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AbstrAct
The estimate of coefficients of the Convection-Diffusion Equation (CDE) from experimental 
measurements belongs in the category of inverse problems, which are known to come with issues 
of ill-conditioning or singularity. Here we concentrate on a particular class that can be reduced to a 
linear algebraic problem, with explicit solution. Ill-conditioning of the problem corresponds to the 
vanishing of one eigenvalue of the matrix to be inverted. The comparison with algorithms based upon 
matching experimental data against numerical integration of the CDE sheds light on the accuracy 
of the parameter estimation procedures, and suggests a path for a more precise assessment of the 
profiles and of the related uncertainty. Several instances of the implementation of the algorithm to 
real data are presented.

1. IntroductIon
Inverse problems are ubiquitous in applied sciences and engineering. They arise whenever one needs 
to extract from measurements some information about the object or the system measured. Their 
study represents almost a separate discipline, extending into sophisticated applied mathematics, 
with specialized scientific journals. Tomographic reconstruction represents the best known 
example; inverse scattering theory, both quantum and classical (e.g, in acoustics, hydrodynamics 
or electromagnetism) is another one. A third instance, of paramount importance in magnetically 
confined plasmas--but relevant also in space physics (see, e.g., [1])--is the reconstruction of the 
equilibrium magnetic field by external magnetic field measurements via the Grad-Shafranov equation.   
Transport Theory is another vast field of study: it encompasses the statistical description of the 
dynamics of some objects while moving through a host medium. Within this field, inverse problems 
are common, too: e.g., heat conduction [2]. Analysis can also be carried  out at a more formal 
and abstract level, partially abstracting from the physical problems, and rather focussing on the 
mathematical structure of the partial differential equations that describe transport [3]. 
 Inverse problems are notoriously often ill-conditioned or even singular, i.e., small variations 
in the data (due, e.g., to finite instrumental precision) yield extremely large (infinite) admissible 
ranges for the parameters to be estimated. Qualitatively: one single effect can hardly ever be 
unambiguously related to a single cause; rather several possibly widely different causes can be 
invoked. Quite often, inversion problems may reduce to linear algebraic ones. i.e., to inverting 
some matrices. In those cases, ill-posedness or singularity of the inverse problem amounts to the 
existence of small or null eigenvalues of the matrix to be inverted [4]. In this work we consider a 
simple but fairly important case in transport theory, namely the extraction of transport coefficients 
in one-dimensional convective-diffusive transport problems when the forcing term is periodically 
modulated. In principle, the mathematical formalism is quite generic and can be applied to a large 
variety of conditions; however, in this work it will be biased towards magnetic confinement plasma 
physics, where transport analysis is fundamental, either for comparison against predictions from 
fundamental theories, or for using it in extrapolating current scenarios, in the absence of a satisfactory 
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theoretical basis. The first authors, in the context of fusion plasma physics, to provide the explicit 
solution to this problem, were Takenaga et al [5]. In this work we review the version of the solution 
as developed in [6]; for our purposes, this latter formulation has two advantages: (I) it is written 
in more compact, matricial form, which allows inspecting more easily its mathematical structure, 
and (II) takes explicitly into account the source; we will  show later that it is actually the source 
to cause the problem to be locally singular. A large part of the discussion will be then devoted to 
inspecting to what extent the ill-posedness of the problem affects its solution.   

2. AssessIng convectIve-dIffusIve trAnsport As An Inverse problem 
Convection-Diffusion equations arise in the contexts that involve the transport of one or more 
quantities through disordered media [7]. In the simplest version, only one passive scalar quantity 
x is considered in a one-dimensional geometry, the transport equation taking the form

             (1)

In (1), Sx is the source/sink term, r the spatial coordinate. 
 In any experiment designed to measure some kind of transport, the experimentalist uses Sx as 
a knob to vary x, which is the output of the experiment, measured on a spatial grid and with some 
time resolution: x(r,t)→xmeas(ri,tj). Inferring the transport coefficients D,V amounts to finding 
expressions for them that, once inserted into Eq.(1), allow to extract solutions x matching xmeas(ri,tj). 
Here lies the nature of inverse problem. It is trivial to show that, if we neglect time derivatives in 
(1), for a given measured profile xmeas, any couple (D0,V0) such that ∇ 

• (-D0 xmeas
 + V0 xmeas) = 

0) may be arbitrarily added to (D,V). Degeneracy of the solutions can be regarded as an extreme 
form of ill-conditioning: even perfect knowledge of the input is not enough to fully constrain the 
solution. Experiments are thus designed including finite time derivatives, in the belief that this extra 
information is able to remove the degeneracy. As we shall show, even explicit time dependence 
does not warrant curing the problem. To the best of our knowledge, as far as plasma physics is 
concerned, the first paper that explicitly takes into account the inverse nature of the problem and 
addresses the issue of ill-conditioning is [8]. Here, we anticipate the claim of the next section, i.e., 
that the problem is ill-conditioned. We consider a one-dimensional cylindrical geometry. Eq. (1), 
after rearrangement and a first integration over the radial coordinate, yields an expression for G

        (2)

where we use the zero-flux boundary condition at r = 0. If the source is time-dependent, this single 
equation is equivalent to infinitely many algebraic equations parameterized by the time t,  once we 
consider x , x, ∂rx , Sx , as known. Obviously, the system is clearly over determined if (D(r),V(r)) 
are the unknowns: this is just a manifestation of ill-conditioning. Hence, adding a time-dependence 
to the problem (1) alleviates but not completely removes the issues related to its invertibility.     
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3. A cAse AdmIttIng An explIcIt solutIon for (D,V) 
Experiments are usually performed by adding a small perturbation to an initial equilibrium 
condition, hence x in Eq.(1) must be understood as the difference between the instantaneous total 
quantity measured and its equilibrium value, and the same is true for Sx. In any nonlinear system, 
the quantities in Eq.(1) are likely to depend from the starting equilibrium point; however, provided 
that the dependence is smooth and the perturbation weak enough, one can consider a linearization 
around the equilibrium that, hence, enters just as a parameter. We will postulate that this scenario 
holds; Eq.(1) becomes thus linear in all of the quantities appearing inside it.       
 As a fundamental simplification we consider those experiments where the source term is 
periodically modulated in time. This is not too a severe constraint, since most signals can be written 
as a finite sum of Fourier terms, and the algorithm is able to handle the case of either just one or a 
small finite number of harmonics. Furthermore, in magnetically confined plasmas, several classes 
of experiments, notably those of heat transport, are carried out via the periodic modulation of the 
source (say, RadioFrequency or Neutral Beam Injection Heating). 
 Taking advantage of its linearity, we can Fourier-transform Eq.(1) in the frequency domain

      (3)

All the quantities appearing in Eq.(3), except for (D,V), are now understood to be complex numbers. 
The radial coordinate r may be the true physical radius or any generalized coordinate with dimension 
of a length, and ℑ(r) is the volume enclosed inside r: for a cylindrical system, ℑ′(r) ∝ r, but generically 
ℑ can be a more complicated function of r which, furthermore, may vary in time.  As is convenient 
in this kind of experiments, the signal x is written in terms of an amplitude and a phase: x = Aejj, 
and Eq.(3) rewrites as a couple of real-valued equations. 
 By integrating once over the radius, and imposing the natural boundary condition G (r = 0) = 0 at 
the center, we obtain two algebraic equations with unknowns (D(r),V(r)). They take a particularly 
convenient expression when expressed in matrix-vector form:

              M • Y = G            (4)
where

    

(5)
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Eq.(4) can be inverted at each point r, to give the local values for Y (r) = (D(r), V(r)) . This formally 
solves the problem of estimating the transport coefficients, for the specific experiment considered.  
Analysis of Eq.(4) leads to deep insight about the issues involved in the inversion problem. Actually, 
Eq.(4) may be inverted whenever det(M) = A2j′ ≠ 0. Since A must be nonzero in order to have a 
detectable signal, the inverse problem becomes ill-conditioned close to and at the singular points 
rs : j′(rs) = 0 Inspection of the literature shows that this condition is often met in experiments, and 
actually coincides always with the location of the source [9-14]. This is easily heuristically explained 
by noting that the l.h.s. of Eq. (3) comes as a balance between the two contributions of the r.h.s: the 
transport (G) and the source (S). If we suppose that when the source term is maximum, it dominates 
over the transport contribution, then we get x ∝ S and S′ = 0→x′ = 0.        
At any point r we can compute the two eigenvalues (l0,1) and eigenvectors (e0,1) of the matrix m: 
M 

•
 Ei = liEi. By writing Y = y0 E0 + y1E1, G = g0E0 + g1E1, Eq.(4) becomes an equation for the 

two unknowns y0,1. The eigenvalues and eigenvectors depend upon the data (A,j): for instance, 
the explicit expression for l's is 

(6)

At the singular points, one of the eigenvalues vanishes: l0(rs) = 0. Accordingly, the l.h.s. of Eq.(4) 
aligns along the other eigenvector

 (7)

Physically, transport coefficients must be defined everywhere, hence Eq.(7) must admit a solution 
at r = rs. This is possible only if its r.h.s. aligns along e1, too: G(rs) = g1E1. Unavoidable errors 
present in any measurement make unlikely this case, i.e., using the data from the experiment, one 
expects to find points rs where l0 (rs) = 0 but G(rs) = g0E0 + g1E1, with g0 (rs) ≠ 0. More generally, 
any perturbation of the values l, e, reflects upon Y as

 (8)

Eq.(8) may be used to estimate visually how given errors on the raw data, translated into error bars 
for  l, e, propagate onto Y. It is apparent how dY blows up when the singular points are approached:
 
         (9)

Even if  G(rs) ∝ E1 and Eq.(7) becomes a well-defined equation, it does not place any condition 
upon the full solution Y at r = rs, but only on a subspace of it: i.e., it fixes y1 =

 g1/l1 whereas the 
component along the subspace parallel to e0 is undefined: any arbitrary vector aligned along the 
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local e0 eigenvector can be added to the solution and still remain compatible with the data. This 
is where the degeneracy of the problem enters in. An example is shown in Fig.(1). The clouds in 
the two contour plots stand for the typical distributions of the couples (D, V) that one expects after 
a Monte Carlo simulation taking into account errors on the data. The thick black lines are parallel 
to the local e0 eigenvector. The left plot is for a regular point: independent estimates distribute 
roughly as a normal distribution around the average value. The right plot shows what happens when 
a singular point is approached: the distribution aligns along e0 .
 If we knew exactly Y at all regular points r ≠ rs, then y0 (rs)could easily be fixed by imposing 
continuity of the solution there. However, this is not the case: Eq.(8) tells us that the unavoidable 
presence of errors in the measurement of (A, j) implies some ignorance upon y0,1 even at the regular 
points. It may be extremely small far from the singular points, but unavoidably increases without 
bound as soon as we approach rs (Eq.9); hence, for practical purposes we cannot have an estimate 
for y0 not only at rs but also near to it.

4. on AlternAtIve ApproAches to estImAtIng (D,V) And the Issue of 
regulArIzAtIon

Inferring from experiment transport coefficients (D, V) is an important issue in plasma physics, 
since the complexity of plasmas makes first-principles calculations quite hard1. Accordingly, some 
ingenuity has been exerted on the numerical side. Paper [15] presents a recent and extensive review 
of the state of the art of perturbative transport experiments, including details of numerical algorithms 
and related issues. The most adopted recipe (see, e.g., instances in [9-14]) makes use of transport 
codes2, i.e., numerical codes that, for a given geometry and for a given transport, compute the 
resulting profile x. The root-finding procedure is thus no longer direct, but rather iterative and can 
be split into the following steps: (i) First, an analytical expression is chosen for (D,V), containing 
a number of adjustable parameters {a}: Let us label these expressions with D{a}, V{a}. (ii) A first 
guess of (D{a}, V{a}) is used to integrate Eq. (1) or Eq. (3), yielding as output a simulated profile 
for x: xsim. (iii) The simulated profile is compared against the measured one, xm, and the difference  
D = xsim-xm is computed. (iv) The steps (ii, iii) are iterated, varying the adjustable parameters {a} 
as long as D is minimized under some given global norm.
 The above steps implicitly postulate that, for a suitable choice of  {a}, (D{a}, V{a}) can always 
collapse to the true value (D,V). We have shown that this is not warranted. At a singular point, 
the coefficients (D,V) that solve Eq.(3) for some set of data (A,j) must fulfil Eq.(7) which, as we 
stated earlier, provides a constraint upon only the subspace E1 of the solution. We demonstrated 
rigorously that the component aligned along E0 cannot be determined by the Eq. (3) alone: Eq.(9) 
shows that  dY(rs) spans the whole axis E0 regardless of the magnitude of the experimental errors 
upon the data (A,j). Nonetheless, any numerical minimization procedure used in step (iv) will 

  

1In view of the difficulty in carefully assessing (D,V), sometimes simplified approaches are used, where it is postulated 
that the whole transport may be accounted by just one mechanism, the diffusion, thus requiring just D to be measured. 
In earlier works [16,17] we showed that it is not always justified.
2Of course, this same procedure may hold for other fields, not just plasma physics.
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unavoidably converge towards some set {a}, thereby yielding an estimate for the full solution, along 
with finite estimates for the errors: {da}. This happens since codes perform a global minimization: 
the couple (D{a}, V{a}) at a point r is determined by a minimization that involves data at all points, 
and is furthermore constrained by the set of basis functions chosen to parameterize the transport 
coefficients. This is an implicit regularization of the solution. Regularization is an essential ingredient 
in ill-posed problems. It amounts to adding supplementary constraints to the solutions in order to 
drop any undesirable feature (e.g., lack of smoothness, excessive oscillations,…). In Bayesian 
jargon: impose prior distributions on model parameters. These constraints by definition may be not 
dictated by the physics of the problem at hand, and are often based upon subjective considerations; 
therefore, a priori there is not warranty that they are the most appropriate. In this specific case, the 
regularization imposed by the code is not harmful far from the singular points,  but close to them 
its validity needs careful examination in order not to constrain the  solution between artificially 
small error bars. We will meet one such an instance in the next section. 
 If we wish to apply Eq.(4) to experiments, we have to deal with measurements {A(1), j(1)} taken 
at a discrete set of points r = r(l). This leads to the issues of data interpolation and extrapolation. 
Interpolation between neighbouring points is necessary to compute the derivatives that appear in 
the matrix M as well as to compute the integrals in G. Extrapolation enters in connection with G, 
too, since its definition requires computing integrals from r = 0 onwards, whereas data are taken 
within some finite range, usually not including the origin. We will consider in detail these issues 
in section 6, in connection with analysis of true experimental data. Here, we highlight a difference 
between the present approach and the transport codes: Eq.(1) being a second-order differential 
equation, for solving it one needs two boundary conditions. The first one is the already mentioned 
zero-flux condition at the origin; as second condition, it is commonly taken the value of the field x 
at the outermost measurement location, with the consequence that (D, V) can no longer be estimated 
there. The present approach does not need this second boundary condition, and therefore saves for 
the modelling some (possibly valuable) information. 
 One rather surprising result appears when one looks how errors upon measurements3

(A(1) ± dA(1), j(1) ± dj(1))propagate onto Y. Let W = M-1. Writing (4) using Einstein’s convention 
on indices yields

 (10)

The total error upon Yi is due to a local contribution (depending upon r(l) alone) that includes the 
first two terms, and another one from the data taken at points r(k) < r(l), which appear because of 

3In actual experiments, the source S, too, is only known to within some finite precision. However, including  errors on 
it in the analysis is straightforward.
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their presence within the integrals. Allowing for independently distributed errors, the sum grows 
in absolute value roughly like the square root of the number of summands (i.e., roughly as r(l)1/2). 
Hence, Eq.(10) hints to a generic propensity of modelling to become less and less accurate as the 
radius grows, although the precise behaviour can easily be reversed in particular cases due to the 
specific dependence of W and G upon {A(1), j(1)}, 

5. multIple experIments And extended trAnsport models
The algorithm in section 3 refers to a very specific case, where a single Fourier component  from one 
experiment is taken. However, nothing prevents considering simultaneously several experiments or 
Fourier modes. The only unavoidable constraint is that the plasma conditions remain the same, so 
that one can reasonably claim that transport (i.e., D, V) is the same, too. Each set of data yields an 
instance of Eq.(4): Mi • Y = Gi. This leads to an overdetermined problem, that allows recovering a 
common estimate for Y via, e.g., some weighted average. Let us consider the simplest case of two 
data sets . At any point r we get two estimates, each with its error bar, Y1 ± DY1, Y2 ± DY2. If the 
two values are consistent, within the error bars, we can extract a common estimate endowed with 
an error bar wich is given by the overlap between the two independent estimates, hence is smaller 
than both DY1 and DY2. This is extremely valuable when r is a singular point for, say,Y1 , since we 
can estimate the local Y using Y2 . A different case is when, at all points, Y1 ≈ Y2, DY1 ≈ DY2. This 
means that we are practically dealing with two repetitions of the same experiment, hence no new 
information can be gained this way. The opposite and interesting case is when, even taking into 
account the error bars, the two estimates cannot agree: Y1 ≠ Y2. This conflicting evidence is the 
proof that something is wrong either at the level of the data (i.e., at least one set of measurements is 
flawed), or at the level of modelling (that is, Eq. (1) is not the appropriate framework for modelling 
this kind of transport, or the transport coefficients are not the same between the two experiments).   
The redundancy provided by multiple experiments can also be employed for assigning values to 
further parameters, within the framework of models that extend the physics beyond the convective-
diffusive picture of Eq.(1). This is the case, e.g., for the transport of toroidal angular momentum 
in magnetically confined plasmas. As explained in detail in [18], an accurate modelling of toroidal 
rotation W might require the explicit consideration of additive contributions to the flux which do not 
directly depend upon the rotation nor to the external torque. At this stage, we do not afford a full-
fledged investigation attempting to identify separate ingredients to this contributions: in principle, 
they could be Neoclassical Toroidal Viscosity, residual stress terms, some ignorance about the NBI 
modulation, or other unidentified torques. In this work, we limit to the simple question: is it possible 
from the data and using the above method to infer anything about the possible existence of additional 
flux terms in Eq. (3), that do not directly depend upon the measured quantity (toroidal momentum 
in our case)? An additional contribution to the flux writes, for the equilibrium and modulation:  

     G = -D∇W + VW → -D∇W + VW + R         (11)
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and, for perturbed quantities:

    G → G + dG, dG = -D∇ dW + VdW + d∇R          (12)

After temporal Fourier transform, we may thus write the like of Eqns. (4-6):

             M • Y + R = G           (13)

where R is an array containing the real and imaginary part of R. At this level of description, it must 
be treated as an unknown, on the same footing as Y. Hence, Eq.(13) alone is not sufficient for fixing 
all the variables. However, using two independent experiments, we can: 

          (14)

It is now straightforward to solve Eqns.(14) for (Y, R).
To conclude this section, we recall that an important and straightforward instance of multiple-
experiment analysis is by considering, together with modulation data, also the steady-state profiles. 
This information is often used in transport codes as a useful constraint. 

6. sImulAtIons of experImentAl dAtA
We present two instances of the usage of the present algorithm, all of them based upon JET data. Let 
us summarize in a brief recipe how calculations are performed: (a) the fundamental bricks are the data 
{A(1), j(1)} along with the source S. Beforehand of the analysis they are interpolated using smooth 
curves (cubic splines proved to work fine). However, if the data look noisy, this procedure alone 
is not sufficient. The reason is that random fluctuations between neighbouring points, particularly 
if the average slope is small, may yield interpolating curves whose derivatives vanish at several 
points. These singular points are actually artefacts, but in view of the analysis of Section 3, they 
produce wild fluctuations in the local estimate of transport coefficients. As a remedy, in the case of 
noisy data, we preprocessed them with a Gaussian filter. (b) The functions A(r), j(r), S(r) are used 
to compute the entries of the matrix M as well as of G. The remaining part of the integrals, from
r = 0 to r (1), the innermost measurement point, have been approximated using the trapezoidal rule:

∫ z f(z) dz ≈ (r(1))
2 f (r(1))/2

r(1)

0

. (c) The couple (D,V) at each point is recovered from inversion of Eq.(4) 

[or, the triple (D,V,R) from the system (14)]. (d) The sensitivity study is carried out via Monte Carlo 
techniques: each datum is at a first stage independently varied (A(1), j(1)) → (A(1) ± dA(1),  j(1)  ±, 
dj(1)) where{dA(1), dj(1)}are randomly picked up from a normal distribution with zero mean and 
standard deviation given by experimental errors. The steps (a-c) are then repeated with the new set 
of data, and new coefficients (D,V) computed. Repeating the whole procedure over a large number 
of independent runs yields a statistical  distribution for (D,V), from which confidence intervals can 
be drawn. 

M1 • Y + R = G1

M2 • Y + R = G2{
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The first dataset refers to JET Pulse No's: 73701-2,73704,73707-9. They are part of a set of 
discharges explicitly designed for measuring momentum transport, as documented in the paper 
[19]; hence, represent an excellent workbench for the present method. Here we provide the essential 
information about the experiments, referring the reader to the paper [19] for details. In Fig. (2) we 
show the amplitude and phase of the measured signal, taken both at the fundamental frequency 
(n1 = 8.33 Hz) and the second harmonic (n2 = 2×n1), together with the radial profile of the torque 
(obtained by modulating the NBI). Fig.(3) presents the corresponding (D,V) couples computed for 
both harmonics using Eq.(4). Data have been prefiltered, with a kernel’s width equal to 20% of the 
minor radius. Error bars have been built by running 20 independent  realization of the data, each 
point being perturbed with a Gaussian noise of amplitude 20% (in the amplitude A) or 7.5/15 degrees 
(in the phase j, depending on the harmonic). Our results should be compared against, e.g., Figs. 
(9a,b) of ref. [19]. There is qualitative agreement, since both studies yield increasing trends for D 
and |V| in the outward direction, with a ratio of about (2÷3) between the edge and the core values, 
whereas our results exceed somewhat quantitatively of [19]. If we compare the  results obtained 
by analizing the data relative to the two frequencies n1, n2 , they are fully compatible, although the 
fundamental harmonic yields more accurate estimates, having the larger amplitude. 
§There is some shot-to-shot difference in the (D,V) profiles. A more complete investigation is 
obviously desirable attempting to assess what is the cause. It is beyond the scope and the length 
limits of this work, and will be postponed to future studies. However, for the moment we note that 
the discharges are not identical: they differ slightly in the equilibria (density scale length, q profile, 
and equilibrium toroidal rotation), hence it is quite likely that at least part of the differences be due 
to this reason. 
 As a second dataset we refer to the shots extensively reported in the paper [14]: a set of JET  
L-mode-confinement discharges designed to study the transport of toroidal momentum in the presence 
of different torques and of magnetic ripple. The presence of finite ripple is expected to exert some 
supplementary torque, hence these discharges appear promising candidates for detecting further 
contributions to the flux, R. We considered in detail Pulse No's: 77090, 77091: in these shots, the 
imposed ripple was quite similar, except for a small difference in the equilibrium rotation, hence, 
we could speculate that the additional contribution is almost the same and use the formalism of 
Eq. (14). Figure (4) shows the (A,j, S) profiles (only the fundamental harmonic is considered in 
this analysis), and Fig. (5) the results (D,V,R); 20 independent statistical realizations were used for 
getting the error bars.  
 Notice that, from Fig. (5), the three contributions carry approximately equal fractions of the total 
flux: D∂r x ≈ V x ≈ R.
 In a second simulation (Fig. 6), we compute the couples (D,V) separately from each shot without 
accounting for the additional term R appearing in Eqns (11-14): R → 0. There is good agreement 
between the two shots for radii smaller than about 0.5. This suggests that, inside of this region, 
the presence or lack of R is not a discriminant. Conversely, in the outermost half radius, the two 



10

D estimates in Fig.(6) are clearly incompatible. This implies that either the two shots do not share 
the same set of transport coefficients, or that some contribution from R is needed. Since D in Pulse 
No: 77090 (red triangles) takes vanishingly small values-whose physical meaning is dubious-it 
is plausible to argue that a correct book-keeping can be restored only with the second option. 

conclusIons
To summarize, we have discussed a computationally very light approach (hereafter, the Matricial 
Approach--MA) to the inversion of the one-dimensional Convective-Diffusive Equation (1) under 
periodic forcing. Its major advantage is that it is direct, providing an explicit solution. This avoids to a 
large extent all the issues typical of iterative methods, that include the choice of the parameterization 
of the class of trial solution functions—and more generally their regularization—and the numerically 
heavy minimization procedure. Furthermore, it provides a clear geometrical foundation to the nature 
and size of uncertainties in profile reconstruction. The reconstruction radius-by-radius enables to 
make explicit the local uncertainty dY(r). The algebraic inversion yields a high precision in the 
reconstruction of transport profiles: indeed, this method is not restricted by the a-priori guess of the 
trial profiles, but by that of these derivatives of (A,j), which is generally much more reliable and 
controllable. In the presence of singular points, the huge uncertainty related makes the estimate of 
Y(r) useless for practical purposes: in this case, some regularization is still useful. This is achieved by 
overlapping the solutions’ uncertainty intervals from various experiments where the same transport 
is assumed to hold: it provides either a way to improve the precision of the reconstruction (case of 
a non vanishing overlap) or to prove the set of initial assumptions in the reconstruction to be wrong 
(case of a vanishing overlap). The MA can help designing a priori the combination of perturbation 
measurements susceptible of improving the precision of the reconstruction of transport profiles. It 
can also be easily extended to include parameters other than D and V. 
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Figure 1: Contour plot for the statistical distribution of (D,V) couples. Data are produced by 400 independent realizations 
of synthetic data with stochastic perturbations added. Black lines are parallel to the local E0 eigenvector. On the left, 
a regular point; on the right a singular point.
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Figure 2: From top to bottom: torque density (N m-2), amplitude A of the perturbation, phase j. In the left column there 
are the data for the fundamental frequency of modulation, in the right column those for the first overtone. The color 
code is: black, Pulse No: 73701; blue, Pulse No: 73702; red, Pulse No: 73704; orange, Pulse No: 73707; green, 73708; 
brown, Pulse No: 73709. Here and in all the other plots, the horizontal coordinate r is the normalized flux coordinate.
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Figure 3: Transport coefficients computed from the data of Fig. (2). Top row: diffusivity D (m2/s); bottom row: pinch 
(m/s). Left column, data for the fundamental frequency of modulation; right column, first overtone. The color code is 
the same as Fig. (2).
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Figure 6: Left, diffusivity D; right, pinch V for the Pulse No's: 77090 (red symbols), and 77091 (blue symbols). Transport 
coefficients are computed using Eq. (4). i.e., neglecting R.
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Figure 4: Left, amplitude; center, phase; right, torque. The data are the same published in ref. [19] and refer to the 
fundamental modulation frequency n = 6.25 Hz. Red curves with triangles refer to shot 77090; blue curves with circles, 
to Pulse No: 77091.

Figure 5: Left, diffusivity D; center, pinch V; additional flux, R, obtained from solving Eq. (14) with the data of Fig. (4). 
The results refer to the fundamental harmonic, n = 6.25Hz.
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