**x I :I ‘D ﬁ EUROPEAN FUSION DEVELOPMENT AGREEMENT

* *

ot l
*

EFDA-JET-PR(01)13

G TA Huysmanset a

Modelling of Diamagnetic
Stabilization of Ideal MHD
Eigenmodes Associated with the
Transport Barrier



Modelling of Diamagnetic
Stabilization of |deal MHD
Eigenmodes Associated with the
Transport Barrier

G T A Huysmans', S E Sharapov, A B Mikhailovskii, W Kerner®.

EURATOM/UKAEA Fusion Association, Culham Science Centre,
Abingdon, Oxfordshire, OX14 3DB, UK.
1Association EURATOM-CEA Cadarache, 13108 St Paul lez Durance, France..
2 ntitute for Nuclear Fus on, RRC Kurchatov Institute, Kurchatov Sqr.1,
Moscow 123182, Russia.
3The European Commission, DGXII, Square de Meeus 8, Brussels, Belgium.



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”




Modelling of Diamagnetic Stabilization of
|deal MHD Eigenmodes
Associated with the Transport Barrier

G.T.A. Huysmans, S.E. Sharapovl, A.B. Mikhailovskii2, W. Kerner®

Association EURATOM-CEA Cadarache, 13108 &.Paul-Lez-Durance, France
LEuratom/UKAEA Fusion Associ ation, Culham cience Centre, Abingdon, OXON OX14 3EA, UK
2| ngtitute for Nucear Fus on, RRC Kurchatov Institute, Kurchatov Sgr. 1, Moscow 123182, Russia

3European Commission, D.G. XlI, Square de Meeus 8, Brussels, Belgium

ABSTRACT

A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal MHD
code MISHKA-1inorder to investigate the finite gyroradius stabilizing effect of ion diamagnetic
drift frequency, w, on linear ideal MHD eigenmodes in tokamaks with shaped plasma cross-
section. The MISHKA-D code gives a self-consistent computation of both stable and unstable
eigenmodes with eigenvalues |y| D wy in plasmas with strong radial variation in the ion
diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the
analytically obtained wp; -spectrum and stability limits of theinternal kink mode, n/m=1/1, used
as abenchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport
barrier just inside the separatrix are studied for H-mode plasma with the w;-effect included.
The ion diamagnetic stabilization of the ballooning modes is found to be most effective for
narrow edge pedestals. For low enough plasmadensity the w; - stabilization can lead to asecond
zone of ballooning stability, in which all the ballooning modes are stable for any value of the
pressure gradient. For internal transport barrierstypical of JET optimised shear discharges, the
stabilizing influence of ion diamagnetic frequency on the n=1 global pressure driven disruptive
modeisstudied. A strong radial variation of wg; isfound to significantly decrease the stabilizing
wj - effect on the n=1 mode, in comparison with the case of constant wp; estimated at the foot
of the internal transport barrier.

1. INTRODUCTION

Ideal magnetohydrodynamic (MHD) instabilities play an important role in limiting plasma
performance in tokamaks. A careful assessment of the stabilizing effects on ideal MHD modes
isimportant for controlling these instabilities and obtai ning highest plasma parametersand fusion
yield. In order to compute the ideal MHD instabilities the ideal MHD eigenvalue code
MISHKA-1 was developed [1] and successfully applied for JET discharges [2, 3]. It was
established in[2, 3] that the effect of MHD instabilities on plasma confinement is most dramatic
if the MHD modes are associated with the so-called “transport barriers’, which suppress the
thermal plasma transport in a narrow region and control the high confinement of the plasma
[4,5]. On JET, two broadly different scenarios of high plasmaconfinement with transport barriers
are established: H mode [4] and the shear optimized scenario [5].



In H-mode discharge [4], atransport barrier is formed at the plasma edge just inside the
magnetic separatrix where the density and temperature vary strongly over very short distances
of few centimetres. The Edge-L ocalized Modes (ELMs) of the 1 type excited in the edge transport
barrier lead to a rapid degradation of plasma performance in a region much broader than the
edge only, and they are usually the most limiting MHD events of the plasma performance in
H-mode. Studies [6-8, 2] of the MHD stability at the plasma edge have identified the ideal
ballooning modes[6-8] and low-n kink (peeling) modes[2, 6] driven by the pressure gradient at
the edge and by the edge currents (including bootstrap-current) as the MHD modes, which
determine stability of the ELMs.

In the shear optimized scenario [5], an internal transport barrier is triggered close to the
plasma centre and expands at later times. Enormous radial gradients of ion temperature, up to
150 keV/m, and radial gradients of plasma pressure, up to 106Palm, were measured in best
dischargeswith internal transport barrierson JET [5]. Such discharges often end with disruptions,
which are attributed to aglobal ideal MHD kink mode with toroidal mode number n=1 driven by
the strong peaking of the pressure profile at the internal transport barrier [3].

Since the ideal MHD modes in the barriers are associated with large pressure gradients,
more comprehensive analysis of the stability margins must take into account al the relevant
pressure-dependent effects, which can modify the stability conditions. One of the well-known
effects, which can dramatically modify the stability of ideal MHD modesisthefinite gyroradius
effect of the ion diamagnetic drift frequency, wg =M [—I-L np D—lad—pi which can

r g dr P dr
stabilize ideal MHD modes if their growth rate y,4p iS comparable to or lower than wy (see
[7-9] and Refs. therein):
YMHD < @5 (1.3)

Here T, g and p aretemperature, charge and pressure of the thermal ions of the plasma,

By the equilibrium magnetic field, r the radial coordinate and m the poloidal mode number.

Introducing the characteristic ion pressure-gradient scale L, =[d(Inp;)/ dr‘_l, and representing
YMHD = Vi / Rett (1.2)
where Ry isan effective curvature radius of the magnetic field lines, one can re-write (1.1) in

the form:

nqﬂz L (1.3

where p; = Vyi / wg;j is the ion Larmor radius, wgj =€By/M; the ion cyclotron frequency,

Vi =(Ti/Mi)1/2, M; the ion mass, n the toroidal mode number, and q(r) =By / RyBp the
safety factor ( Ry is the major radius of the torus, By and Bp are the values of toroidal and
poloidal magnetic fields).



One can seefrom (1.3) that the efficiency of the w; - stabilization isdetermined by different
reasonsfor modeswith different characteristic parameters. For example, theideal MHD internal
kink mode [10], which is characterised by the toroidal and dominant poloidal mode numbers n/
m=1/1, can be easily stabilized by the ion diamagnetic drift effect due to the small values of the
growthrate. Inthiscaseinequality (1.3) is satisfied dueto the very small “effective” curvaturein
toroidal geometry, which is of the order of

<

, (2.4)
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where € =r/ Ry, r =1, is the radius of magnetic surface q(rq) =1. Then (1.3) reduces to the
following estimate of the plasma parameters at which the ion diamagnetic effect becomes
important for the internal kink mode:

2
T
s (1.5
Lp g Ry

where p; and L, have to be estimated at the position of theinertial layer of the kink mode, i.e.
a q(ry) =1

Inthe case of high-n ballooning modes and kink modeswith highm, n, the w; -stabilization
plays an important role since the left-hand side of (1.3) is proportional to alarge value n. Asan
estimate for 1/ Ry, one can usein this case

1/ Rgs [E /Ry, (1.6)
so that an estimate for maximum n, np, above which one could expect a stabilization of
high-n modes due to the w; -effect, takes aform:

Nmax Dszj. a.7)
ap;

Considering therelevant plasmaparameterstypical of the edgetransport barrier just inside
the separatrix in H-mode and the plasma parameters typical of the internal transport barriersin
the shear optimised scenario, one finds that the condition (1.1) is satisfied in many cases. Thus,
generally speaking, the wp-effect must be taken into account for stability analysis of ideal
MHD modes associated with the transport barriers. Recent analyses|[7,8] confirm theimportance
of the wp;-effect on ideal ballooning modes in the edge transport barriers. It was shown in [7]
with the use of Braginskii equations and simple analytical model, that the ion diamagnetic drift
and thefiniteradial localisation of the pedestal pressure gradient change significantly the pressure
gradient threshold for ideal ballooning modes. Recent analytical study [8] devoted to the stability
of ideal ballooning modesin the edge transport barrier, has also underlined importance of strong
radia variation of the ion diamagnetic frequency. In order to incorporate the effect of strong
radial variation of wg, aglobal mode analysis was developed for the ballooning approach [8].



Goal of the present paper is to develop an ion diamagnetic drift modification of the ideal
MHD spectral code MISHKA-1[1]. The modified drift MHD code (called MISHKA-D) should
allow to compute stable and unstable eigenmodes with eigenvalues |y| O wy, in full toroidal
geometry and with strong radial variation in the ion diamagnetic frequency, w, taken into
account. The MISHKA-D model and numerical method of solving the MISHKA-D equations
are presented in Section 2 and Section 3, respectively.

The MISHKA-D codeis benchmarked against analytical resultsfor the wj - effect on the
n/m=1/1 internal kink mode in Section 4. A short description of the analytical resultsis given.
Auxiliary codes based on the MISHKA-D code, i.e. the antennaversion of the MISHKA-D and
the continuum solver based on the MISHKA-D code, are tested for the internal kink mode.

The main application of the new MISHKA-D code isthe analysis of the oy -stabilization
of ballooning and kink (peeling) modes localised in the edge pedestal of H-mode discharges
(Section 5). The MISHKA-D code allows accurate calculations of finite-n ballooning and kink
modes up to very large toroidal mode numbers (n< 50-100) in full toroidal geometry and for
arbitrary plasma shapes. In order to quantify the relevance of the ion-diamagnetic stabilisation,
a JET high performance H-mode discharge is analysed.

The wp-stabilization of the disruptive n=1 pressure-driven mode in optimised shear
discharge with internal transport barrier is considered in Section 6.

Conclusions are presented in Section 7.

2. THE MODEL

2.1 Starting equations
Starting equations of the MISHKA-D model are, on the one hand, a generalization of the ideal
MHD equations used in the MISHKA-1 code [1], and, on the other hand, - areduced set of the
generalized MHD equations [11]. In contrast to [1], but by analogy with [11], we take into
account the gyroviscosity term in the equation of the plasma motion across the magnetic field

p dVv/dt=-0pt jx B+ Ty , (2.2)
where T, isthe gyroviscosity tensor, d/dt =9/dt +V [, p = M;n, V, p are the plasma mass
density, velocity and pressure, j isthe electric current density, B isthe magnetic field, M, isthe
ion mass, n is the plasma number density. We take the time dependence of the perturbationsin
theform exp(At) and linearise (2.1) taking into account that the gyroviscosity term compensates
the part of thetermwith dV / dt related to theion diamagnetic drift velocity in (2.1) (see[11] for
details). The linearised version of (2.1) then reducesto (cf. [1, 11])

AMingV = -00p+ H, (2.2)

where

A = (3 Bo)xB-Bg x(x B), (2:3)



the subscript zero and tilde denote the equilibrium and perturbed values. We only consider
projections of (2.2) perpendicular with respect to the equilibrium magnetic field, since only
these projections are important for our problem.

The linearised perpendicular Ohm’s law is taken allowing for the ion pressure gradient
and the equilibrium diamagnetic drift velocity vV,

no(E +V xBo) + Vg xBo ~TCR= 0, (2.4)

where

V0=L250"DP0i,T= L M- 1
PoBo §Rv | Holoi Wi Ta

Here E isthe perpendicular perturbed electric field, pgj and P are the equilibrium and
perturbed ion pressures, py is the equilibrium mass density, € istheion charge, ng; istheion
density on axis, Ta = Ry/Va(0), Va(0) =By(0)/Hopo(0) is the Alfvén velocity on the
magnetic axis. For agiven pressure profile, all the non-ideal MHD terms are proportional to the

dimensionless parameter T, the inverse of the normalised ion-cyclotron frequency wg;.
By analogy with [11], we take into account term with V, in the continuity equation:

A = —DD(no\7+ ﬁvo). (2.6)

(2.5

The perturbed ion temperature 'I:, isgoverned by the ion energy equation allowing for the
drift part of the heat flux q;:

AngT; = -ngV MMy~ (M- Ypi@MV- V@O % (5 J)mg; , 2.7)
where
~ r ATy + noT; No Toj ~ [
M= T— M2 01 xOTh+ 29 Bx0 T 2.8
Qi (ri _1) H B(2) 0 oi B(z) o (2.8)

Toi isthe equilibrium ion temperature, I is the adiabatic exponent.
The electron energy equation is written in the approximation of infinite parallel electron
heat conductivity:
By MT#+ BD T O, (2.9)
where 'fe and Toe are the perturbed and equilibrium el ectron temperatures.

2.2 Transfor mations of starting equations
We obtain from (2.4)

\7|:|:\~/E _1V0+ t

Bg X , 2.10
nOB(z) 0 Eh ( )

wherethe subscript [j denotesthe vector components perpendicular to the equilibrium magnetic

field Bg and \7E isthe perturbed cross-field velocity, given by
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Assuming the plasma motion due to the cross-field vel ocity to be incompressible,
MV 0, (212
and neglecting the magnetic field curvature effects, one obtains using (2.9), (2.10):
M — BP0 A= B Ty), (2.13)
NoBo
(r, -)ma= - ripgD V. (2.14)
Then (2.6), (2.7) reduce to
AR = -V Mng (2.15)
AT, = Vg Ty, (2.16)
We then express the electric field by analogy with [12] as
E=-)M, (2.17)

where A isaperturbed vector potential. We use the coordinate system (S,ﬁ,(p) described in [1]
(s is the dimensionless radia coordinate marking the magnetic surfaces, 9 is the poloidal
coordinate, @isthetoroidal angle). Then we obtain from (2.11)

AA = V2, (2.18)
A, = V2, (2.19)
where
~ ~ ~ ~ 1
V2 =[Ve xBo|,, Ap=[A xBq| /B3, (2.20)

The subscript and superscript 1 denote the first (i.e. s-th) covariant and contra-variant
components, respectively. Substituting equation (2.19) into (2.15), (2.16), we find
A=nphy, T =TgiAy, (2.21)
where the prime denotes the derivative with respect to s.
We neglect the parallel perturbed electric field, so that in accordance with (2.11),

ABy=0. (2.22)
Then, according to [1]
Bl = -B, A, . (2.23)
Substituting (2.23) into (2.9), we find that
To = Toeho. (2.24)
It follows from (2.21), (2.24) that
P= Py, (2.25)

where Po = no(TOi +Toe).
Taking into account (2.10), (2.24), the momentum equation (2.2) can be written in the
form



APo é_/E "‘—Bo X D%ALPO'% ( ) +H. (2.26)

Using (2.19), we express 7\A2 in terms of VE and move the relevant term from the left-
hand side of (2.26) to right-hand side of (2.26). Then the (s,9)- covariant projections of the
resulting equation lead to the following equations:

0
APo %}llvE + gl— EZB: ef] (2.27)

- OBE0 (1) - A o T g P OVE o O MR
RZ 0sH Bs as% quggl no 09 23sH g

0 ~o0 A
)\poglzvé’ff— EH=02 - (2.28)
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Thefunctions 0, a5 wereintroduced in [1] asfollows:

alzJ(j§é3—jgé2) quz ;[J(MBl+NBz)] (2.29)

+q%%i% +qaiaJ(Lél - Méz)] ,
G, = 538 + F': 6a(p J(met +N|32)] (2.30)
The coefficients L, M, N, G are defined by
L=gu/Jd, M=gp/J, N=gpn/Jd, G=gu3/J=F/fq, (2.31)
where the Jacobian J = fqR?/F, f =2y, (Y1 isthe poloidal flux at the boundary), F = RBy
and g, with (i,k) =(1,2,3) are the metric tensor components. The perturbed magnetic field

components B2 and B® arerelated to A, A, by (cf.[1])

g2=1 E%A(; 2 fAz)H 8= %9—( foho) - %’;‘E (2.32)

Thus, our model consists of thefour equations, (2.18), (2.19), (2.27), (2.28) for thevariables
A, AQ V,%, VEZ. These equations differ from those used in MISHKA-1 [1] by the last termsin
the square brackets in the right-hand sides of (2.27), (2.28).

3.NUMERICAL METHOD
In the numerical scheme, we introduce new variables

X = fqU, X, =iV2, Xg=iA, X, = foh (3.1)



and solve (2.27), (2.28), (2.18) and (2.19) in their weak form by using the Galerkin method [12].
Thefour unknown functionsare Fourier expanded in both toroidal and poloidal angle; the structure
of thefunctionsinradial co-ordinate s isdescribed in cubic Hermite and quadratic finite elements
H(s), i.e. the same discretisation as used in the CASTOR code is employed:

A=Mene ze'maz( ) Hy (), (3.2)
m=-—oo v=1

where A is any function from the four functions above. Following the approach described in
Ref.[10] we generate the weak forms by multiplying the equations (2.27), (2.28), (2.18) and

(2.19) by (\71)*, (\72)D/ fq, ALDand AZD correspondingly and integrating over the volume
Jdsdd dp. The weak forms are obtained then as follows:

AN; = My +TD;, AN, = M, +1Dy, (3.3)

AN3 =M, ANy =My, (3.4)

where T isthe dimensionless parameter, which characterisestheion drift effect and isdetermined
by (2.5). M;, M, arethe parts of weak forms related to the potential energy of the mode,

My = [AL3) XTX3 + AL, 3) =L axl S et ALY XX

+A(l,4) L axl = X4t AL 4')x15% + AL, 4 a;(; 654 d (3.5)
My = [ A2.X5Xs + A2 4) X4 +A2,4) ax4 dsd9 | (36)
the weak formsN;, N, correspond to the kinetic energy,
Ny = J’(B(11)|X1|2 + B(1,2) X X,)dsdd (3.7)
N, = I(B(z,l)x; +B(2,2)|X[?)dsds . (3.8)
Theweak formsN3, Ny and M3, M, connect the vector potential with the plasmavel ocity,
N = [B(3 3 Xy dsdd, Ny = [B4 )X, dsd9 | (3.9)
Mz = [A(3.2) X5Xodsdd, My = [A@4D) XX, dsdS . (3.10)

Similar types of the weak forms were obtained in the MISHKA-1 code, with the only
difference that (2.18), (2.19) were used in order to reduce the number of variables from four to
two. In contrast to the MISHKA-1 code, new terms Dy, D, corresponding to the drift effects

appear now in the MISHKA-D code:

D, = I@(11)|x1| +ALT) XDaxlgisdﬁ (3.11)



D, = Sf(z, DXPX, + AR, L) %gisdﬁ . (3.12)

Thematrix elements (the coefficientsin front of the quadratic combinations of the variables
X (i =1,2,3) and their radial derivatives in Egs.(3.3)-(3.12)) have to be computed from an
equilibrium code (we use the equilibrium code HEL ENA [13]) by amapping procedure. Details
of the derivation and transformation of the matrix elements are explained in the Appendix.

4. BENCHMARK OF THE DIAMAGNETIC STABILIZATION OF THE INTERNAL
KINK MODE. AUXILIARY MODIFIED VERSIONS OF THE MISHKA-D CODE.
Analytic theory for MHD modes in the regime with |y| 0w shows, that the wp; -stabilization
manifests itself in the form of two modes with real frequencies, instead of the modes with
imaginary frequencies w = iy yp. Frequencies w, and w, of wy stabilised modes are given
by:

(*ﬁ' (4.1

W2 = =4 NT_VMHD

It is seen from (4.1) that unstable modes withIm(w) >0 can only occur if the value of
YMHD 8ssociated with the potential energy of the perturbations becomes high enough to satisfy
YMHD > 0 /2. Until then only two stable modes can exist with frequencies, which start from

W = Wy, Wy = y%AHD/ wy; at small yyyp and mergeat Wy = Wy = /2 as yyp increases.
4.1 The benchmark

As abenchmark case for the MISHKA-D code, the stabilization of the n=1 internal kink mode
due to the ion-diamagnetic drift is analysed. Analytically, the growth rate and frequency of the
internal kink mode as afunction of wg, are described by (4.1). In order to test the MISHKA-D
code, the eigenvalues of the internal kink mode are calculated self-consistently, varying the
diamagnetic frequency through the parameter T introduced in (3.3), keeping the pressure profile
constant. The equilibrium used is characterised by the pressure and current profiles:
p' = p'(0)(1-y) and (j) = j(0)(L- W), where  isanormalised poloidal flux. Circular plasma
boundary is chosen, with the aspect ratio of R,/a =4. Poloidal betaand the saf ety factor on-axis

8nS(p)

values are, correspondingly, B = 2 =0.4 and g(0) = 0.75. Thisequilibrium isunstable

with respect to the ideal MHD n=1 internal kink mode [10]. Here, {p) is the volume averaged
pressure, Sthe area of the poloidal cross-section of the plasma, and | the total toroidal plasma
current. The trgjectory of the growth rate, y = Re()\), and the frequency, W= Im()\) of thetwo
modes as a function of 1 is shown in Figure 1. The behaviour of the two modes is in good
agreement with (4.1). At 1= 0, one unstable and a stable, damped, mode exist, both with the
same mode structure. With increasing t, the frequency of the two modesincreaseslinearly with
wj , while the growth and damping rates are decreasing. At w = wy; /2 the two modes coal esce.



Further increase in W leads to two stable modes, one increasing, the other decreasing in
frequency. The value of wp; asevaluated at the g =1 surface from atoroidal analogue of (1.1):

0= T—nq<|DqJ|> Eld—p (4.2)

Po(r)(Bo) dy’
agrees within 5% with the value of wp; determined from the linear increase of Im(A) with t,
(the brackets <..> denote an averaging over the flux surface).

The variation of wg with t corresponds to avariation of the plasma density or magnetic
field, which leaves the (normalised) equilibrium and thus the pressure unchanged. Varying the
total pressure changesboth theideal MHD growth rate of the mode and the diamagnetic frequency.
Fig.1b shows the frequency and growth rate as a function of the poloidal betafor both ideal and
finite wr . Theideal MHD internal kink mode is stable up to apoloidal betaof B, =0.226. The
effect of ion-diamagnetic drift (1= 0.02) givesriseto two stable modes. However, thetwo stable
modes only exist when the pressureis larger than the ideal MHD stability limit.

4.2 Auxiliary version of the MISHKA-D code for computing the Alfvén continuum

For lower values of the pressure the frequencies of the stable modes would lie inside the Alfvén
continuum. The diamagnetic drift frequency modifiestheAlfvén continuum in the low-frequency
range by inducing “gaps’ in the continuum at the intersection points between branches of
oscillations 0 = #K,(rVa(r) and w = wx;(r) [14]. Thefinite wy inducesagapin the continua
of widthfrom w =0 to w = w . Inorder to compute the continuum frequencieswith o -effect
for shaped equilibrium with arbitrary radial profiles of density, pressure, and q(r), a modified
version of the MISHKA-D code, similar to the CSCAS code [15], was devel oped. The bottom
of the gap asafunction of B, computed by the modified MISHKA-D isshownin Fig.1b. At the
marginaly stable value of the pressure of the ideal mode, one global mode comes out the
continuum with afrequency w = wyy, the second modes comes out of the continuum below the
wrj induced gap at w =0. With increasing pressure, the two modes coalesce when y = w /2
and the internal kink becomes unstable (at 8,=0.308).

4.3 The antenna version of the MISHK A-D code
In order to study global eigenmodes of finite frequency, which can be excited by external antenna,
the antenna MISHKA-D code was developed similar to [16, 17]. This auxiliary version of the
MISHKA-D code alows computing the plasmaresponse to thewave-field of the external antenna.
When the external antenna drives a wave-field with certain m, n and the driving frequency is
swept acrossthefrequency range of interest, sharp resonances are detected in the plasmaresponse
at frequencies, which correspond to the frequencies of global eigenmodes of the same helicity.
It isknown that, experimentally, the frequency of the two stable modes can be determined
by exciting the modes with an external antenna[18]. Using the separation of the frequencies of
the two stable modesin (4.1) as an indication of the distance to the stability limit of the mode,
onecould, in principle, avoid MHD instabilitiesthrough afeedback systemto control the plasma
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parameters. However, the two stable modes can only be observed when they areideally unstable,
but wr; -stabilized. Below theideal MHD stability limit the two modes become continuum modes
and cannot be detected as individual modes by an external excitation with antenna. This point
has been verified with the antenna version of the MISHKA-D code. When the global modes
exist, sharp resonances are found in the plasma response to the external drive from the antenna.
However, as soon as the frequency of the global modes fall inside the continuum, the sharp
resonances are lost and only the response from the continuum remains. Thus, the interval of
plasma parameters where the stable modes can be detected entirely depends on the effectiveness
of the diamagnetic stabilization.

In order to investigate the efficiency of the wp stabilization of the internal kink, the
marginally stable values of the poloidal beta have been computed with the MISHKA-D code as
afunction of q onaxis, for four values of the parameter 1. The value of the safety factor on-axis,
g(0), is varied by changing the total current, at fixed equilibrium profiles. Fig.2 shows the
resulting stability limits of the internal kink, estimated from (4.1) for =0, 0.01, 0.02 and 0.04.
The ideal MHD limit is in good agreement with the classical result for the Bussac mode [10].
Theideal MHD growth rate scal eswith the square of theinverse aspect ratio of the g = 1 surface,
i.e. the growth rates become very small as q(0) approaches 1. With the choice of the shape of the
pressure profile, wy isalmost constant as afunction of radius. The stabilizing effect of theion-
diamagnetic drift is therefore largest for small radii of the q =1 surface (see Fig.2).

5.STABILITY OF IDEAL MHD MODESIN THE H-MODE EDGE TRANSPORT
BARRIER

The pressure gradient in the transport barrier at the edge of an H-mode plasma is limited by
MHD instabilities in the form of Edge Localised Modes (ELMs). The relevant instabilities are
ballooning modes driven by the edge pressure gradient and | ocalised kink (peeling) modesdriven
by the edge current, which is due to both the bootstrap current and the Ohmic current related to
the high edge electron temperature. Usually, experiments show that the pressure gradient in the
H-mode edge pedestal isfound to correspond to the first ballooning stability limit [6, 19] and it

followsthe scalingwitha (a = —4(q2/s B§)V1/ 2(dp/dV)) as expected for the ballooning limit.
Under some conditions, e.g. at high shaping and/or high q(95), the pressure gradient isfound to
be significantly above the first ballooning stability limit [20, 21]. This may be explained by the
access to the second zone of the ballooning stability, which is most easily achieved at high
triangularity and high q(95) (high poloida beta). An aternative explanation for the pressure
gradients exceeding the ideal MHD first ballooning stability limit is the stabilizing influence of
theion-diamagnetic drift velocity [7, 8]. In[7], theinfluence of the diamagnetic drift wasanalysed
using the Braginskii equationsin aflux tube geometry with a shifted circle equilibrium. In the
following section, the influence of the diamagnetic drift on the finite-n ballooning stability and
kink/peeling modesin the edge pedestal isanalysed in full toroidal geometry, using the linearised
MHD equations as described above. Finally, in order the quantify theimportance of the stabilizing
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influence of the diamagnetic drift, the stability limits of a JET Hot-lon H-mode discharge are
determined as functions of w.

5.1 Finite-n ideal ballooning modesin the edge pedestal
Inideal MHD, the stability limit of ballooning modes with n = o has been adopted in order to
interpret the stability of edge pressure gradients in tokamaks. In this approach, the marginally
stable pressure gradient does not depend on the width of the edge pedestal, and the width of the
mode is assumed to be infinitely small. However, physicaly relevant instabilities have finite
mode numbers and for finite-n ballooning modes with afinite mode width, the width of the edge
pedestal is an important parameter in the stability limits [22].

In order to clarify the influence of the pedestal width on the stability of ideal MHD finite-
n ballooning modes, we computed with the MISHKA-1 code the marginally stable pressure
gradients and the growth rates as functions of the toroidal mode number and the width of the
edge pedestal. The formulation of the MHD equations in the MISHKA codes and the accuracy
of the higher order finite elements used in both the equilibrium (HELENA [11]) and in the
stability calculations alow toroidal mode numbers up to n<100 to be analysed in full toroidal
geometry.

The equilibrium used is characterised by a circular plasma boundary, an inverse aspect
ratio Ry/a= 4, g at the boundary just below 4 and the poloidal beta of 1.0. The edge
pedestal is represented by a local gradient, which is added to the pressure profile:

P(y)=1-yp+p
(with amplitude p;) extendsfrom Yy, to the boundary, Y = 1. The flux surface averaged current

density profile is given by (j)=1-0.8 —0.2y2. In the stability calculations an ideally
conducting wall is positioned at twice the minor radius.

Assuming that (4.1) can be used for approximately estimating the influence of the
diamagnetic drift frequency for ballooning modes, we first study stability of the ideal MHD
finite-n ballooning modesin the edge pedestal with the use of the MISHKA-1 ideal MHD code.
Figure 3 shows the typical finite-n ballooning mode with toroidal mode number n=30 in the
edge transport barrier.

Figure 4 shows the marginally stable pressure gradient, o, as a function of the toroidal
mode number for three values of the width of the pedestal. The value of the marginally stable
pressure gradient can be well described by:

A () =0y +Co /G, (5.)

where 8y, isthe width of the transport barrier, o, = (1 - qul 2), and a,, isan extrapolated value

/
(- l]Jb)Z(B— 24— gy)/(1- lIJb)Sll 4. The increased pressure gradient

ton=oo,
In(5.1), the 1/ n correction of themarginal a isconsistent with the conventional ballooning

-2/3

theory. It does not follow the modified scaling with n for the edge ballooning mode [22],
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sincethe n™?/3-scali ng isrelated to alinear variation of the growth rate of the n = o ballooning
mode. However, for the pressure gradient profile in the barrier used in our analysis here, the
n= o growth rate varies quadratically as a function of | (asin the conventional ballooning
theory), with amaximum just inside the plasmaboundary. In order to obtain alinear variation of
the n = c growth rate the pressure gradient has to increase faster than the magnetic shear. It is
also seen from (5.1), that the correction to o isinversely proportional to the width of the edge
pedestal, and narrow barriers are more stable with respect to finite-n ballooning modes, than
wide barriers.

The width (as measured by the half-width of the envelope of the ballooning mode at the
outboard mid-plane) of the computed eigenfunction of the ballooning modein the edge pedestal,
shown in Fig.3, shows a strong scaling with the pedestal width and a weak dependence on the

toroidal mode number. The half width can be approximated by oy U 6%’ 4nt 4 and it does

-1/2

not follow the n dependence typical of the conventional ballooning theory, or the edge

-2/3

ballooning mode scaling n [22]. The number of rational surfaces inside the half-width of

the mode increases linearly with the toroidal mode number as opposed to the N2 scali ng from

the ballooning theory. This measure of the mode width in terms of the number of rational surfaces
gives a mode width independent of toroidal mode number. The width of the ballooning mode
basically fills up the width of the pedestal.

In the presence of the finite diamagnetic drift frequency, (4.1) shows that the increase in
the marginal pressure gradient due to the diamagnetic stabilization is determined by the change
in the growth rate of the ideal MHD mode with a relative to the change in wy with a. The
growth rates Re(A) of theideal MHD finite-n ballooning for 3, = 0.05, areshowninFig.5asa
function of the edge pressure gradient for several values of the toroidal mode number. The
variation of the growth rate versus pressure gradient relative to the variation of the diamagnetic
frequency determinesthe amplitude of the diamagnetic stabilization. Closeto margina stability,
for the range of toroidal mode numbers considered (10 < n < 40), the growth rates of the ideal
MHD high-n modes can be approximated by:

M =con(a -ay), (5.2)
where constant ¢, does not depend on the pedestal width. For larger growth rates, A > 0.05, the
growth rate is found to follow the scaling:

A2 =co(l-cy/n)(a —a,), (5.3)
(The a,, valuesin (5.2) and (5.3) have dlightly different numerical values). The constant ¢; is
independent of the pedestal width, whereas ¢; shows a weak inverse dependence on dy,. The
scaling of thegrowth rate close to margina stability in (5.2) isdueto thefree boundary contribution
to the instability, and it strongly depends on the value of q at the boundary. However, the slope

A2 (a) for larger growth rates away from marginal stability isindependent of q at the boundary.
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Thisisillustrated in Fig. 5b, which showsthe growth ratesfor several valuesof q at the boundary.
In computing Fig.5, it wasimportant to keep the parameter A = n(cy = 0 ) [22] constant (o is
the value of g at the boundary and ¢jj.; isthe integer value nearest to ), in order to keep the
free boundary contribution constant as a function of the mode number. Since the ideal growth
rates close to the marginal stability are easily stabilized by the diamagnetic drift, the behaviour
at large growth rates is more relevant for the stability limit in the presence of diamagnetic
stabilization.

5.2 Diamagnetic stabilization of edge ballooning modes

We now use the MISHKA-D code in order to compute diamagnetic drift effect on the edge
ballooning modes. Since the diamagnetic frequency increases linearly with the toroidal mode
number, W = C,NAt, and the growth rate of the edge ballooning mode saturates with increasing
n, a critical value for n should exist, above which the ballooning modes are stable when
diamagnetic stabilization is taken into account. This is illustrated in Fig.6, which shows the
contours of the marginally stable values of the pressure gradient based on the scaling of theideal
MHD growth rates asafunction of thetoroidal mode number and the parameter t. The maximum
of each contour of a, asindicated in Fig.6, corresponds to the most unstable mode number n.
With increasing value of T, and increasing wr;, the mode of the most unstable toroidal mode
number rapidly decreases. An expansion in T and 1/n of (5.2), yields for the dependence of the
most unstable mode number, for small values of T:

_[QCOCGDU3 2/13  gmy=q. +°_ G 54
nmax‘%% T (N) =04 E@ (5.4)

For alarge enough value of T, the higher-n modes become unconditionally stable for any
value of the pressure gradient. Above a critical T (~0.028 in this case), al finite-n ballooning
modes are stable. This situation is similar to the so-called second stable regime for n= o
ballooning modes where this regime can be obtained through shaping of the plasma boundary
and/or at high poloidal beta. Fig.6b shows the influence of the width of the edge pedestal on the
ballooning stability including the diamagnetic stabilization. Since the lower-n mode numbers
are more stable at smaller widths of the pedestal, in accordance with (5.1), the influence of the
diamagnetic stabilization ismoreimportant for small pedestal widths. Thechangeinthemarginally
stable pressure gradient scales approximately with the pedestal width. Thus, the increase of the
pressure due to the diamagnetic stabilization at the top of the pedestal is independent of the
width of the pedestal. However, the access to the second stabl e regime, which can be induced by
wrj, does depend on the pedestal width; a wide pedestal requires alarger value for T.

After the discussion of the influence of the diamagnetic stabilization based on the ideal
MHD growth rates and simple analytical expression (4.1), we compare our main conclusions
with the numerical calculation of the stability limits with the MISHKA-D code. The computed
behaviour of the growth rate and frequency of an n= 30 ballooning mode with increasing w; is
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showninFig.7. For the chosen shape of the edge transport barrier, the eigenval ue of the ballooning
mode follows (4.1) closely, showing a good correlation between the smplified formula (4.1)
and the computed eigenvalues. The marginally stable valuesfor the pressure gradient asafunction
of the toroidal mode number, as calculated with the MISHKA-D code, are plotted in Fig.8 for
several values of 1. Theresulting marginally stable valuesfor a agree very well with the values
based on theideal MHD growth ratesfor 1< 0.02. For 1 = 0.01, the most unstable modeisn =20
and no stability limit isfound for modeswith toroidal mode numberslarger than 40. For 1= 0.02,
the stabilization is somewhat |ess effective thanin (5.1), dueto theincreased interaction with the
Alfvén continuum. Although the eigenfrequency of the marginally stable mode computed at
1= 0.02 fallsinside the gap induced by the diamagnetic effectsin the edge pedestal, it falls out of
the first Alfvén gap outside the edge pedestal. This causes a significant change in the mode
structure, which extends well beyond the edge pedestal in this case.

5.3 Stability of the edge barriersin JET hot-ion H-mode

In order to quantify theimportance of the wp; -stabilization for typical tokamak parameters, the
stability limits due to kink and ballooning modes have been calculated for the edge barrier of
JET hot-ionH-mode DT discharge (pulse#42677 [4]) at thetime of maximum fusion performance.
The pressure profile and the current density profile are taken from transport ssmulation of this
discharge with the JETTO code [23]. Fig.10 shows the typical large edge pressure gradient and
the local increase in the edge current density. The width of the edge transport barrier is about 4
cm. The relevant stability limits for this discharge are plotted in Fig.10 as a function of 1. The
maximum edge current density islimited by n=2 kink (peeling) mode, localised inside the edge
pedestal. Theincrease in the marginally stable edge current due to the diamagnetic stabilization
is found to be to first order linear in 1, due to the linear dependence of the growth rate on the
edge current density. At a density of n=3x10"°m™ and the relevant parameter 1= 0.011, the
marginally stable value of the edge current density isincreased by 35% as compared to the ideal
MHD limit. At t= 0.011, the critical pressure gradient is limited by an n = 10-15 ballooning
mode at a pressure gradient which is about 30% higher than the—n = o ideal MHD ballooning
limit. For the ballooning limit, for each individual toroidal mode number, the increase of the
marginally stable pressure gradient scales quadratically in T for small values of 1. However,
considering al toroidal mode numbers givesamorelinear dependence because the most unstable
mode number goes down with increasing’t (see Fig.10). Thus, both the kink and ballooning
limitsin the edge pedestal have significant dependence on the density due to stabilization by the
ion-diamagnetic drift, being more stable at low density.

6. STABILITY LIMIT IN SHEAR-OPTIMISED SCENARIOS

The main MHD limitation in shear-optimised scenarios is due to the ideal MHD n=1 global
pressure driven mode, described in detail in [3]. For this mode, the effect of radial variation of
the diamagnetic drift frequency wp; is very important, due to the global character of the mode
eigenfunction, and very sharp pressure gradients.
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For typical plasmaprofilesin JET shear-optimised scenario (pulse #40572), the eigenvalue
and the mode structure computed by the MISHKA-D codeis shown in Fig.11. The behaviour of
thismode asafunction of T does not follow the simple dispersion relation (4.1). The modeisnot
completely stabilized for any value of T and the frequency of the mode has a maximum as a
function of 1, see Fig.11a This behaviour is related to the large variation of wg; at the different
rational surfaces, due to the large pressure gradients at or inside the transport barrier. One
consequence isthat the marginally stable mode has no frequency. Compl ete stabilization could,
in principle, be obtained when the density profile balances the radial change in the pressure
gradient such that wp; isrelatively constant as afunction of radius. However, using the estimate

typical of the ideal MHD growth rates, n ([3 5 Bpm), the increase in the marginally stable

beta would scale only quadratically with 1. Thus, the influence on the ion drift velocity on the
n=1 stability limit in shear-optimised dischargesis very small, in spite of the large value of the
ion diamagnetic frequency wp; calculated locally at the foot of the internal transport barrier.
This is consistent with the good agreement between the calculated ideal MHD stability limits
and the observed disruptive stability limit in the shear-optimised scenarios, previously analysed
in[3].

7. CONCLUSIONS

Equations have been derived which extend the one-fluid ideal MHD model to include the effect
of the ion-diamagnetic drift, which is important for typical plasma parameters in the transport
barriers. These equations have been implemented as an extension of the ideal MHD code
MISHKA-1 [1]. The new MISHKA-D code allows us to perform an accurate self-consistent
computation of both stable and unstable eigenmodes with eigenvalues |y| 0wy up to a very
large toroidal mode number (n < 50-100) in full toroidal geometry. The o -spectrum of n=1
internal kink eigenmodes computed as a benchmark of the MISHKA-D code shows a good
agreement with the analytical theory. In order to perform a comprehensive analysis of the ;-
spectrum and to compute the plasma response to the drive from external antenna, two auxiliary
versions of the MISHKA-D code were also devel oped, the continuum solver similar to CSCAS
code [15], and the antenna MISHKA-D code similar to [16, 17].

The MISHKA-D code has been used to analyse the stabilizing influence of w; -effect on
the stability limitsof finite-n ballooning and low-n kink (peeling) modesin the transport barriers
of H-mode discharges. Both the kink and ballooning modes show a significant stabilization due
to the ion-diamagnetic drift. For a given pressure profile, the amplitude of the ion-diamagnetic

drift terms is proportional to the parameter 1, the ion-cyclotron frequency normalised to the

Alfvén frequency. Since this parameter scales with the major radius and density as Pglngi” 2,

the effect isstrongest at low plasmadensitiesin smaller tokamaks. Consequently, the edge stability
limits depend on the density, being more stable at low density. For the specific JET hot-ion H-

mode discharge analysed, at the density of the edge pedestal 3x1019m'3, an increase of about
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30% in the plasma pressure threshold was found for both the ballooning and kink modes due to
the ion diamagnetic drift effect. Due to the scaling of the growth rate of the finite-n ballooning
modes with the width of the edge pedestal, the stabilizing effect is found to be largest for small
pedestal widths.

By including the diamagnetic drift in the stability calcul ations of thefinite-nideal ballooning
modes, the highest n modes (which are the most unstable modes in ideal MHD) are stabilized
first. The most unstable ballooning mode is found to be a medium-n mode whose exact mode
number depends on the parameter T determined by the density in the edge transport barrier. For
large enough values of T asecond stability zoneis obtained where the finite-n ballooning modes
are stablefor any value of the mode number n and pressure gradient. The numerical analysis has
shown, that the radial structure of the finite-n ballooning mode in the edge pedestal differ from
what one would expect from the conventional ballooning theory (or the modified theory for the
plasma edge [22]). The width of the mode depends mostly on the width of the high pressure
gradient region in the edge pedestal, and the mode fills the whole width of the pedestal. The
mode width depends only weakly on the toroidal mode number. Usually, the effect of an unstable
ballooning mode is assumed to be benign, leading to a‘ soft’ limit to the pressure gradient. This
scenario is based on considering the n — o ideal ballooning modes and taking into account
their strong localisation. However, considering thefinite-n ideal ballooning modes at finite wyj,
amedium-n ballooning mode with a mode width of the order of the edge pedestal isfound to be
the most unstable, and at a crossing of the ballooning limit this mode may well lead to adiscrete
ELM event.

For JET Optimised Shear discharges with internal transport barrier, the w; -effect on the
disruptive n=1 global pressure driven kink mode isfound to be weak, due to the effect of radial
variation of the ion diamagnetic frequency . This result is in agreement with the good
correlation between the observed stability limits due to disruptions and the calculated ideal
MHD stability limits[3].
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APPENDIX. DERIVATION AND TRANSFORMATION OF THE MATRIX
ELEMENTS.

In order to illustrate the procedure of obtaining the matrix elements we consider the quadratic
form (3.1). We start from the expression

R .
N; = [Po——5 (011X —ig1o X, ) X1 0SS . Al
h Ipo = (011X — i X)Xy (A1)
Comparison of (A.1) and (3.7) gives the matrix elements
Rgy . Rgp
B(11) = - B(4,2)=- . .
(L1) =po foF (L,2)=-ipg foF (A.2)

The metric tensor components g, can be obtained from the known expressions for the

associated metric tensor components ¢~
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Taking into account the relation

g = (-1) Mk 2%, (A.4)
where MK is the minor of g”‘,weobtam
3 o J?
==_I@ = Qo = — (K13
R2| % G2 =0m 2
_ o 2
Op2 = 2 08 gs3=R". (A.5)

Since the equilibrium code HELENA does not directly compute the function |3 |2, we
express this function by using the condition

2 iy = 2 \p2
J° =|gi| =(911922 ‘glz)R : (A.6)
where |g;| is the determinant of the metric tensor. Then we obtain

1 J? (08D 8)
T 2
Os™ R |0
In addition, since the HELENA code computes [p , we use the relation
Os0 y/f, (A.8)

Q= (A7)

in order to obtainJs. As aresult, we transform the matrix components g (i,k =1,2) to

2, fq quﬂn 3)
Owf ﬁ ET

11 =

fq R2

G2 =0p1 =~ Oy 3,

2R2
0 =" 5| (A9)
Then (A.2) reducesto

RO 1 o*R (Oy 3)2

B(11) = B
(L1) =pg qF @DIM 2 IDUJI

0
0
B

4
B1.2) = o g DU 9. (A.10)

Similarly, one obtains the remaining elements of the B- matrix:
B(2,1) = -B(1,2),

B(2,2) = p"qg 0w,

B(3,3) = B(4,4) =1. (A.11)
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The matrix elements in the right-hand side of (3.5) are:

A(L3) = —iE” [2m —m +nq)(OyiD o)+

2
n2 dF gﬂqﬂ n 6|DLp| .m F,
fqF fF fqg ds
Al,3) = —|DqJ|
__ 1 dq@,-dq 2 .m—mdq
A(L4) = —OF = —q—H0 —Oym 9
&4 fg®F2 ds0 ds qug Y Fg° ds W 9
f _ ym 8 F2_ 1 O 1 dga,_ .
+—(m+ng)(m+n +— —— |0
Fq( al q)@ |Dl]J|2 q° R2|DqJ|2@ fq°F ds as| W,
. . Mm+nq 1 (_j& 5
Al,4) = U 4 ——
.2Mm—-m+nq 1
ALY ="\ ogm e o
(L4)= Fq U fq2F2 ds @jw
1 dF
qu as| qJ| fq ds
AL, 4) = (F2+D ) |
(. 4)= 1 (F 0w (A.12)

Somewhat simpler matrix elements are obtained for right-hand sides of (3.6) and (3.10):

A(2,3) = - c1|F (m F2 +n2q2|DLp|2)’

A(2,4) = -i Fiq(m +nq)(m-m +nq)OYD

1 dq _
+fm+2nq)———
@m nq) fq2F ds fq F2 %ILM

Lm+nq 0
fqF as| lm
A2, 4) = qF(mF2 nq|DL|J|)
A(3,2) =1,
W
A(41) = -F - = (A.13)



The “drift” matrix elements (see (3.11) and (3.12)) in terms of g;, are given by:

RZ O o0
ALY = pOF_qu_If 92%911 glzasgf(;&%

R2 .
A1) = py—v (PO
(1, ) Po Ff2q2 No 912,

fgR? 0 m 0 Opy 0
AR = po9R g, M iy i
(21 =pg = EﬁLz fq o 92265%%
A1) = ipo% Poi g, (A.14)
No
We substitute (A.9) in (A.14) and obtain:
R2 U o U1 PR DqﬂDS)ZD gR? 3 Opy O 0
A(LL —EHrr 'EID - B 2 Oy )0
9=k Fg o ggf F2 [Oyf g F° ostf oD 9)

4
ALY) = —PofR— BD%(DLIDD 9),

pofq R ' : D pOI
Al 21 Dl.|j + QDUJ 1—
( ) D ( ) ! | | 65 fCIIlo%

D A2l (2
A1) =ipo pf(’)' qFEL"' . (A.15)
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diamagnetic frequency, wg, at constant pressure parameter t computed with the MISHKA-D code
gradient, computed with the MISHKA-D code. (symbols). Thelinesindicaterelevant marginally stable
values estimated from the ideal MHD growth rates.
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Fig.9 The kink and ballooning stability limits as
functions of the edge pressure gradient and the
normalised edge current density, J; / Jg, for T=0 (thin
lines) and T1=10.02 (fat lines). Here J; is the edge
current density, Jq is the volume-averaged toroidal
current density. Included also is the ideal MHD
ballooning limit for n = co(dashed). The shaded areas
are stable.
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Fig.10 Then=2 external kink limit (centre) and the finite-n ballooning mode limit (right) asfunctions of 7 for JET
hot-ion H-mode discharge #42677. The marginally stable pressure gradients, computed with the MISHKA-D
code, areindicated by symbols, while the lines show the relevant values based on theideal MHD growth rates. On
the left, the equilibrium profiles of the pressure and the toroidal current density as functions of the normalised

radius are shown.
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Fig.11a Growth rates (open symbols) and frequencies
of the global pressure driven kink mode in equilibrium
computed for JET shear-optimised scenario (pulse
#40572) as functions of the parameter t (circles).
Included is also a case with a small radial variation of
the diamagnetic frequency (triangles).
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Fig.11b Radial structure of the poloidal harmonics of
the radial displacement of the global pressure driven

n=1 mode.
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