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Abstract

The JET gamma/neutron profile monitor plasma coverage of the emissive region enables tomographic 
reconstruction. However, due to the availability of only two projection angles and to the coarse 
sampling, tomography is a highly limited data set problem. A new reconstruction method, based 
on the sparse representation of the reconstructed image in an over-complete dictionary, has been 
developed and applied to JET neutron/gamma tomography. The method has been tested on JET 
experimental data and results concerning the reconstruction of DT emissivity profile are presented.
The proposed method provides good reconstructions in terms of shapes and resolution and produces 
artifact free images.

1.	 Introduction

JET neutron profile monitor is a unique instrument among neutron diagnostics available on large 
fusion research facilities [1-2]. The profile monitor comprises two fan shaped multi-collimator  
cameras, with 10 channels in the horizontal camera and 9 channels in the vertical camera. Neighbour 
channels are 15-20cm apart and have a 7 cm width as they pass near the plasma centre. A schematic 
drawing of the JET neutron emission profile monitor, showing the 19 lines of sight, is presented 
in Fig.1. Each line of sight is equipped with a set of detectors and associate electronics for 
simultaneous measurements of the 2.5MeV D-D neutrons, 14 MeV D-T neutrons and g -rays. 
The collimation can be adjusted by use of two pairs of rotatable steel cylinders. The size of the 
collimation can modify the count rates in the detectors by a factor of 20. The instrument has 
currently a time resolution of 10ms. 
	 The plasma coverage determined by the 19 lines of sight can be used for neutron or g-ray 
tomography. It ensures a 2D arrangement for measurements and distribution determination. The 2D 
slice is located in the plane defined by the major torus radius (R) and the major torus axis (Z). The 
thickness of the plasma slice along the toroidal direction, determined by the collimation system, is 
approximately 75 mm. However, the existence of only two views (projections in tomographic terms) 
and the coarse sampling in each projection lead to a highly limited data set tomographic problem. 
Special algorithms which are suitable and specific to the machine and to its constraints, allowing 
effective tomography from the available limited data, are needed. A number of valuable approaches 
were developed in the past for tomographic reconstruction of the two-dimensional neutron and 
gamma emissivity on JET. Ingesson et al. [3] applied a constrained optimization method that uses 
anisotropic smoothness on flux surfaces as objective function and measurements as constraints.
	 This method, initially developed for soft X-ray tomography on JET, was applied to both g-ray 
and neutron tomography (see e.g. Refs. 4-5). A reconstruction method based on the Tikhonov 
regularisation constrained to Minimum Fisher information was reported in Ref.6. Recently, the 
stability and speed of this method were improved by introducing a regularization matrix enforcing 
preferential emissivity smoothness along magnetic flux surfaces [7]. A reconstruction method based 
on the maximum likelihood principle proved to provide good reconstructions in terms of shapes 
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and resolution [8]. The method uses a smoothing operator, defined as median filtering along the 
magnetic contour lines. Based on a neutron emissivity parametric model, Ronchi et al [9] uses a 
neural network in order to obtain tomographic reconstruction of neutron emissivity at JET.
	 The aim of this paper is to prove that accurate tomographic reconstructions can be obtained 
by using a sparse representation of the reconstructed image in an over-complete dictionary. The 
sparse image representation technique has lead, in the last years, to significantly improved results 
in signal, image, and video processing (see e.g. the pioneering work of Elad et al. [10] and Mairal 
et al. [11]). Significant results were reported recently also for tomography [12] in case of limited 
data for medical dental application (200×200 image, 23 projections uniformly distributed over 
approximately the full 180o). JET neutron/gamma camera require to solve a more difficult problem, 
due to the scarcity of the available data: JET neutron profile monitor system has only two fairly 
coarse views of the plasma with a total of 19 projection bins. 

2. Methods

2.1 The tomographic problem
In 2-D tomography systems, measurements are taken along lines of sight, and can essentially be 
represented by line integrals; i.e. the measurement p is given by straight line integrals of the emissivity  
f (x,y), where x and y are Cartesian coordinates of the plane. In a discretized representation, the 
tomographic problem can be formulated by the the relation:

	       (1)

where f is the neutron/gamma emissivity function and Np and Nd are the numbers of pixels and 
detectors, respectively. The projection matrix element wik represents the proportion of the emission 
fi from pixel i, accumulated in detector k. Obviously, even with exact data constraints, this inversion 
cannot be uniquely performed when there are fewer data than pixels, as is generally the case in 
plasma tomography.

2.2 Image Sparse Representation
The signal sparse representation problem consists of finding the optimal overcomplete dictionary 
that leads to the lowest reconstruction error given a fixed sparsity factor L (number of coefficients 
in the representation). The dictionary contains prototype atom-signals and the signals are described 
by sparse linear combinations of these atoms. The dictionary can be a fixed, general one (DCT, 
wavelet, curvelets, etc), or it can be adapted to suit the application domain. The reconstructive 
dictionary D∈RN×K (N is the number of pixels in the image and K is the total number of atoms in the 
dictionary) is learned adaptively from the data such that the respective decomposition al is sparse 
(i.e., no more than L non-zero elements), by solving the optimization problem:
 		

pk = wik fi, k = 1,..., NdΣNp

i = 1
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(2)          

where l is a regularisation parameter. Since images are usually large, the decomposition is 
implemented on overlapping image patches gj

 = Pj f instead of the whole image f (Pj is the operator 
which extracts a specific patch gj from the image f; M is the total number of patches). The patches are 
written as column vectors. The first term of the objective function measures the signal reconstruction 
error while the second one measures the signal sparsity. 

2.3 The reconstruction method
The tomographic reconstruction can be performed by reformulating (1) as an energy minimisation 
problem:

	     	     (3)

At the same time the image to be reconstructed f can be represented as a linear combination of a 
“few” atoms from a reconstructive dictionary D. 
	 The unknown image f can be retrieved by minimising the following objective function: 

(4)          

where g is a regularisation term which controls the balance between the tomographic reconstruction 
and the image reconstruction from the overcomplete dictionary.
	 The last term in (4) is a regularization term, introducing a smoothness assumption in order 
to compensate for the lack of experimental information. As the tomographic problem is highly 
undetermined, the reconstruction algorithm can lead to a solution which satisfies Eq.(3) but it has 
no physical meaning and may result in wrong interpretations. Therefore a priori information about 
the expected emission profile can be introduced. Most of the methods developed for JET neutron/
gamma cameras use a smoothness assumption so that the tomographic reconstruction searches for 
the emissivity distribution that is constant on magnetic flux surfaces. Some of them assume also a 
gentle variation in the radial direction. In our approach the smoothing operator is implemented as 
one-dimensional median filtering, using a sliding window which moves on the magnetic contour 
lines [8]:

{α, D, f } = argminα,D,g +
image reconstruction

Σ    || gj – Dαj ||2  
M
j = 1

sparsity
λΣ    || αl ||0

L
l = 1

f = argminf ||Wf – p|| 2
2

+ +
sparsity

λΣ    || αj ||0 Ωsmoothing× f
M
j = 1

sparsity
λΣ    ||  gj – Dαj ||2

M
j = 1

{α, D, f } = argminα,D,f +
tomographic reconstruction

γ || f – p ||  22
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 	    (5)

mij is the matrix which defines the window-based median filter, wmad is half of the width of the 
filtering window and Lk designates a close magnetic contour line.  

3.	 Implementation and Results

The minimisation problem formulated by the objective function (4) is characterised by a high 
computational cost. It requires to solve the tomographic reconstruction as a chi-square problem 
together with the retrieval of the overcomplete dictionary and of the image representation in terms 
of its elements.
	 Recent results proved that learning non-parametric dictionaries simultaneously with the image 
representation provide improved results. However a large computational effort would be saved in 
case of using a pre-defined dictionary. A compromise between these two contradictory requirements 
can be obtained by using a priory information specific to JET neutron/gamma tomography. Therefore 
the dictionary D has been derived from a set of 50 already existent tomographic reconstructions 
which encompass most of shapes existent in this kind of tomography. These reconstructions have 
been obtained using the maximum likelihood (ML) tomographic method, described in Ref.8. In 
principle reconstructions derived with any tomographic method can be used for obtaining D. The ML 
method has the advantage to use the same smoothing technique (Eq.5) as in the present approach, 
so it represents a consistent choice. Once obtained, the dictionary D is used, unchanged, for all the 
tomographic reconstructions performed with the method introduced in this paper. 
	 The ML reconstructions are represented as 38×70 pixels images. A collection of 250 random 
patches of the size of 8×8 pixels were randomly chosen for minimising the objective function in Eq.2. 
We used a dictionary of size K = 256 and a sparsity factor K = 6. The learned dictionary is presented 
in Fig.2. The minimisation of Eq.2 starts with random patches as a first guess of the dictionary 
elements and it was performed using the MATLAB implementation of the K-SVD algorithm [13]. 
K-SVD is a popular and practical algorithm which generalizes the K-means clustering process, 
solving a similar, but constrained problem.
	 After deriving the dictionary D, an iterative procedure is followed. This procedure allows, at 
each stage, the alternative minimisation of the tomographic reconstruction term, smoothing and 
sparse representation.
	 Due to the extreme scarcity of the experimental data, inherent in the neutron/gamma JET 
tomographic geometry, the Radon inversion does not provide a valid rough solution for the 
tomographic reconstruction. Therefore an initial solution f0 with random values was chosen. The 
experimental projections have been transformed by resampling, using spline interpolation. Projection 
resampling implies the introducing of virtual lines of sight which ensures an improved coverage of 
the reconstruction domain. Resampling was performed so that the size of the synthesized signals is 

fismooth 
 = Σ         mij fj  

j = Wmed
j = –Wmed
Wmed ∈Lk
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four times the initial one. The tomographic reconstruction term in Eq.4 was minimised as a chi-square 
problem, using the MATLAB fminsearch function which uses the Nelder-Mead simplex algorithm 
as described in Lagarias et al. [14]. After Ntomo iterations, the algorithm switches to smoothing which 
is performed using Eq. 5 and a sliding window set at 1/10 of the size of the vector describing the 
magnetic contour line.
	 During the coding stage, the sparse decomposition is carried out with respect to {aj}j–1,...,1, 
based on the dictionary D. The Orthogonal Matching Pursuit (OMP) algorithm [15] represents an 
efficient tool for the iterative decomposition process. Given a fixed dictionary, OMP will first find 
the one atom that has the biggest inner product with the signal, and then subtract the contribution 
due to that atom, and repeat the process until the signal is satisfactorily decomposed.
	 A number of 80÷100 iterations of the procedure which alternates between tomographic 
reconstruction, smoothing and sparse representation are necessary, depending on the emissivity 
shapes in the reconstruction. For the experiments presented in this paper we have used a regularisation 
parameter g = 1.2. 
	 Representative results are presented in Fig.3. In order to evaluate the performance of the method, 
the results are presented together with those provided by Ingesson et al. method [16], which is 
used here as a reference method and together with the ML reconstructions.  The results have been 
obtained for the application of the method to JET experimental data corresponding to an experiment 
with T-puff in the deuterium plasma. The ‘‘banana’’ distribution (Fig.3, top row) corresponds to 
an experiment where the DT-neutron emission was measured in the ohmic deuterium discharge 
during the off-axis injection of the T neutral beam. The reconstruction of a combined “peak plus 
banana” distribution (Fig.3, bottom row) reveals the emissivity shape just after the T-puff in the 
same discharge, when the tritons had only partly penetrated into the plasma core from the periphery.
	 The results prove that the method is able to retrieve highly sophisticated structures in the emissive 
distribution for this kind of tomography. The method provides good results in terms of shapes and 
resolution. The quality of the reconstruction is improved with respect to that provided by the ML 
method which was used for deriving the overcomplete dictionary.

Conclusion

We show in this paper that a sparse image representation principle can be successfully used for 
retrieving emissivity distributions in case of JET neutron/gamma tomography. A priori information 
is used in order to solve the highly undetermined tomographic problem. An overcomplete dictionary 
for the sparse representation is derived from a set of already existent tomographic reconstructions 
which encompass most of the possible shapes existent in this kind of tomography.  Smoothing along 
magnetic contour lines is also used for additional regularization. The proposed method provides good 
reconstructions in terms of shapes and resolution. Further work will be dedicated to investigating 
the possibility of an implementation compatible with inter-shot analysis.

iter
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Figure 1: Schematic  view of JET neutron emission profile monitor showing the lines of sight.

Figure 2: The dictionary D learned from 50 tomographic reconstructions obtained using the ML method. This dictionary 
was used as an initial guess for solving Eq.4.
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Figure 3: Comparison between DT-neutron emissivity profile reconstructions. The left column shows the reconstructions 
obtained using the reference method [16]; the middle column presents the reconstructions obtained using the ML 
method, which was used for deriving the overcomplete dictionary; the right column illustrates the results provided by 
the method introduced in this paper. Top row shows the ‘‘banana’’ profile distribution corresponding to an experiment 
where the DT-neutron emission was measured in the ohmic deuterium discharge during the off-axis injection of the T 
neutral beam—Pulse No: 61237 at 6.22–6.27s (top row); Bottom row shows the “peak plus banana” profile distribution 
recorded just after the T-puff, when tritons partly penetrated into the plasma core from the periphery—Pulse No: 61132 
at 22.67s (bottom row). 
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