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ABSTRACT
Discrimination and visualization of different observed classes of edge-localized plasma instabilities 
(ELMs), using advanced data analysis techniques has been considered. An automated ELM type 
classifier which effectively incorporates measurement uncertainties is developed herein and applied 
to the discrimination of type I and type III ELMs in a set of carbon-wall JET plasmas. The 
approach involves constructing probability distribution functions (PDFs) for inter-ELM waiting 
times and global plasma parameters and then utilizing an effective similarity measure for comparing 
distributions: the Rao geodesic distance (GD). It is demonstrated that complete probability 
distributions of plasma parameters contain significantly more information than the measurement 
value alone, enabling effective discrimination of ELM types.

1. INTRODUCTION
Characterization of edge-localized modes (ELMs) and ELM control are crucial for ITER. 
Enhancement of the physical understanding of ELMs and optimization of control and mitigation 
schemes necessitates the discrimination of different observed classes of ELMs. We present a 
technique for systematic classification of ELM types based on a probabilistic description of their 
properties and propose this as an aid to exploratory and confirmatory analysis for theoretical models 
and for quantitative evaluation of various mitigation schemes.

2. EXPERIMENTAL SETUP
The proposed technique was employed for discrimination of type I and type III ELMs from a series 
of carbon-wall JET plasmas between the years 2000 and 2009. From the range of discharge 
numbers [50564, 76871], a database of 69 JET plasmas pertaining to type I ELMs, 27 JET plasmas 
of type III ELMs and 5 JET plasmas [66105-66109] of so-called type I high-frequency ELMs 
were analysed. This is an extension of the data set used earlier by Webster et al. [1] for statistical 
characterization of ELM types. The analysis, in this work, has been restricted to time intervals in 
which the plasma conditions were quasi-stationary. Further, all experiments dealing with ELM 
control and mitigation techniques have been excluded.
 A robust algorithm was developed for the extraction of inter-ELM time intervals from the 
measured Balmer-alpha radiation signal from deuterium (Dα) at JET’s inner divertor. Inter-ELM 
waiting time extraction is illustrated in Figure 1.
 The Weibull distribution, based on experimentally motivated assumptions, has recently been 
shown to be a good model for the waiting time distribution, especially for type III ELMs [1]. Hence, 
we use the Gaussian and Weibull PDFs, as illustrated in Figure 2, for describing the series 
of waiting times emerging from each pulse.
 In addition, the density-normalized input power (<Pn>) and the normalized electron temperature 
<Te> were also included in the dataset. A Gaussian probability distribution was fit to time slices of 
the signals for the plasma parameters during ELM activity. <Pn> and <Te> are given as follows:
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3. CLASSIFICATION IN PROBABILITY SPACES
The plasma parameters used for discriminating between ELM types were translated into suitable 
PDFs, hence subsequent processing in the corresponding space of probability distributions is 
required. Object classification is studied in the domain of pattern recognition, which essentially 
relies on geometric concepts, particularly distance. Thus, we employ the mathematical framework 
of information geometry, which treats a family of PDFs as a space wherein each point represents 
a single PDF, allowing the calculation of the Rao geodesic distance (GD) between probability 
distributions [2]. A closed-form expression for the GD, existing in the case of a univariate Gaussian 
model, (x: μ, σ), and univariate Weibull model (x: η, β), allows accurate and fast computation of 
the distance.
 k-nearest neighbour classification (k-NN), a non-parametric distance-based technique, 
illustrated in Figure 3 and Figure 4, was deployed for the classification of ELM types [3]. With 
k-NN, samples are assigned the same class as that of the majority of their k nearest neighbours. The 
nearest neighbours are determined by the shortest distance from the test sample (the sample whose 
class type is yet unknown) to the samples in the training set.

4. CLASSIFICATION RESULTS
The maximum likelihood best fit parameters for the PDFs of inter-ELM waiting times are illustrated 
in Figures 5 and 6. From visual inspection of Figure 5 it can be observed that both the mean and 
standard deviation of the inter-ELM waiting times are determinant of ELM type. Further, Figure 
5 indicates a positive correlation between the mean of the inter-ELM waiting time and the standard 
deviation.
 Classification of ELM types was performed using a 1-NN classifier (10-fold cross-validated). 
The success rate (SR) is defined as the percentage of correct classifications, i.e. the percentage of 
type I and type III ELMs correctly classified. The results are shown in Table 1. Class-wise success 
rates (SRI and SRIII) are also indicated. It can be readily observed from Table 1, that the success 
rates using the GD are significantly higher than with the Euclidean distance measure (ED), hence 
validating that the probabilistic description of plasma parameters contains significantly more 
information than single measurement values (or averages) alone. Thus, the distribution of inter-
ELM waiting times is a crucial predictor for ELM types. Weibull PDFs give a marginally higher 
success rate than Gaussian PDFs. This can be attributed to their quality of being a better fit to the 
type III ELM waiting times [1]. Addition of the global features (<Te> and <Pn>) to the predictor 
set also brings a modest improvement in success rates.
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5. CONCLUSIONS AND OUTLOOK
An automated discriminator between ELM types has been presented and it has been shown that 
a probabilistic description of plasma parameters, in conjunction with the Rao geodesic distance 
as a proper PDF similarity measure, improves classification performance.
 In future work the developed technique will be applied for classifying additional ELM types, 
such as type II ELMs, and mapping them in the machine operational space. Furthermore, the 
method will be used for quantifying ELM properties between various operational regimes (e.g. 
carbon wall vs. metallic wall in JET), for inter-machine comparison of ELM behavior and for 
systematic quantification of the effectiveness of ELM mitigation schemes.
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Table 1: Success rates (SR) using a 1-NN classifier based on GD and ED. Success rates for each class (SRI and SRIII) 
individually are also listed. The standard deviation of each result is mentioned in parentheses.

Distance Predictor SR SRI SRIII 

GD 

Gaussian PDFs for waiting times 89.31 (0.06) 95.04 (0.06) 83.38 (0.12) 
Weibull PDFs for waiting times 90.50 (0.08) 96.21 (0.05) 84.78 (0.18) 

Gaussian PDFs for waiting times, 
<Te>, <Pn> 

91.38 (0.07) 98.77 (0.02) 84.00 (0.12) 

ED 
Average waiting times 83.50 (0.07) 92.94 (0.02) 74.06 (0.15) 

Weibull PDFs for waiting times 87.36 (0.06) 95.03 (0.02) 79.70 (0.10) 
Average waiting times, <Te>, <Pn> 85.12 (0.07) 92.87 (0.03) 77.37 (0.14) 
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Figure 1: Illustration of the inter-ELM waiting time 
extraction algorithm where each discharge contains (N+1) 
ELM bursts and hence N waiting times.

Figure 2. Each pulse is represented as a series of 
waiting times, followed by modelling by a suitable 
probability distribution function (PDF), where there are 
M pulses and each pulse has N waiting times.

Figure 3: Illustration of 1-NN classifier. The test sample 
is assigned to Class 1, as the nearest neighbour of the 
test sample belongs to this class.

Figure 4: Illustration of 3-NN classifier. The test sample 
is assigned to class 2, to which the majority of the nearest 
neighbours belong.

Figure 5: Maximum likelihood best fit parameters for a 
Gaussian PDF for each ELM type.

Figure 6: Maximum likelihood best fit parameters for a 
Weibull (2P) PDF for each ELM type.
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