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ABSTRACT
Many measurements are required to control thermonuclear plasmas and to fully exploit them 
scientifically. In the last years JET has shown the potential to generate about 50 Gbytes of data per 
shot. These amounts of data require more sophisticated data analysis methodologies to perform 
correct inference and various techniques have been recently developed in this respect. The present 
paper covers a new methodology to extract mathematical models directly from the data without any 
a priori assumption about their expression. The approach, based on symbolic regression via genetic 
programming, is exemplified using the data of the ITPA database for the energy confinement time. 
The best obtained scaling laws are not in power law form and suggest a revisiting of the extrapolation 
to ITER. On the other hand, more comprehensive and better databases are required to fully profit 
from the power of these new methods and to discriminate between the hundreds of thousands of 
models that they can generate. 

1. INTRODUCTION TO THE DATA ANALYSIS PROBLEM IN FUSION
Thermonuclear plasmas are nonlinear, open systems, kept well out of equilibrium to maximize their 
efficiency and rate of energy production. They therefore present all the problems typical of open 
systems and living organisms, from the need of adequate inputs of energy and matter to stringent 
requirements in terms of exhaust, control and purity. They are also characterised by a very high 
level of complexity, which practically prevents the formulations of theories from basic principles. 
This leads to a hierarchy of descriptions of thermonuclear plasmas (particle, kinetic, fluid) and to 
a plethora of ad hoc models of limited applicability (see for example the L-H transition, for which 
an undisputed control parameter has not been found yet, or the MHD treatment with its various 
stability regions and the variety of instabilities). This plurality of models is not a fault per se but 
more a specific characteristic of complex systems; on the other hand, robust statistical techniques 
are required to assess the quality of the various alternative descriptions of the phenomena. 
 These challenges are to be tackled first by analysing the large amounts of data produced by 
present day diagnostics. In JET for examples, about 50 Gigabytes of data can be generated in a 
well diagnosed discharge and the whole database now exceeds 250 Terabytes. On the other hand, 
given the lack of a unifying theory and the large amounts of data available, sometimes important 
information remains hidden in the databases and it can be difficult to identify it manually or with 
traditional methods. To overcome this difficulty, in the last years a series of new data analysis tools 
have been developed to increase the physics output that can be derived from the measurements. 
These data mining tools consist of sophisticated techniques of correlation and pattern recognition to 
discover within the databases useful and understandable knowledge that was previously unknown. 
Their application ranges from exploration of the physics to pattern recognition and to prediction [1-
5]. To illustrate the potential of the tools for the extraction of mathematical models directly from the 
data, in this paper the subject of the determination of scaling laws has been chosen. New regression 
tools, indicated collectively by the term symbolic regression, have been developed to determine the 
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mathematical form of various scaling laws for the energy confinement time in Tokamaks. These 
methods exploit genetic algorithms and do not assume a priori that the scaling laws are in power 
law monomial form. 

2. SYMBOLIC REGRESSION VIA GENETIC PROGRAMMING 
As mentioned in the previous section, this paper describes the application of advanced techniques of 
symbolic regression (SR) via genetic programming (GP) to the problem of deriving scaling laws for 
the confinement time from large databases. The main advantage of the proposed approach consists of 
practically eliminating any assumption about the mathematical form of the scaling laws. The methods 
developed indeed allow identifying the most appropriate mathematical form for the regression 
equations, the Best Unconstrained Empirical Model Structure (BUEMS), and to demonstrate that 
it has the potential to better interpret the present experimental data for the confinement time in 
comparison with traditional scalings. Solutions of varying levels of complexity can be generated 
and evaluated to obtain the best trade-off between accuracy and computational complexity. In this 
study, SR analysis has been implemented with a GP approach. SR via genetic programming is a 
non-parametric, non-linear technique that looks both for the appropriate model structure and the 
optimal model parameters simultaneously[6,7]. This approach provides a natural extension of the 
traditional linear and nonlinear regression methods that fit parameters to an equation of a given 
mathematical structure. The first step is the generation of the initial population of CPs (formulas in 
our case) and then the algorithm finds out how well an element of the population works evaluating 
its behaviour to some appropriate metrics. This assessment is quantified by a numeric value called 
fitness function (FF). In the second phase, as with most evolutionary algorithms, genetic operators 
(Reproduction, Crossover and Mutation) are applied to individuals that are probabilistically selected 
on the basis of the FF, in order to generate the new population. That is, better individuals are more 
likely to have more child elements than inferior individuals. When a stable and acceptable solution, 
in terms of complexity, is found or some other stopping condition is met (e.g., a maximum number 
of generations or acceptable error limits are reached), the algorithm provides the solution with best 
performance in terms of the FF. 
 In this work, CPs are composed of functions and terminal nodes and can be represented as a 
combination of syntax trees. The function nodes can be standard arithmetic operations and/or any 
mathematical functions, squashing terms as well as user-defined operators. The function nodes 
included in the analysis performed in this paper are reported in Table 1.
 The fitness function is a crucial element of the genetic programming approach and it can be 
implemented in many ways. To derive the results presented in this paper, the AIC criterion has been 
adopted [8] for the FF. The AIC form used is:

 AIC = 2k + n · ln(RMSE/n) (1)
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In equation (1), RMSE is the Root Mean Square Error, k is the number of nodes used for the 
model and n the number of ydata provided, so the number of entries in the database (DB). The FF 
parameterized above allows considering the goodness of the models, thanks to the RMSE, and at 
the same time their complexity is penalised by the dependence on the number of nodes. To assess 
the quality of the final models the well-known criteria of BIC and Kullback-Leibler divergence 
have been used. 

3. THE MAIN CHARACTERISTICS OF THE ITPA DATABASE DB3v13f
To maximise the generality of the results obtained with the methodology described in the previous 
sections, an international database has been considered [9]. This database was explicitly conceived 
to support advanced studies of the confinement time and includes validated signals from the vast 
majority of the most relevant Tokamak machines ever operated in the world. In line with the previous 
literature on the subject, the following quantities have been considered good candidate regressors in 
the present work: B[T], I[MA], n[1019m–3], R[m], M, ε, ka; P[MW]. In the previous lists, ka indicates 
the volume elongation measurement, ε the inverse aspect ratio, q95 the plasma safety factor evaluated 
at the flux surface enclosing the 95% of the poloidal flux, M the effective atomic mass in a.m.u, n 
the central line average plasma density, B the toroidal magnetic field, R the plasma major radius, 
I the plasma current and finally P the estimated lost power [10]. All the selected quantities are 
generally known with accuracy better than ± 20% and they are routinely available in all the major 
Tokamaks, providing enough data for a sound statistical analysis. The entries of the database, for 
which all the variables used are available or computable, have been considered, resulting in a total 
of 3093 entries, corresponding to the DB3 dataset [9].

4. RESULTS IN TERMS OF DIMENSIONAL QUANTITIES
The best models found with symbolic regression via genetic programming in general are not in 
power law form but they present additional terms. In particular, the most performing models include 
multiplicative squashing terms in the plasma current and plasma density. It is interesting to note 
that the method by itself selects these two quantities as the ones responsible for the saturation of 
the confinement time. The effect of the plasma volume, represented by the major radius R, is not 
found to be affected as intuitively expected. 
 One of the best functional forms for the energy confinement time is reported in Table II. Also 
the power laws (PL1 and PL2) typically used as reference by the community are reported: PL1 is 
IPB98(y,2) and PL2 is EIV of [10]. The most important aspect of the non-power law (NPL) functional 
form is the presence of a squashing term for the density whose effect can be clearly seen in Figure 1. 
 The equations of the scaling laws have been used to generate their estimate corresponding to 
the values of the database and their pdfs have been compared with the experimental ones. The KL 
divergence, the MSE and the BIC and AIC criteria all show that the NPL scaling is better than the 
PLs in interpreting the experimental data available. The comparison between the traditional PL 
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and the NPL scalings, in terms of statistical indicators, is summarised in Table III, proving the best 
quality of the NPL regression.
 Even if the superior properties of the NPL scaling are quite consolidated in statistical terms, its 
extrapolation capability could still be questioned and has therefore been checked with additional 
tests. A first test has been performed by fitting the NPL model on the database for currents below 
2.5MA and then extrapolating this model to higher current data; all the criteria agree that the NPL 
scaling performs better than the PLs (KLNPL = 0.2347, while KLPL1 = 0.3210 or KLPL2 = 0.7478).
 A second more relevant test has been performed, by non-linearly fitting the various models using 
data of smaller devices and testing the results with JET data. Since the PL1,2 models have the same 
variables, only one fit has been performed and labelled as PLs. The non linear fits for the PLs and 
the NPL have been performed using the weights obtained by the percentiles method. This technique 
allows weighting data depending on their distribution in order to give more importance to the data 
falling in their tails since they carry more relevant of information for the determination of scaling 
laws (e.g. high plasma current values (I > 2.5[MA]) of JET are extremely valuable since they are the 
closest to ITER operational region of 15MA). For each physical quantity, five percentiles have been 
computed in order to divide the distribution function in six partitions, which can be independently 
weighted. In our case we have chosen the inverse of the cumulative probability, defining the 
percentiles themselves, as the weight for data falling in each different partition. This can be repeated 
for all the selected physical quantities to obtain a final weight for each entry of the DB. 
 The PLs perform slightly better on the small machines (MSEPLs = 3.322 · 10–4s2 and KLDPLs = 
0.0516; while MSENPL = 3.554 · 10–4s2 and KLDNPL = 0.0630, but when the scaling are applied to 
JET data, the superiority of the NPL model in terms of the indicators considered can be clearly seen; 
the fitted models are reported in Table IV and their statistical estimators for JET data in Tab.V.
 The higher extrapolation capability of the scaling laws in NPL form motivate a revision of the 
expected performance in terms of confinement time for ITER. Using the equations of Table II, the 
predicted value of the confinement time for ITER (ne = 1.03[1020m–3] κα =1.70, Ip = 15[MA], R 
= 6.2 [m], P = 87 [MW]) is about 2.832.42 seconds to be compared to then 3.64.14 seconds of the 
traditional extrapolations obtained with power law scalings. There is therefore a basic agreement 
within the confidence intervals between the various estmates.
 On the other hand, the solution of Table II is not the only candidate. Other models have quite 
good statistical performance a similar physics substance and credibility. One example is reported 
in Table VI. This time two squashing terms are present. The high quality of this model can be seen 
in table VII which summarises its statistical performance. The extrapolation to ITER of this model 
would give more pessimistic estimate for the confinement time (1.81.3 seconds).

5 CONCLUSIONS AND FURTHER DEVELOPMENTS
In this paper, symbolic regression via genetic programming has been applied to the derivation 
of empirical scaling laws for the energy confinement time in Tokamaks. The analysis has been 

3.31 3.13
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particularized for the H-mode of confinement. The examples used for the present investigation belong 
to the ITPA international database, which include all of the most relevant machines in the world. 
 Contrary to the main results reported in the literature, the obtained empirical scalings are not in 
the form of power laws. Indeed they present either multiplicative squashing terms. The superior 
quality of these new scalings, compared to the traditional power laws, has been demonstrated first 
of all with the help of a series of statistic indicators. To complement this analysis, the extrapolation 
capability of the new scalings has been verified by dedicated investigations of different group of 
devices (small and large machines). On the basis of the new found scalings, the confinement time 
to be expected in an ITER class device could be significantly lower than the predictions of the 
traditional power laws. This is due to the excess rigidity of the power law scalings, which probably 
tend to overestimate the confinement time in the case of large extrapolations. On the other hand, 
a specific value of the confinement time cannot be given now since the database is not of enough 
quality to discriminate between various equally satisfactory models. Better databases and/or specific 
experiments will have to be considered to narrow down the best estimate for the confinement time 
in ITER
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Even if the superior properties of the NPL scaling are quite consolidated in 

 k AIC BIC MSE [!!] KLD 
PL1 10 -19416.86 -19362.86 1.866 ⋅ 10!! 0.0337 
PL2 10 -19084.36 -19203.68. 2.077 ⋅ 10!! 0.0802 
NPL 9 -19610.81 -19556.55 1.753 ⋅ 10!! 0.0255 

 
Table III Statistical estimators used to qualify the scaling reported in Table II. The KLD has 
been computed in a range of ±6σ around the mean value of the data 
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Figure 1.Comparison of the NPL scaling law 
behaviour with the plasma density at the 
parameters of ITER with or without the 
squashing term. 

statistical terms, its extrapolation capability could still be questioned and has therefore 

been checked with additional tests. A first test has been performed by fitting the NPL 

model on the database for currents below 2.5 MA and then extrapolating this model to 

higher current data; all the criteria agree that the NPL scaling performs better than the 

PLs (KLNPL=0.2347, while KLPL1=0.3210 or KLPL2=0.7478). 

A second 

more relevant 

test has been 

performed, by 

non-linearly fitting the various models using data of smaller devices and testing the 

results with JET data. Since the PL1,2 models have the same variables, only one fit has 

been performed and labelled as PLs. The non linear fits for the PLs and the NPL have 

been performed using the weights obtained by the percentiles method. This technique 

allows weighting data depending on their distribution in order to give more importance 

to the data falling in their tails since they carry more relevant of information for the 

determination of scaling laws (e.g. high plasma current values ! > 2.5  [!!]  of JET 

are extremely valuable since they are the closest to ITER operational region of 15 MA). 

For each physical quantity, five percentiles have been computed in order to divide the 

distribution function in six partitions, which can be independently weighted. In our case 

we have chosen the inverse of the cumulative probability, defining the percentiles 

themselves, as the weight for data falling in each different partition. This can be 

repeated for all the selected physical quantities to obtain a final weight for each entry of 

the DB. The PLs perform 

slightly better on the small 

machines (!"#!"# =

3.322 ⋅ 10!!!! and 

!"#!"# = 0.0516  ; while 

!"#!"# = 3.554 ⋅ 10!!!! 

and !"#!"# = 0.0630,  

but when the scaling are 

applied to JET data, the 

superiority of the NPL 

model in terms of the 

 k AIC BIC MSE [!!] KLD 
PLs 10 -5842.20 -6720.79 1.578 ⋅ 10!! 5.895 
NPL 9 -6052.17 -6758.98 1.360 ⋅ 10!! 2.831 

Table V Statistical estimators used to qualify the extrapolations to JET data 
using the equations derived for the smaller devices. 
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Table VI. Power laws (PLs) and Non Power Law model (NPL). 
PL1 is the IPB98(y,2) scaling while PL2 is (EIV)[15]. The two 
terms h(n) and g(n) are: 
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Table V: Statistical estimators used to qualify the extrapolations to JET data using the equations derived for the smaller 
devices.
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Table VI: Power laws (PLs) and Non Power Law model (NPL). PL1 is the IPB98(y,2) scaling while PL2 is (EIV)[15]. 
The two terms h(n) and g(n) are:

statistical terms, its extrapolation capability could still be questioned and has therefore 

been checked with additional tests. A first test has been performed by fitting the NPL 

model on the database for currents below 2.5 MA and then extrapolating this model to 

higher current data; all the criteria agree that the NPL scaling performs better than the 

PLs (KLNPL=0.2347, while KLPL1=0.3210 or KLPL2=0.7478). 

A second 

more relevant 

test has been 

performed, by 

non-linearly fitting the various models using data of smaller devices and testing the 

results with JET data. Since the PL1,2 models have the same variables, only one fit has 

been performed and labelled as PLs. The non linear fits for the PLs and the NPL have 

been performed using the weights obtained by the percentiles method. This technique 

allows weighting data depending on their distribution in order to give more importance 

to the data falling in their tails since they carry more relevant of information for the 

determination of scaling laws (e.g. high plasma current values ! > 2.5  [!!]  of JET 

are extremely valuable since they are the closest to ITER operational region of 15 MA). 

For each physical quantity, five percentiles have been computed in order to divide the 

distribution function in six partitions, which can be independently weighted. In our case 

we have chosen the inverse of the cumulative probability, defining the percentiles 

themselves, as the weight for data falling in each different partition. This can be 

repeated for all the selected physical quantities to obtain a final weight for each entry of 

the DB. The PLs perform 

slightly better on the small 

machines (!"#!"# =

3.322 ⋅ 10!!!! and 

!"#!"# = 0.0516  ; while 

!"#!"# = 3.554 ⋅ 10!!!! 

and !"#!"# = 0.0630,  

but when the scaling are 

applied to JET data, the 

superiority of the NPL 

model in terms of the 

 k AIC BIC MSE [!!] KLD 
PLs 10 -5842.20 -6720.79 1.578 ⋅ 10!! 5.895 
NPL 9 -6052.17 -6758.98 1.360 ⋅ 10!! 2.831 

Table V Statistical estimators used to qualify the extrapolations to JET data 
using the equations derived for the smaller devices. 
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statistical terms, its extrapolation capability could still be questioned and has therefore 

been checked with additional tests. A first test has been performed by fitting the NPL 

model on the database for currents below 2.5 MA and then extrapolating this model to 

higher current data; all the criteria agree that the NPL scaling performs better than the 

PLs (KLNPL=0.2347, while KLPL1=0.3210 or KLPL2=0.7478). 

A second 

more relevant 

test has been 

performed, by 

non-linearly fitting the various models using data of smaller devices and testing the 

results with JET data. Since the PL1,2 models have the same variables, only one fit has 

been performed and labelled as PLs. The non linear fits for the PLs and the NPL have 

been performed using the weights obtained by the percentiles method. This technique 

allows weighting data depending on their distribution in order to give more importance 

to the data falling in their tails since they carry more relevant of information for the 

determination of scaling laws (e.g. high plasma current values ! > 2.5  [!!]  of JET 

are extremely valuable since they are the closest to ITER operational region of 15 MA). 

For each physical quantity, five percentiles have been computed in order to divide the 

distribution function in six partitions, which can be independently weighted. In our case 

we have chosen the inverse of the cumulative probability, defining the percentiles 

themselves, as the weight for data falling in each different partition. This can be 

repeated for all the selected physical quantities to obtain a final weight for each entry of 

the DB. The PLs perform 

slightly better on the small 

machines (!"#!"# =

3.322 ⋅ 10!!!! and 

!"#!"# = 0.0516  ; while 

!"#!"# = 3.554 ⋅ 10!!!! 

and !"#!"# = 0.0630,  

but when the scaling are 

applied to JET data, the 

superiority of the NPL 

model in terms of the 

 k AIC BIC MSE [!!] KLD 
PLs 10 -5842.20 -6720.79 1.578 ⋅ 10!! 5.895 
NPL 9 -6052.17 -6758.98 1.360 ⋅ 10!! 2.831 

Table V Statistical estimators used to qualify the extrapolations to JET data 
using the equations derived for the smaller devices. 
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PL1 is the IPB98(y,2) scaling while PL2 is (EIV)[15]. The two 
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Table VII: Statistical estimators used to qualify the scaling reported in Table VI.

indicators considered can be clearly seen; the fitted models are reported in Table IV and 

their statistical estimators for JET data in Tab.V. 

The higher extrapolation capability of the scaling laws in NPL form motivate a 

revision of the expected performance in terms of confinement time for ITER. Using the 

equations of Table II, the predicted value of the confinement time for ITER 

(ne=1.03[1020m-3]!! = 1.70  ,  Ip=15[MA], R=6.2 [m], P=87 [MW]) is about 

2.83!.!"  !.!" seconds to be compared to then 3.6!.!"  !.!"  seconds of the traditional 

extrapolations obtained with power law scalings. There is therefore a basic agreement 

within the confidence intervals between the various estmates. 

On the 

other hand, the 

solution of 

Table II is not 

the only 

candidate. Other models have quite good statistical performance a similar physics 

substance and credibility. One example is reported in Table VI. This time two squashing 

terms are present. The high quality of this model can be  seen in table VII which 

summarises its statistical performance. The extrapolation to ITER of this model would 

give more pessimistic estimate for the confinement time (1.8!.!!.!seconds). 

 

5 Conclusions and further developments 

In this paper, symbolic regression via genetic programming has been applied to 

the derivation of empirical scaling laws for the energy confinement time in Tokamaks. 

The analysis has been particularized for the H-mode of confinement. The examples used 

for the present investigation belong to the ITPA international database, which include 

all of the most relevant machines in the world.  

Contrary to the main results reported in the literature, the obtained empirical 

scalings are not in the form of power laws. Indeed they present either multiplicative 

squashing terms. The superior quality of these new scalings, compared to the traditional 

power laws, has been demonstrated first of all with the help of a series of statistic 

indicators. To complement this analysis, the extrapolation capability of the new scalings 

has been verified by dedicated investigations of different group of devices (small and 

large machines). On the basis of the new found scalings, the confinement time to be 

expected in an ITER class device could be significantly lower than the predictions of 

 k AIC BIC MSE KLD 
PL1 10 -19416.86 -19362.86 1.866 ⋅ 10!! 0.0037 
PL2 10 -19084.36 -19203.68. 2.077 ⋅ 10!! 0.0802 
NPL 11 -19719.08 -19653.64 1.691 ⋅ 10!! 0.0219 

Table VII Statistical estimators used to qualify the scaling reported in Table 
VI  
 

Figure 1: Comparison of the NPL scaling law behaviour with the plasma density at the parameters of ITER with or 
without the squashing term.
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