp, respectively, and L is the distance between the center of the detector and center of the

aperture [see Fig. 2(a) for definitions of these symbols]. Expressions for some of these

quantities for 3D rectangular aperture systems have been given elsewhere.9 The approximate

separation of the 3D aperture system into two planar systems is possible if the detector and

aperture are rectangular and approximately parallel: in that case k(p,ξ), i.e. the properties of

the viewing system in the direction perpendicular to the reconstruction plane, is only a weak

function of ξ.9 When it is relevant, it will be indicated whether the quantities angular étendue

and étendue are for a planar (2D) or 3D detection system. Equation (4) shows how the

approximate 3D étendue can be separated into two 2D étendues.

For a planar aperture system [Fig. 2(a)] k(p,ξ) will be 1 inside a region bounded by the curves

defined in Fig. 2(b) and Table I, and 0 outside. Therefore, the 2D angular étendue is given by

)()( ξξ pe ∆= , where ∆p(ξ) is the distance between the bounding curves in Fig. 2(b) at angle ξ

(see the Appendix). Figure 2(c) shows the resulting 2D angular étendues. Expressions for the

geometric function and étendue for a simple planar aperture system with the aperture parallel

to the detector are given in the Appendix.

The quantities introduced above for individual detection channels are useful when considering

an array of detectors in a camera. In the design of a camera the following interlinked criteria

play a role: number of channels (cost), available space, required signal-to-noise ratio, required

coverage and resolution. For a given number of channels and coverage (average lines of

sight), the aperture or collimator systems can be optimized to give suitable beam widths and

étendue. A larger beam width has the disadvantage of reduced resolution, but also has
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advantages: 1) it is likely to give a larger étendue, 2) it reduces spatial aliasing in tomography,

and 3) one avoids missing information about structures in the gaps between beam widths of

adjacent channels. In particular in bolometry point 3 may be important if the total radiated

power of a radiating object needs to be derived from the measurements. A beam-width

overlap at full-width at half maximum (FWHM) as in Fig. 3(a) is suitable because the total

radiated power can be obtained in principle by summing over adjacent channels.

Traditionally, approximate overlap at FWHM has been achieved by overlaying the dashed

lines of Fig. 2(a), which connect the center of the detector and the edges of the aperture, for

neighboring detectors. In Sec. III it will be shown that in many cases this is a good

approximation. Point 2 has been considered to some extent in the literature11–13 and is

discussed next for the application of bolometry on the JET tokamak.

The present vertical bolometer camera on JET4 has an array of 14 detectors that view a

poloidal cross-section of the plasma through one "pin-hole" aperture at location (xap,yap). The

lay-out of this camera is similar to its replacement camera shown in Fig. 8 (normal view). One

can define an aperture curve as ξξξ cos)(sin)()( 0ap0apap yyxxp −+−−= , which describes all

lines of sight through the center of the aperture [here (x0,y0) is a chosen origin]. The

normalized 3D angular étendues of the channels of this camera are shown in Fig. 4(b). The

angular étendues of all channels are similar; the reason for the variation in width and height is

a cosine-effect due to the angle at which the various detectors view through the aperture. In

the following the angular étendue of one of the channels is assumed to be representative for

all channels i: i.e. )()( ii ee ξξξ −= , where iξ  is the angle of the average viewing direction of

channel i. The blurred measurement of channel i, if̂ , can be approximated by the convolution

of the pure line-integral measurements f(p,ξ) along the lines parametrized by p and ξ, i.e.

∫
π

′′′−′==
0 apap d)),(()()),((ˆˆ ξξξξξξξ pfepff iiii ,

because the emitting structures are large compared with the detector and aperture size, or

more precisely: large compared with max(∆p). Figure 4(a) shows the effect of blurring by the



7

angular étendue simulated for a realistic assumed emission profile.14 The peaks in the

emission profile occur in the divertor at the bottom of the vacuum vessel.

The Fourier transform of f̂  along the aperture curve is given by

∫ π−= ξΞξξξΞ d)2exp()),((ˆ)(ˆ
ap ipfF .

Although the variable ξ  is periodic, and hence the corresponding frequency variable would

be discrete, here the periodicity of ξ is irrelevant because the function that is Fourier

transformed goes to zero at both low and high ξ. Therefore, the frequency variable Ξ

considered here is continuous. In Fourier space (for the coordinate along the aperture curve)

the effect of the blurring and of the limited sampling by the detectors is very clear [Fig. 4(c)].

The values for 1deg1.0 −<Ξ  correspond to the peak of radiation between 80° and 90°,

whereas peaks for 1deg15.0 −>Ξ  correspond to the fine structure. In this example the peak at

1deg2.0 −≈Ξ  is not sufficiently damped by the angular étendue [Fig. 4(d)] which leads to

noticeable aliasing. However, the amplitudes that are affected by the aliasing are relatively

small, about a factor of 5 below the zero-frequency component.

The angular étendues of neighboring channels overlap close to their half-maximum

values [Fig. 4(b)], as was discussed above. However, the Fourier transform of the angular

étendue has its first zero only at the Nyquist frequency ξ∆/1 , where ∆ξ is the spatial

sampling rate [see Fig. 4(d)]. Therefore, with this kind of limited overlap between angular

étendues, noticeable aliasing can occur as discussed above [Fig. 4(c)].11–13 The lobes of the

Fourier transform of the angular étendue are so small that hardly any aliasing would occur if

the overlap of the angular étendues were twice the current, i.e. the first zero of the Fourier

transform of the angular étendue would coincide with half the Nyquist frequency. However,

this would lead to a significantly reduced spatial resolution. Furthermore, Fig. 4(c) is an

extreme case as in other cases the aliasing effect has been found to be much smaller.

Therefore, the current overlap between the angular étendue appears to be a reasonable

compromise between maximizing resolution and minimizing aliasing. As pointed out before,
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this FWHM overlap is the optimum for the total radiated power determination. However, in

analysing data one should always remember that aliasing can occur. Restoration or deblurring

of the measurements is only possible if the sampling distance is much smaller than the beam

widths.13

III. OPTIMIZATION OF BEAM-WIDTH OVERLAP FOR PLANAR APERTURE AND

COLLIMATOR SYSTEMS

A. Background

In this section different types of solutions P(L) are found for given beam-width overlap in

planar (2D) aperture and collimator systems. Note that two of these planar systems can be

combined into a 3D system. In the following, the projected detector and aperture sizes are

considered: )cos( d ξφ −=⊥ DD  and )cos( p ξφ −=⊥ PP . Figure 2(c) shows that the

functional description of the angular étendue depends on whether ⊥⊥ < DP  or ⊥⊥ > DP .

Several branches of solutions of P as a function of L for given beam-width overlap will be

described. For a simple aperture system, the given overlap cannot be maintained for 0=< PLL ,

i.e. the distance for which 0=P . However, the given overlap can be achieved for smaller L if

one considers a collimator system instead. We only consider the simplest collimator system

with walls parallel to the average viewing direction which extend all the way from the

detector plane to the aperture plane [Fig. 3(b)]. For such a collimator system the same

equations as for the aperture system can be used, with the difference that the detector surface

is subdivided in a number of sub-detectors with the size of the collimator C, i.e.

CPD ==′ ⊥⊥  is substituted for ⊥D  and ⊥P  in the equations. As a limiting case (the highest

étendue that can be obtained) the collimator walls are assumed to be infinitely thin. With

integer division there can be CDn /⊥=  collimators on the detector surface; this we call the

“integer collimator.” One can also make use of the leftover collimator of size nCDC −=′ ⊥

[see Fig. 3(b)]. Because CC <′ , the beam width of that collimator is always narrower than

the other beam widths and does therefore not affect the beam-width overlap criterion.



9

However, it slightly raises the resulting étendue. This type of collimator system we call

“fractional collimator”.

In this section simplified planar apertures and collimators are considered with ξφφ == pd

[see Fig. 2(a)] because this leads to simpler equations for which many properties can be

considered analytically and deeper insight can be gained. However, the methods described are

general and in Sec. IV they are applied to an aperture/collimator system for which

ξφφ ≠≠ pd . For convenience all distance quantities in this section are normalized to the

(half) detector size (effectively 1=D  is chosen). The (half) aperture size P and two-

dimensional étendue as a function of detector-to-aperture distance L is considered for this

fixed detector size and given beam-width overlap. Three different types of beam-width

overlap with neighboring channels are considered: overlap at the FWHM of the angular

étendue, overlap at the FWHM of the geometric function, and fixed width of the angular

étendue or geometric function. The parameters, such as beam width, used in the example

figures in this section have been chosen such as to highlight the different features of the

various optimization methods, and may be far from realistic values (as used in Sec. IV).

B. Overlap at FWHM of angular étendue

As indicated above, the angular étendue is the most useful quantity to describe the beam

width in the case of adjacent lines of sight in the shape of a fan. In this section we would like

to optimize the étendue while the angular étendues of adjacent channels overlap at the half

maximum. From the Appendix, Fig. 2(a–b) and Table I it is clear that ∆p(ξ), and therefore

also e(ξ), have a complicated functional dependence on cosξ and sinξ. However, Fig. 2(c)

shows that e(ξ) can be approximated very well by three straight lines. Therefore, for given

separation between adjacent channels ∆ξ, the overlap criterion can be expressed

approximately as follows [see Fig. 3(a)]

ξξξξξ ∆=−+− 232
1

142
1 . (5)



10

For the simple aperture system with ξφφ == pd  and the detector straight behind the aperture

41 ξξ −=  and 23 ξξ −= , and Eq. (5) can be written as

ξ∆=




 −+





 +

L

DP

L

DP
arctanarctan .

Figure 5(a) shows three different solution branches for P as a function of L for a given ∆ξ: the

aperture solution with DP >  for ξ∆=> = tan/2DLL DP , the aperture solution with DP <

for =<< == 0PDP LLL  )2/tan(/ ξ∆D , and the collimator solution for DPLL =< . The collimator

branch is a straight line 2/)tan()( ξ∆= LLC . For PL >>  the asymptotic limit of the DP >

aperture branch is )2/tan()( ξ∆≈ LLP  [see Fig. 5(a)]. For small ∆ξ one has

2/)tan()2/tan( ξξ ∆≈∆  and thus DPP LL == ≈0  and the collimator and DP >  aperture

branches lying very close to the straight line of the asymptotic limit. The asymptotic limit

corresponds to the dashed lines from the center of the detector in Fig. 2(a) and is thus

equivalent to the beam-width overlap criterion that has been used regularly in the past. From

the present analysis it is clear that this is a very good approximation for small ∆ξ.

The approximate 2D étendue according to Eq. (4) has been calculated for the various

solutions P(L) and is shown in Fig. 5(b). The two branches for the collimator are what was

defined as integer collimator and fractional collimator in the previous subsection. The

discontinuities in the integer collimator curve correspond to increases in n as one goes to

smaller L. It is easy to show that the 2D étendue has a limit )∆ξ(tan2D  for L→0; note that

this corresponds to infinitely many collimators and thus requires infinitely thin collimator

walls. For some L the two-dimensional étendue has been calculated analytically (see

Appendix) [points in Fig. 5(b)], which shows that the approximate 2D étendue of Eq. (4) is a

very good approximation in most cases. The angular étendues for some of these L are shown

in Fig. 5(c). The functional shape of the angular étendue for large L has 2/43 ξξξ ∆≈≈ , thus

almost square, whereas for DP ≈  it is almost triangular. The difference in angular étendue

values for the DP >  and DP <  branches is also evident (solid and dashed line); because the

functional shapes of the angular étendue for the two branches is similar, the DP >  will

probably always be preferable because it results in a higher étendue.
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C. Overlap at FWHM of geometric function

The overlap of the angular étendue as in the previous subsection is an average overlap along

the viewing beam. If the distance between neighboring detectors is larger than the maximum

beam width, the beams may not overlap physically at all, only the angles overlap. In some

cases it may be better to require the beams to overlap at a certain location. Without loss of

generality we take the origin in the center of the aperture and rotate the coordinate system

such that π= 2
1ξ ; this means that y is the distance to the aperture and x is the direction

perpendicular to the beam. The new beam-width overlap criterion can then be stated as

follows: cross-sections of the geometric functions of adjacent channels should overlap at

distance y. Note that at other distances the overlap may be very different. Also in this case the

distance between neighboring detectors will be neglected, but it can be included by increasing

the width ∆F below appropriately.

The expressions for the geometric function in the Appendix are relatively complicated

functions, but often these can be approximated by straight lines and thus one can consider the

width without needing to take into account the functional dependence of the geometric

function. The width of the geometric function at a distance y can be expressed in x1…x4 of

Fig. 2(a) and the Appendix. The widths ∆a and ∆b are indicated in Fig. 3(a) and for a simple

aperture system these are

P
L

y
PDxxb 2)(214 ++=−=∆ (6)

and

P
L

y
PDxxa 2)(223 −−=−=∆ .

The overlap for channel spacing ∆F as indicated in Fig. 3(a) is obtained if

Fab ∆=∆+∆ 2
1

2
1 . (7)

Solving P as a function of L [see Fig. 6(a)], one finds that an aperture solution only exists for

FDyLL ∆=> /2lim  (i.e. when 0=∆a ) and is given by
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)/12 Ly

F
P

+(
∆= . (8)

This solution again corresponds to the dashed lines in Fig. 2(a). The collimator solution of

course exists for )2/(2 DFDyLL DP −∆=< =  and its functional dependence is the same as in

Eq. (8) because it is independent of D.

Figure 6(b) shows the aperture, and integer and fractional collimator branches of the 2D

étendues that follow from substituting Eq. (8) in (4). The limit L→0 in this case is yFD /2 ∆ .

The approximate values of the étendue agree very well with the analytically calculated ones.

Some examples of cross-sections of the geometric function for different L are shown in

Fig. 6(c) (the equations for the geometric function are given in the Appendix). For large L the

shape of the geometric-function cross-section becomes more square (and low amplitude),

whereas the collimator solution at small L gives more-triangular cross-sections.

D. Fixed overlap of base of geometric function or angular étendue

The previous two subsections discuss very specific criteria for the overlap of the angular

étendue and the geometric function. In this subsection we consider fixed maximum width, i.e.

fixed maximum angular extent ∆ξ, or fixed maximum width ∆b at a distance y. This criterion

can be used to specify the maximum extent of single channels, or to specify an overlap in

multi-channel systems to reduce aliasing (e.g. Fb ∆<<∆ , where ∆F is the distance between

the average lines of sight of neighboring channels).

For maximum width ∆b Eq. (6) gives at location y and distance L

)/1(2
/2
Ly

LDyb
P

+
−∆= , (9)

which only has solutions for bDyLL P ∆=> = /20 . A collimator solution exists for

)2/(40 DbDyLL DP −∆=<< =  and is found by equating CPD ==  in Eq. (6):

)/21(2 Ly

b
C

+
∆= .
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These curves are shown in Fig. 7(a).

The maximum angle with ∆ξ gives, with ξξξ ∆=− 14 ,

DLP −∆= )2/tan( ξ ,

which has solutions for )2/tan(/0 ξ∆=> = DLL P . The collimator solution for

)2/tan(/20 ξ∆=<< = DLL DP  is

2/)2/tan( ξ∆= LC .

These curves are also shown in Fig. 7(a). The maximum angle width ∆ξ equivalent to ∆b is

given by )2/()2/tan( yb∆=∆ξ , thus one sees that 0=PL  is the same for both maximum ∆b

and ∆ξ solutions, and DPL =  and the solutions P(L) and C(L) differ only by the term 1 or D in

the denominator. For small L the solutions P(L) and C(L) are therefore very similar, but for

large L they deviate significantly. If P is optimized for a given maximum ∆ξ, the resulting ∆b

is 2P larger than if optimized for the equivalent maximum ∆b.

Figure 7(b) shows the approximate 2D étendue for these solutions; for the collimator branch

again the integer and fractional solutions are shown. The maximum ∆ξ solution goes

asymptotically to )2/tan(4max ξ∆= DE  for large L, whereas for L→0 the étendue goes to

)2/tan(2/ ξ∆=∆ DybD . Note that the étendue for maximum ∆b has a maximum at

( ) bybDDDL ∆∆++= /242 2
max .

IV. OPTIMIZATION OF 3D APERTURE SYSTEMS

Ideally one has two degrees of freedom in the optimization of aperture systems in cameras:

the distance L and aperture size P. Whether the optimization methods for beam width overlap

and étendue described in Sec. III can be used in the design of aperture and collimator systems

depends on the situation. Often the coverage by a multi-channel camera is chosen to be fan

shaped, which can be achieved by one common aperture for all channels, see Fig. 1(c) (this is

often called “pin-hole” camera). If one uses individual detectors that have no restrictions on

their distance from the common aperture, the optimization methods of Sec. III can be used.
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However, in many cameras arrays of detectors are used with fixed detector-to-detector

distance. For a given fan coverage, this fixes the distance L, and one can just use the equations

of Sec. III to find the P appropriate for the required beam overlap, or one can optimize the

étendue, but not both simultaneously. This problem can be circumvented by having an

individual aperture or a collimator for each channel [Fig. 1(b)].

Although collimators give étendues similar to or even better than aperture systems [Figs. 5–

7(b)], there can be considerable technical complications. In reality collimators will always

have finite wall thickness, which reduces the étendue. It may be more difficult to manufacture

rectangular collimators than rectangular apertures. Depending on the wavelength range there

can be light reflections on the collimator walls; this is a problem even for small wavelengths

due to the grazing incidence. Many collimator systems will therefore require anti-reflection

features. For example, the bolometer cameras mounted in the JET tokamak divertor use

screw-threaded cylindrical holes as collimators.9 Circular collimators, however, radically

change the shape of the beam widths9 and make it impossible to optimize the parallel and

perpendicular directions independently. If space is available, an aperture system may be a

more practical solution than using a collimator.

The following is a discussion of the design of a aperture systems for a bolometer camera on

the JET tokamak. This new bolometer camera was designed to replace the camera for which

an analysis was made in Fig. 4. For various reasons a pin-hole camera could not be

implemented; the main reasons are now briefly given. To improve the signal-to-noise ratio the

detectors should be cooled (resistor noise is low, low-noise cabling can be used, and the

probing voltage of the bolometers can be higher than if not cooled); vacuum requirements on

the JET tokamak necessitate the cooling system to be contained in a secondary vacuum. It

was decided that to reduce costs the camera should be compact so that only one water-cooling

and secondary-vacuum system would be needed for all detectors. A compact camera has the

further advantage that it can be made to fit through standard vacuum flanges (in this case a

DN225 flange), which gives the flexibility to easily mount and unmount the camera without
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welding. The range of possible positions of pin-holes and angles of the detectors in such a

compact camera is very limited and a regular coverage of the entire plasma cross-section

could not be achieved. Therefore, individual apertures for each detector were needed. In

addition, if a common pin hole were used for several groups of detectors, the detector-to-

aperture distance required to obtain a reasonable coverage would reduce the achievable

étendue by a factor of two (see discussion on Fig. 9 below). Three different views of the

plasma were combined in one camera [Fig. 8(a)]: 1) a normal view with 16 channels covering

the plasma cross-section in a similar (but slightly improved) way as the camera it replaces [cf.

Fig. 4(b)], 2) a back-up coarse view of eight channels, which will make possible an accurate

estimate of the total radiated power even if channels of the normal-view break, and 3) a fine

view of the divertor region at the bottom of the vessel with 8 channels. The aim of the fine

view is to better resolve peaks in emissivity in the divertor than at present [Fig. 4(a)].

The chosen detectors are the standard compact metal-absorber bolometers designed by IPP-

Garching,15 which are used on many fusion devices. These bolometers are in arrays of four

detectors at fixed distances. As discussed, in the case of fixed detector-to-detector distance,

individual apertures give the flexibility to optimize the beam-width overlap and étendue

independently. Figure 9 shows the approximate 3D étendue as a function of distance L for a

representative channel of the normal view. The approximate 3D étendue was found to be

accurate within 1% when compared with the numerically calculated 3D étendue for some L

(see Fig. 9). The parameters for this channel are mm65.0p =D , mm90.1t =D ,

°=≈ 241pd φφ , °= 25.246ξ , °=∆ 6.4pξ  and m5.0)m5.3(t ==∆ @yb ; in the toroidal

direction the detector and aperture are parallel. The angular-étendue overlap at FWHM

constraint was applied in the poloidal direction (Sec. III.B) and the maximum width in the

toroidal direction (Sec. III.D). The maximum ∆bt in the toroidal direction was chosen such

that toroidal bending is negligible at the maximum distance of the views (otherwise analysis

of measurements is complicated and blurring may occur in tomographic reconstructions). The

étendue is seen to peak at mm333=L [Fig. 9(a)]. This peak is mainly the result of the beam-

width criterion in the toroidal direction. The collimator solutions [Fig. 9(b)], which are
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complicated combinations of poloidal and toroidal collimators, have reasonably large

étendues, but could not be implemented because of the technical difficulties discussed above.

Around its peak in the aperture branch, the étendue is a shallow function of L. This means

that, because neighboring channels are similar, the same L can be chosen for all channels of

the same view with hardly any loss of performance. Actually, due to space restrictions,

mm195=L  was taken. For this L the toroidal and poloidal aperture sizes can be calculated

for all channels from Eq. (9) and by solving Eq. (5) for Pp, respectively. The coarse-view

channels would have required a larger L for optimum étendue. But with the L optimized for

the normal-view channels the étendue is typically two times that of the normal-view channels,

so that the signal-to-noise ratio will be good also with this L. For the current camera

parameters 
ttpp

DPDP
LL == <⊥⊥ ; for a different set of parameters this could be reversed and the

resulting étendue curves as a function of L would look quite different from Fig. 9.

Figure 10 shows the design of the individual apertures. The detectors view from the top. The

apertures with the sizes optimized as discussed are at the bottom. These apertures are

precision machined. To avoid cross-talk between channels, walls between channels are

necessary from the aperture to the detector; in other words: collimators are required. Note that

this meaning of collimator is different from the multiple parallel-wall collimators discussed in

Sec. III. Plain walls would reflect light, due to the grazing incidence even if they were

blackened. Therefore, a set of plates with holes were carefully designed by 3D CAD to

prevent light reaching a detector from any other than its own aperture (Fig. 10). The holes in

the plates and at the top of the collimator block have been designed with a suitable tolerance

as not to bound the view. The plates and insides of the collimator block are blackened to

prevent stray light. The resulting “collimator block” is complicated but can be manufactured

by means of wire erosion. As stated, the height of the collimator block is close to the optimum

L for the normal-view. The width (256 mm) is limited by the port-flange size. To obtain the

required fan-coverage, for some channels the bounding aperture had to be on the side of the

collimator block. Although this reduces the poloidal part of the étendue, the toroidal part

could be increased by choosing a larger Pt, which is possible because the maximum y in the
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plasma is smaller for these non-vertically viewing channels [see Fig. 8(a)]. In fact, to ease the

manufacture of the collimator block the toroidal-aperture size was chosen to be the same for

all channels of the same view.

To obtain a high resolution with the fine view in the divertor region, the poloidal size of the

apertures of the fine divertor view was optimized to give optimum overlap of the geometric

function in the divertor [i.e. solving Eq. (7) for P to give the equivalent of Eq. (8) for arbitrary

φd, φp and ξ ]. Figure 8(b) shows the resulting angular étendues for the three views. It can be

seen that, although the optimization was carried out separately with planar systems in the

poloidal and toroidal directions, deviations due to 3D effects are small. The reason for the

high angular étendue for normal-view channels that have apertures on the side of the

collimator block is the relatively large toroidal aperture, which is the same for all channels as

indicated above, for short L. It should be pointed out that the angular étendues of the normal

view are more square than those of the old camera in Fig. 4(b), and thus that the normal-view

is more prone to aliasing in tomography. However, the non-ideal anti-aliasing overlap is fully

compensated by the fine-view that covers the only region where fine structure in the emission

can be expected.

In addition to the reasons to design separate apertures given above, a collimator block also has

other advantages. It is attached to an outer screen, electrically insulated from the bolometers,

that can conduct halo currents during disruptions and thus protect the sensitive bolometers.

This also means that the shielding and earthing of the camera could be optimized. In the JET

and other tokamaks the same type of bolometers suffers from interference with lower-hybrid

waves, which are used to heat and drive current in the plasma. Although this interference has

been reproduced in the laboratory, the physical mechanism has not been conclusively

identified. Because the interference almost always created a negative signal, interference on

the cabling has been ruled out. The many apertures in the collimator block and smallest size

comparable to the wavelength of the LH waves make it possible to minimize interference, for

instance by introducing a conducting mesh in some of the apertures.
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V. CONCLUSIONS

The design of multi-channel aperture and collimator systems for plasma diagnostics is not

usually optimized for more than one parameter: either beam-width overlap or étendue (light-

yield). For some applications beam-width overlap at the FWHM is advantageous. The level of

spatial aliasing in tomography with this beam-width overlap has been considered in theory

and in practice: it was found that for the present application the level of spatial aliasing is

acceptable for beam-width overlap at the FWHM.

Three ways to optimize beam-width overlap and light yield for planar aperture and collimator

systems have been considered in detail: overlap of the angular étendue at FWHM, overlap of

the geometric function at FWHM a certain distance from the aperture, and arbitrary overlap

for a given maximum beam width. The required beam-width overlap can be achieved for a

range of detector-to-aperture distances with an aperture size that is a function of the distance.

The maximum light yield determines the optimum distance.

The combination of 2D effects from all three optimization methods in 3D rectangular aperture

systems has been discussed for the design of a new bolometer camera designed for the JET

tokamak. The resulting apertures are complex, but the new camera has several advantages

over previous cameras: optimized beam-width overlap, signal-to-noise ratio and extent of the

view in the toroidal direction.
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APPENDIX: SOME ANALYTICAL EXPRESSIONS FOR PLANAR APERTURE

SYSTEMS

In Ref. 9 some analytical expressions are given for a 3D aperture system. These are also valid

for planar systems, by taking 1),( =ξpk  inside the region given by Fig. 2(b) and Table I, and

zero outside. Therefore, Eq. (1) gives )()( ξξ pe ∆= , where ∆p(ξ) is the distance between the

curves in Fig. 2(b), which are given by ξξξ cos)(sin)()( 00 yyxxp hhh −+−−=  with (xh,yh)

from Table I and (x0,y0) an arbitrary origin which cancels in ∆p(ξ). In addition, the 2D

geometric function (in real space) can be expressed analytically. The geometric function has a

different functional behavior in the various regions A, C and D in Fig. 2(a). Outside these

regions the geometric function is zero. The boundaries of these regions can easily be

expressed in terms of the angles ξε given in Table I: for a given y the x coordinate of boundary

ε is given by εε ξtan/)()( yyxyx ′−+′= , where ),(),( II yxyx =′′  for 1=ε  or 2, and

),(),( IIIIII yxyx =′′  for 3=ε  or 4. A further region B needs to be introduced beyond the

crossing point of lines with ξ2 and ξ3 if 
⊥⊥ < DP . In the simple aperture system discussed in

Sec. III.C this is the case for )/( PDPLy −> . The 2D geometric function in point (x,y) can be

expressed as the angle spanned from that point by the entrance pupil of the detection system.

With )/()(),(tan hhh xxyyyx −−=θ , the geometric function in the various regions is given by














−
−
−
−

=

elsewhere.0

D,region in ),(for

C,region in ),(for

B,region in ),(for

A,region in ),(for

),(

IVI

IIIII

IIII

IVII

2

yx

yx

yx

yx

yxK D

θθ
θθ
θθ
θθ

This equation shows that the geometric function curve in Fig. 6(c) does not consist of straight

lines, but that they are complicated goniometric functions. In practice, however, straight lines

give a very good approximation. Some equations given here and in Table I may fail at certain

orientations of the aperture system as arctan returns a value in the range –½π…½π, while a

value in the range 0…2π is required. Minor obvious modifications to the equations are needed

in such a case to give the correct result. For more-complicated systems and 3D systems the

geometric function can be calculated numerically with Eq. (2).
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For a simple planar aperture system, with parallel detector and aperture at distance L, the

exact 2D étendue can be calculated with Eq. (3) to give
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For DPL ,>>  the Taylor expansion of this function gives 4DP/L, which is equivalent to the

planar parts of Eq. (4). This limit is easily satisfied, as is shown by the agreement between the

approximate and analytical 2D étendues in Figs. 5(b) and 6(b). It can be verified, with

considerable computational effort, that the integral over cross-section of the geometric

function perpendicular to the average viewing direction gives the same result at any distance

(this is the conservation of the étendue10).
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Tables

TABLE I Bounding points and angles of the aperture system shown in Fig. 2(a).

Point h xh yh ξ  range Angle ε tanξε

I x Pp p+ sinφ y Pp p− cosφ ξ ξ1 2→ 1 ( ) / ( )y y x xI IV I IV− −

II x Dd d+ sinφ y Dd d− cosφ ξ ξ2 4→ 2 ( ) / ( )y y x xI II I II− −

III x Pp p− sinφ y Pp p+ cosφ ξ ξ4 3→ 3 ( ) / ( )y y x xIII IV III IV− −

IV x Dd d− sinφ y Dd d+ cosφ ξ ξ3 1→ 4 ( ) / ( )y y x xIII II III II− −
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Fig.1: (a) Lay-out of a detection system in the xy reconstruction plane. The detector and aperture will also have a

finite dimension in the perpendicular z direction; when the z direction is considered in addition to the xy plane the

detection system will be referred to as three dimensional. (b) Schematic of a planar pinhole camera and (c)

schematic of a planar camera with individual apertures for each detector. Note that in (c) walls are required

between channels to avoid light from reaching a detector through other apertures.
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Fig.2: (a) Geometry of general planar aperture system

and definition of quantities, points and regions. (b)

Boundaries of nonzero region of k(p,ξ) in projection

space for two aperture systems with parallel detector

and aperture of different relative sizes. The curves are

defined in Table I. (c) The angular étendues

corresponding to (b).
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Fig.3: (a) Definition of quantities defining overlap of

angular étendue and geometric function. (b) Illustration

of parallel collimator system with infinitely thin walls.

The collimator size is 2C and the leftover fractional

collimator is indicated by 2C’.
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Fig.4: Quantities along aperture curve for a certain

assumed emission profile as a function of the angle ξ
(a,b) and its Fourier counterpart Ξ (c,d). (a) Solid line:

line-integral values; dotted line: values blurred by

angular étendue; circles: points where the blurred

values are sampled (corresponding to the detectors);

dashed curve: piecewise-linear fit to sampled points.

(b) Angular étendue normalized to the étendue for the

vertical KB1 detectors; the one used in the

investigation is given by the solid line. (c,d) Fourier

transforms of (a) and (b), respectively, with equivalent

linetypes and symbols. Note that (c) is on a logarithmic

scale and (d) on a linear scale. Although the Fourier

transforms were carried out with the discrete Fourier

transform (DFT), the number of samples was chosen

such that the figures are a good

representation of the analytical Fourier transform and

that no inaccuracies were introduced due to the small

number of samples and the fact that the samples do

not extend over the entire range of the plasma. The

dashed curve in (c) indicates the blurred function

aliased with values higher than half the Nyquist frequency

[ (2  ∆ ξ )-1, where ∆ ξ is the sampling rate; vertical

dotdashed line at Ξ =13 deg-1]; the circles indicate

the sampling points on the dashed curve.
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Fig.5: Results of optimized overlap of 2D angular

étendue for angle difference ∆ ξ = D 25°.(a) Optimum

half aperture size P as a function of distance L. Three

branches (apertures withD P > and D P < , and

collimator) are indicated and the dashed line

represents theasymptotic limit of the D P > solution

for large L. Several critical points are identified in

thefigure. (b) Approximate 2D étendue as a function

of distance L for the three solution branchesfor P. The

collimator branch has two curves: the integer

collimator and fractional collimator. Analytically

calculated étendues for some distances L are shown

by open and solid circles. (c) Angular étendues for

some distances L [solid circles in (b)] with the type of

solution indicated by linestyle (solid: aperture D P > ;

dashed: aperture D P < ; dot-dashed:

collimator).
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Fig.6: Results of optimized overlap of 2D geometric

function ∆ F 10 = D at a distance D y 100 = . (a)

Optimum half aperture size P as a function of distance

L. The aperture solutions and collimator solutions are

indicated. Some critical points are identified in the

figure. (b) Approximate 2D étendue as a function of

distance L for the aperture and collimator solutions

(integer and fractional collimators) of P. Analytically

calculated étendues for some distances L are shown

by solid circles. (c) Cross-section of geometric function

at distance y as a function of x for some distances L

with the type of solution indicated by linestyle (solid:

aperture; dot-dashed: collimator).
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is shown as a function of distance L; (a) shows a large
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 there are three

toroidal solutions: the dashed line is the toroidal

aperture solution, the solid line the toroidal integer

collimator solution and the dot-dashed line the toroidal

fractional collimator solution. For each of the toroidal

collimator branches there is a poloidal aperture branch
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p
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1 for L
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, and a poloidal aperture
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 there are two poloidal collimator branches;

from top to bottom the four curves are: toroidal
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collimator and poloidal integer collimator. For one of

the branches (toroidal aperture or integer collimator

and poloidal aperture or integer collimator) the

numerically calculated 3D étendue for some L is

plotted as solid circles.

http://figures.jet.efda.org/JG01.320-4c.eps
http://figures.jet.efda.org/JG01.320-3c.eps


5

JG01.320-5c

Fig.10: Expanded view of collimator block for a new bolometer camera on the JET tokamak.

The detectors view from the top through a set of apertures. Fine  view channels are at the

left, normal-view channels in the middle and coarse-view channels at the right.
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