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Abstract
Recent advances in data mining allow the automatic recognition of physical phenomena in the 
databases of fusion devices without human intervention. This is important to create large databases 
of physical events (thereby increasing the statistical relevance) in an unattended manner. Important 
examples are the L/H and H/L transitions. In this contribution, a novel technique is introduced to 
automatically locate H/L transitions in JET by using conformal predictors. The focus is on H/L 
transitions because typically there is not a clear signature in the time series of the most widely 
available signals to recognize the change of confinement. Conformal predictors hedge their prediction 
by means of two parameters: confidence and credibility. The technique has been based on binary 
supervised classifiers to separate the samples of the respective confinement modes. Results with 
several underlying classifiers are presented. 

1.	 Introduction
The H-mode (high-energy mode) is one of the main confinement regimes in present and future 
tokamaks and stellerators. The sudden variation of the plasma parameters from the L-mode (low-
energy mode) to the H-mode is known as L/H transition. The L/H transition is characterized by the 
creation of an Edge Transport Barrier (ETB). When the ETB is lost, the plasma returns to L-mode. 
This transition is known as the H/L transition.
	 The H mode was firstly detected in the ASDEX tokamak [1]. The transition to access the H mode 
can be recognized using the Dα emission signal. A fast drop of this signal is observed between the 
two confinement modes. Previous effort has been done to develop automatic methods to recognize 
the L/H transition [2,3] using exiting databases of L/H transition times.
	 The case of the H/L transition is more complex. Typically, there is not a clear signature in the 
time series of the most widely available signals to recognize the change of confinement. Previous 
work in the automatic recognition of the H/L transition [2,3] uses data around an H/L transition 
(previously located by experts) to train a system capable of recognizing H/L transitions in new 
pulses. The problem of this methodology is the lack of large databases of H/L transition times and 
the problematic of the manual location of H/L transitions in new pulses (intensive expert knowledge 
is required).
	 Two different approaches to the automatic location of H/L transitions using machine learning 
methods (MLMs) have been developed: on the one hand, a model is trained using a database of 
L/H transition times. On the other hand, a model is trained using an H/L transition times database. 
Support Vector Machines (SVM) has been used to build these models.
	 SVM is a MLM to build predictive models in classification problems [4]. It is particularly 
advantageous in the case of high-dimensional data. SVM maximizes the distances between the 
samples of different classes. 
	 Most MLMs do not provide measures of their reliability. In contrast, conformal predictors [5] 
give measures of confidence and credibility for each prediction. Confidence means how reliable 
the classification of the predictor is and credibility shows how representative is the training set for 
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the new sample to classify. In this paper, a conformal version of SVM has been implemented. 

2.	 Prediction of H/L transition times using a L/H transition time 
database

A set of 355 JET pulses has been manually analyzed by experts to locate the L/H and H/L transition 
times. It has been divided into a training set (100 pulses -80% proper training set, 20% calibration 
set-) and a test set (255 pulses). 
	 An off-line version of Inductive Conformal Predictors (ICPs) [4] has been selected as the most 
suitable to predict H/L transitions. ICPs use the proper training set to build a SVM model so the bulk 
of the computations is performed only once. Conformal measures are computed using the samples 
in the calibration set. In the on-line version, new samples classified by the model are included into 
the calibration set. In contrast, in the off-line version new samples are not included in the calibration 
set and therefore the conformal measures of a sample are the same despite the ones that have been 
classified before.
	 The models have been trained using the 11 most relevant signals for the L/H transition. These 
signals have been selected from a set of 27 signals. The list of signals and the description of the 
method is reported in [6]. 
	 Two different types of kernels have been used to build models using SVM: linear and Radial-
Basis Function (RBF) kernels. 5 different values of the C parameter have been tested for the linear 
kernel. For the RBF kernel, all the combinations of 21 values of the C parameter and 21 values of 
the σ parameter have been tested (441 combinations).
	 The SVM models have been trained using an interval of ±0.5 seconds around the L/H transitions. 
They have been tested using the complete temporal evolution of the pulses in the test set. The best 
results using a RBF kernel have been obtained using the parameters C = 5500, σ = 3 (test success 
rate -TSR-= 94.82 %). The linear kernel obtains the best results using the parameter C = 100 (TSR: 
89.24 %).
	 The SVM models have been applied to the prediction of L/H and H/L transitions of the test set. 
The absolute mean errors (mean(|treal-tpredicted|)) obtained in the prediction of the L/H transition 
are: 22ms (linear kernel) and 15ms (RBF kernel). 
	 These models have been also used to predict H/L transitions. The absolute mean errors obtained 
are: 236ms (linear kernel) and 203ms (RBF kernel). The distribution of the mean errors using a 
model trained with L/H data can be seen in Fig.1a).

3. Prediction of L/H transition times using a H/L transition time 
database

The same process described above has been repeated training the models with a H/L transitions 
time database.
Using a RBF kernel with the parameters C = 100, σ = 7.5 (TSR = 97.60%), the mean absolute 
error obtained in the prediction of the H/L transition is 10ms. The error in the prediction of the L/H 
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transition is 33ms. Fig.1b) shows the distribution  of  these  errors.  In  the  case  of  a  linear kernel 
(C = 100, TSR = 97.70%) the error obtained in the prediction of the H/L transition is 102 ms and 
the one obtained in the prediction of the L/H transition is 28 ms.

4.	C onformal measures
Conformal measures, i.e. confidence and credibility, give key information about the accuracy and 
reliability of the predictions made by the different models. The mean values of the confidence and 
credibility of the test samples are shown in Table 1.
	 It can be seen that the credibility values of the models trained using the H/L data are significantly 
larger that the ones of the models trained with L/H data. It means that the training data used in these 
cases is more suitable to make predictions. As a consequence, the errors in the predictions of the 
H/L increase by a factor of 2 comparing to the errors of the H/L trained models (Table 1).

Conclusions
The lack of reliability to predict one type of transition using data of the other is a clear statistical 
conclusion of the present analysis. This result has been indeed observed in two directions: the 
models trained with L/H (H/L) data obtain a mean error predicting H/L (L/H) transitions that is 
the double of the one obtained using systems trained with H/L (L/H) data (Table 1). One possible 
explanation of the observed behaviour could be the hysteresis of the L/H – H/L transition [3] but 
this point must be investigated with more adapted statistical tools. In any case, conformal measures 
have proven their usefulness to validate data-driven models.
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Figure 1. Distributions of absolute mean errors

Table 1: Experiment’s results summary

  Linear RBF 
Confidence 99.86 % 99.84 % 
Credibility 64.10 % 66.85 % 
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