EFDA-JET-CP(14)03/22 C.F. Maggi, H. Meyer, C. Bourdelle, E. Delabie, P. Drewelow, I.S. Carvalho, F. Rimini, P. Siren and JET EFDA contributors # Role of Low-Z Impurities in L-H Transitions in JET "This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK." "Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK." The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options. The diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards. ## Role of Low-Z Impurities in L-H Transitions in JET C.F. Maggi¹, H. Meyer², C. Bourdelle³, E. Delabie⁴, P. Drewelow⁵, I.S. Carvalho⁶, F. Rimini², P. Siren⁷ and JET EFDA contributors* JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK ¹MPI für Plasmaphysik, 85748 Garching, Germany ²CCFE/Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK ³CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France ⁴FOM-DIFFER, Nieuwegein, The Netherlands ⁵MPI für Plasmaphysik, Greifswald, Germany ⁶IST, P-1049-001 Lisboa, Portugal ⁷VTT, Espoo, Finland * See annex of F. Romanelli et al, "Overview of JET Results", (24th IAEA Fusion Energy Conference, San Diego, USA (2012)). ### INTRODUCTION. Experiments in JET with the ITER-like Be wall and W MkII-HD divertor (JET-ILW) have highlighted a sensitivity of L-H transitions to low-Z plasma impurity composition: reduced effective charge, Z_{eff} , from JET-C (line averaged $Z_{eff} \sim 1.6-2.0$, C as main intrinsic impurity) to JET-ILW ($Z_{\text{eff}} \sim 1.0-1.2$, Be as main intrinsic impurity) and concomitant reduction in L-H power threshold, P_{L-H}, in the high density branch by 30–40% [1]. The transition to H-mode also occurs at lower edge temperature than in JET-C. P_{L-H} denotes here the net power across the separatrix, $P_{sep} = P_{loss}$ $P_{\text{rad,bulk}}$. In addition, a minimum in $P_{\text{L-H}}$ vs density is observed in divertor configurations with the outer strike point on the horizontal target (V5 configuration) [1], whereas matched discharges in JET-C show P_{L-H} monotonically increasing with density, thus following the 2008 ITPA L-H scaling law [2]. The reduction in P_{L-H} in JET-ILW projects favourably to ITER, however the underlying physics mechanism is not yet understood. Moreover, the density of minimum P_{L-H}, n_{e,min}, increases with $B_T^{4/5}$ in JET-ILW (at \sim constant q_{95} = 3.3–3.7 and I_P varying from 1.7 to 2.75MA). In JET-C a minimum in P_{L-H} with n_e had been previously observed with the more closed MkII-GB divertor geometry. All these findings show that divertor/SOL physics are strong players. A recent, physics based scaling for n_{e min}, proposed in [3] (based on the ion energy channel being the important one for the L-H transition) is not compatible with the full set of JET observations described above. In this study we explore two mechanisms that could explain an increase in P_{L-H} with low-Z impurity concentration (or Z_{eff} as its proxy): i) the effect of impurities on the stability of the background edge turbulence and ii) changes in radiated power distributions from JET-C to JET-ILW, which may affect the edge temperature/heat fluxes regulating the L-H transition. ### 1. TEST OF H-MODE POWER THRESHOLD SCALING LAW INCLUDING \mathbf{Z}_{eff} ON JET L-H DATA. Figure 1 compares P_{L-H} for the JET MkII-HD L-H data sets collected in the last 5 years (JET-C and JET-ILW, but excluding the recent JET-ILW L-H transitions with both strike points on the vertical target, discussed in [4]) with the 2008 ITPA L-H scaling law [2]. We note that this scaling law was derived for the loss power, P_{loss} , from discharges with radiated power fraction $P_{rad}/P_{loss} < 50\%$ and applies to the high density branch only. The JET L-H data set includes: i) impact of wall change-over from C to Be/W, ii) impact of divertor configuration in JET-ILW at fixed $B_T/I_P = 2.4T/2.0MA$ (see [4] for most recent results on vertical target configuration, not included here), iii) B_T variation: 1.8T, 2.4T and 3.0T at $q_{95} = 3.3-3.7$, iv) JET-ILW L-H transitions with and w/o N_2 injection (see Section 4). An earlier scaling law (ITPA 2004 database) gives a similar dependence on n_e , B_T and plasma surface area S, but includes a Z_{eff} dependence [5]: $P_{L-H} \sim B_{0.7} n_e^{0.7} (Z_{eff}/2)^{0.7} S^{0.9}$. The JET L-H data set is compared to this scaling law in Figure 2, where we choose P_{sep} rather than P_{loss} to separate dependencies on Z_{eff} from those of radiated power. Although neither scaling law accurately describes the JET MkII-HD L-H data set, it is evident that including Z_{eff} brings the data points much closer together. It is also interesting to note that the large spread in P_{L-H} in the 2.4T JET-ILW data set of Figure 1 (the divertor configuration scan discussed in [1]) is greatly reduced in Figure 2. ### 2. EFFECT OF LOW-Z IMPURITIES ON STABILITY OF BACKGROUND EDGE TURBULENCE. JET-ILW edge kinetic profiles at the L-H transitions have been investigated with linear gyro-kinetic calculations with GENE (the input profiles are from the 1.8T/1.7MA data set). It is found that in the high density branch the primary instability is of resistive nature and thus can be stabilized by increased temperature, hence power [6]. The unstable modes are identified as being resistive ballooning modes (RBMs) and their growth rates decrease with temperature. As the temperature is increased further, ITG-TEM modes take over. This competition between RBM stabilization and ITG-TEM destabilization leads to a growth rate that is minimum at a given temperature (Figure 2 in [6]), whose value is of the order of the experimentally measured edge temperature at the L-H transition. The RBM growth rates increase with Z_{eff} , while for ITGs an increase in Z_{eff} is stabilizing. When Z_{eff} is increased in the calculations, from typical JET-ILW values of 1.0-1.3 to a representative JET-C Z_{eff} of 2.0, the minimum in density of the threshold temperature, T_{th}, is shifted towards lower values and T_{th} is larger in the high density branch (Figure 2 in [6]), in qualitative agreement with the changes in P_{L-H} observed between JET-ILW and JET-C [1]. In this model, a mean E×B shear is required to suppress the edge turbulence and thus lead to the L-H transition. For the L-H data set under investigation, we find that the experimental ω_{ExB} shearing rates, derived using the radial force balance equation for E_r, are indeed of order of the minimum growth rates of the unstable modes in the GENE calculations, $\gamma_{LGK} \sim 2 \times 10_4 \, s_{-1}$, as shown in Figure 3. We note that ω_{ExB} (and the depth of the negative E_r well) is essentially constant across the density scan, at the given B_T and divertor configuration (for this dataset the JET divertor configuration is V5, see e.g. [1]). Further tests of the thesis proposed in [6] require measurement of the local $Z_{\rm eff}$ profile at the plasma edge (being addressed by forward modelling of the continuum emission using Bayesian methods - in progress), verification of the linear GK results with non-linear GK calculations (in progress) and experimental discrimination of the nature of the background fluctuations (future experiments). In the meantime we have obtained further evidence of the role of low Z impurities ($Z_{\rm eff}$) in JET L-H transitions by recreating in JET-ILW $Z_{\rm eff}$ values and radiation conditions typical of JET-C. In order to achieve this we have exploited N_2 injection, due to the well known similarity of C and N as divertor radiators. #### 3. L-H TRANSITIONS WITH NITROGEN INJECTION. New experiments were carried out in the almost C-free JET-ILW, in which N_2 was injected into the divertor private flux region prior to the L- H transition to achieve radiated power distributions and $Z_{\rm eff}$ values similar to those of JET-C. Because N_2 injection raises the target density at the low power levels typical of 1.8T/1.7MA L-mode plasmas, the low density branch of P_{L-H} could not be accessed in this first set of experiments. A second set of experiments with N_2 injection is planned at higher I_P/B_T , where access to the low density branch is favoured in JET-ILW [1]. Figures 4 and 5 show that P_{L-H} increases with N_2 injection level at densities close to $n_{e,min}$ and approaches JET-C values at N_2 levels corresponding to an increase in $\Delta Z_{eff} \geq 1$. At lower N_2 levels ($\Delta Z_{eff} \sim 0.2$ –0.5) little change in P_{L-H} is observed, suggesting threshold type behaviour with edge impurity concentration. Analysis of the effect of N_2 injection on the local parameters indicates that both the edge temperature and the edge radial electric field at the L-H transition react to increased N_2 rates (Z_{eff}). T_{edge} approaches JET-C values at high N_2 rates (Figure 6). The diamagnetic component of the neoclassical E_r has been found to be a good proxy for the total equilibrium radial electric field at low rotation in AUG [6], $E_r \sim p_i/(e \, n_i)$. Given that for JET-ILW L-H transitions $T_{i,edge} \sim T_{e,edge}$ [1], the ion quantities can be approximated by the electron quantities. This has been verified against discharges where good quality edge CXRS data on C^{+6} are available and for which the measured poloidal velocity is found to be consistent with the neoclassical value. Figure 7 shows that the depth of the negative E_r well, which is found to be constant across the density scan without N_2 injection, is unchanged at low N_2 flow rates, but increases in magnitude at higher rates, corresponding to $\Delta Z_{eff} \geq 1$, thus mirroring the increase in P_{sep} with ΔZ_{eff} . With increasing N₂ injection level (and total radiated power) both divertor legs become detached and the radiation progressively moves to the X-point and above. The radiated power fraction, f_{RAD} = $P_{rad.tot}/P_{loss}$ is capped at $\sim 62\%$, with a progressive relative increase in bulk radiation over divertor + SOL radiation. As in previous work [1], the bulk radiation is the total radiated power from bolometry integrated over volume to the 98% flux surface. With this definition P_{sep} has been proven to be robust against different tests of P_{rad,bulk} calculations and also against N₂ injection, as in this case the strong localization of the radiation near the X-point makes consistent evaluations imperative. In the JET-C comparison discharges, similar radiation distributions are observed, with f_{RAD} reaching maximum values of 50%. In the JET- ILW L-H data set w/o N_2 injection, f_{RAD} can reach ~ 75% in the ICRH heated discharges, with 3/4 of the total radiation being radiated in the bulk (low density branch, high P_{rad} from W and Ni with ICRH [1]). If P_{sep} is evaluated by subtracting from P_{loss} the total P_{rad} rather than the bulk P_{rad}, the effect of N₂ injection on P_{sep} is suppressed, bringing the JET-ILW data with and w/o N₂ close together. The separation between JET-C and JET-ILW P_{L-H} is instead preserved, indicating that the spatial distribution of P_{rad} in JET-ILW + N₂ appears to be more biased towards divertor + SOL than in JET-C. However, the observation that the local parameters T_{edge} and E_{r} are affected by N_2 injection makes us exclude this definition of P_{sep} as being the relevant one. ### 4. CONCLUSIONS AND OUTLOOK. In JET, L-H transitions are sensitive to low Z impurity concentration as shown by the change-over of PFCs from JET-C to JET-ILW. This effect has been confirmed both by global (P_{sep}) and local (T_{r}) measurements in recent L-H experiments in JET-ILW with N_2 injection, which approximated Z_{eff} values and radiated power distributions similar to those of JET-C. However, the physics mechanism that drives this effect is not yet identified unambiguously. Results from linear gyro-kinetic calculations are qualitatively consistent with the experimental evidence and support the thesis of Z_{eff} affecting the stability of the background edge turbulence possibly connected with the L-H trigger. Work on non-linear simulations is in progress, to verify the linear results. On the experimental side, edge $Z_{\rm eff}$ profiles are needed – rather than the line averaged parameter accessible so far - (here work is in progress with forward modelling of the continuum emission using Bayesian methods), as well as higher quality edge CXRS data during N_2 injection for local heat flux analysis and edge turbulence measurements (both can be acquired during the $2^{\rm nd}$ set of experiments planned at higher B_T). In parallel, lacking a complete physics picture with predictive capabilities, it is always useful to continue working on global, H-mode power threshold scaling laws. For the JET MkII-HD L-H data set, the 2004 ITPA scaling law including a $Z_{\rm eff}^{0.7}$ dependence fits the measured P_{L-H} better than the commonly used 2008 ITPA scaling law. ### ACKNOWLEDGMENTS This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. #### **REFERENCES:** - [1]. C.F. Maggi et al., Nuclear Fusion **54** (2014) 023007. - [2]. Y. Martin et al., Journal of Physics: Conference Series 123 (2008) 012033. - [3]. F. Ryter et al., Nuclear Fusion **54** (2014) 083003. - [4]. H. Meyer et al., this Conference, P1-013. - [5]. T. Takizuka et al., Plasma Physics and Controlled Fusion 46 (2004) A227. - [6]. C. Bourdelle et al., Nuclear Fusion Lett. 54 (2014) 022001. - [7]. P. Sauter et al., Nuclear Fusion **52** (2012) 012001. Figure 2: P_{sep} versus ITPA 2004 scaling law including Z_{eff} [5] for JET MkII-HD divertor data. Figure 3: ω_{EXB} at L-H from radial force balance for JET-ILW n_e scan at 1.8T/1.7MA. Figure 4: P_{sep} versus n_e for the 1.8T/1.7MA JET MkII-HD L-H transitions in JET-C (black), JET-ILW (red) and JET-ILW with N_2 injection (blue). Figure 5: P_{sep} (left) and ΔZ_{eff} (right) versus N_2 flow rate in L-mode phase integrated to the time of the L-H transition, t_{L-H} , in JET-ILW at $n_e \sim n_{e,min}$. Figure 6: Edge Te versus edge n_e for the 1.8T/1.7MA JET MkII-HD L-H transitions in JET-C (black), JET- ILW (red) and JET-ILW with N_2 injection (blue). Figure 7: Minimum E_r in JET-ILW 1.8T/1.7MA L-H transitions (V5 configuration). Red: n_e scan w/o N_2 ; blue: N_2 injection scan at $n_e \sim n_{e,min}$.