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Abstract.
The equilibrium equation for a rotating plasma is constructed supposing the thermal Mach number is
much less than unity. The canonical profile of angular rotation velocity is defined as the profile which 
minimizes the total plasma energy while conserving toroidal current and obeying the equilibrium 
condition. The transport model based on this canonical profile, with stiffness calibrated by JET 
data, reasonably describes the velocity of the forced toroidal rotation. The RMS deviations of the 
calculated rotation profiles from the experimental ones do not exceed 10-15%. The developed model 
is also applied to the modeling of MAST rotation.

1. Introduction
Toroidal rotation of plasma occurs in all tokamaks. In accordance with torque mechanism it can be 
divided for middle size tokamaks into two types: 1) intrinsic rotation, for which the rotation velocity 
vt is usually limited in experiment by the condition:

vt < (2-4) ×106 cm/s = 20 – 40 km/s

2) forced rotation with rather large velocities

vt < (2-4) ×107 cm/s = 200 – 400 km/s

The level of forced rotation is determined by the input of external angular momentum (torque) T. 
The most widespread source of torque now is neutral beam injection [1-2]. In this report we discuss 
forced rotation only.

2. The equilibrium equation for rotating plasma
The velocity of toroidal rotation is as follows: vt = vt(ψ, R) = ωR , where ω = ω(ψ) is an angular 
frequency, R is the distance from the major axis of torus, ψ is the poloidal magnetic flux. The 
equilibrium equation for rotating plasma can be written as

Δ*ψ = - R jϕ = - (FF′ + R2p′)           p = p(ψ, R)

where p is a plasma pressure, F is the toroidal field function F = RBt. In sections 2 and 3 the prime 
designates the derivative with respect to ψ. The dependence on R has to satisfy the condition

∂p/∂R = ρmvt 
2 / R = ρmRω2.

(1)

(2)

(3)

(4)
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Here ρm is the mass density of plasma (ρm = n mi, n is the plasma density, mi is the ion mass). We 
suppose that the kinetic energy of plasma rotation is much less than the thermal energy

ρmvt 
2/2 << p, or        vt 

2 <<vT 2        (M 2 = vt
2/ vT

2 << 1 ). 

Here vT is the ion thermal velocity, М = vt/vT is the thermal Mach number. We choose the simplest 
form of the function p(ψ, R), which satisfies the condition (4) as:

p = p0(ψ) + R2/R0 
2 p1 

where p0(ψ) is the usual thermal pressure for non rotating plasma

p1 = (R0
2 /2) ρmω2

and R0 is a major radius of plasma. From relation (5)

p1 << p0,

so in the expression for p1 (7) we can accept that ρm and p1 are independent on R. Therefore n = n 
(ψ) and p1 = p1(ψ). As a result, the equilibrium equation (3) has the form

Δ*ψ = - R jϕ = - {FF′ + R2 (p0′ + R2/R0
2 p1′)}

Now we consider the variation problem. The canonical profiles of pressure, rotation and poloidal 
current can be defined as those minimizing the total plasma energy while conserving the toroidal 
current and satisfying equation (9). The total plasma energy W and the toroidal current Ip are

W = ∫ dV {[F2 + (∇ψ)2]/(2R2) + 3/2 p+ρmvt 
2/2}, Ip = 1/(2πR) ∫ dV (FF′ + R2p′)/R

The generalized Lagrange functional has the form:

Φ = W - 2πλ Ιp

Its first variation in the extreme point should be equal to zero

δΦ = ∫ dV δψ {[(FF′ - Δ*ψ)/R2 + 3/2 (p0 + R2/R0 
2 p1)′] - 

- λ[(F′F′ + FF′′)/R2 + (p0 + R2/R0
2 p1)′′]} = 0

(5)

(6)

(7)

(8)

(9)

V V

(10)

(11)

(12)
V
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From this and (9) we obtain the 2D Euler equation

[2FF′/R2- λ[(FF′)′/R2] + (5/2 p0′- λp0′′) + R2/R0
2 [5/2 p1′- λp1′′] = 0

The second term in (13) is constant over the magnetic surface, but other terms are not. From
this we obtain three independent 1D equations

2FF′ - λ(FF′)′ = 0,      5/2 p0′ - λ p0′′ = 0,      5/2 p1′ - λ p1′′ = 0

Here first and second equations coincide with corresponding equations for a stationary plasma [3]. 
The third equation for p1 coincides with the equation for p0. Thus, the canonical profile for the 
function p1 = (R0

2/2) ρmω2 coincides with the canonical profile for the function p0.
The solutions of equations (14) are the functions

FF′ = CF exp(ψ/λ), p0′ = Cp exp(5ψ/4λ),      p1′ = Cp1 exp(5ψ/4λ)

Substituting (15) to (9), we obtain the equation for the canonical equilibrium:

Δ*ψ = - R jϕ = - {CF exp(ψ/λ) + Cp R
2 exp(5ψ/4λ) (p0(0)+R2ρm0 ω0 

2/2)}

Here we define that on the magnetic axis ψ = 0, ρm0 = ρm(0), ω0 = ω(0). The parameters CF, Cp 
and λ have to be defined from additional conditions, for example:

ψ|S = ψa,      q(0) = q0      Ip is prescribed

In the case of a circular cylinder Eq. (16) has the form:

- Δψ = CF exp(ψ/λ) + Cp exp(5ψ/4λ)

If we put Cp = 0 (low plasma pressure), we obtain

1/r d/dr (r dψ/dr) = ψ′′ + ψ′/r = - CF exp(ψ/λ)

The solution of this equation has the form:

ψ/λ = - ln(1+Dr2)2

Substituting (20) into (19), we find the link between parameters D, λ and CF. Then it is straightforward 

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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to find the poloidal magnetic field Bθ, μ = 1/q and the current density j:

Bθ = CF/2 [r/(1+Dr2)],      μ = R Bθ/(rB0) = μ0/(1+Dr2), j = j0/(1+Dr2)2

The constant D is defined by boundary conditions. Expressions (21) coincide with Kadomtsev’s 
formulae based on the minimization of the poloidal magnetic energy functional [4]. This coincidence 
is a basis for conclusions given in the following section.

3. Canonical profile for angular rotation frequency
Taking into account that the canonical profiles are defined with accuracy of multiplier and using the 
result from previous section that Pc1 ∝ Pc0, we obtain

Pc1 ∝ Pc0 ∝ ρmc ωc 
2 ∝ nc ωc 

2 ∝ nc Tc

therefore

Tc ∝ ωc 2

The canonical profiles here are denoted by the subscript “c”. The canonical profile for temperature 
was defined in our previous papers [5, 6]. In particular there was shown that

Tc ∝ pc
2/3.

From this we obtain

ωc ∝ Tc
1/2 ∝ P0c

1/3 

In the transport model we will use the logarithmic derivatives of different variables. From (24), they 
are linked by following relations

ωc′/ωc = 1/3 p0c′/ P0c = ½ Tc′/ Tc

Here and below the prime now denotes the derivative over the dimensional radial coordinate ρ, 
which defines the magnetic surface (0 < ρ < ρmax). The canonical profiles for the current and pressure 
were defined in [5, 6].

(21)

(22)

(23)

(24)

(25)
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4. Transport model of canonical profiles
4.1. Linear model for toroidal rotation
The specific angular momentum is defined as:

L0 = n mi R vt = n mi R
2 ω

We assume that the radial flux of the angular momentum qω is proportional to the difference between 
the relative gradient of calculated momentum and the relative gradient of canonical momentum 
(similarly to the heat and particle fluxes). In the linear model this flux is equal to

qω = - n mi R
2 χω PC ω (ω′/ω - ωc′/ωc)

The equation for momentum has the form

∂/∂t L0 = - divρ (qω) + n Φ R

where Φ is the force applied to a mass corresponding to 1m3. After integration of (28) over the 
plasma volume, we obtain

∂L/∂t = - L/τω + T

where

L = ∫  dV L0,      T = ∫ dV nΦR

are the total angular momentum and total torque, L/τω = - qωa, τω is the angular momentum 
confinement time: τω = L / (T - ∂L/∂t). In the steady state

τω = L /T

Usually in the experiment τω is close to the energy confinement time τE.

4.2. Nonlinear model for the electron and ion temperatures and 
plasma density
This model was published in [7, 8]. The heat and particle fluxes, qα (α = e, i), Γ, are described by 
the following expressions:

qα = − nχα PCTα (Tα′/Tα-Tc′/Tc) H(-[Tα′/Tα-Tc′/Tc]) Fα - nχα 0 Tα′ + 3/2 ΓTα

Γ = - D n (Pe′/Pe – Pc′/Pc) Fe Fi - D
0 n′ + Γneo,

(26)

(27)

(28)

(29)

 V
(30)

(31)

(32)

(33)

 V
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where Tα and n are the temperatures and density to be determined, Tc and pc are the canonical 
profiles of temperature and pressure, χα PC and D are stiffness coefficients, Γneo = n vneo, H(x) is the 
Heaviside function, ρ is a radial coordinate (0< ρ < ρmax). The values of χα

PC̛ were found earlier 
by the comparison of calculations with experiment [9, 6]:

χα PC = CTα (1/M) (a/R)0.75q(ρ = ρmax/2)qcyl (Te(ρ = ρmax/4))1/2 (3/R)1/4 (1/B0)n/n

where a and R are minor and major radii, B0 is the toroidal magnetic field, M is ion mass number, 
qcyl = B0a

2/2IpR, Ip is the plasma current. We use everywhere n, Ip, Ptot, R, Te,i and χ in 1019m-3, 
MA, MW, m, keV, m2/s respectively, <…> denotes volume-averaging, Ptot is the auxiliary power 
deposited into plasma. We also set [10, 7] D = Cn χe 

PC, Cn = 0.08, χi
0 (m2/s) = 0.07 Ptot/ Ip, χe

0 = 
χi

0 {2.25 (Te)1/2/R}, D0 = 0.26 (Te(0))1/2/(<n>R).

The values of χα 0 and D0 are much smaller than χα PC and D, but they play an essential role inside 
the transport barriers. We use also the following boundary condition for canonical profile [10]: 
μc(0) = (3.5 – 4) μc(a), where the value of μc(a) is defined by the solution of the equilibrium Grad-
Shafranov equation.

To describe the barrier formation we use the possibility of bifurcation due to nonlinearities in transport 
equations [11]. Such a nonlinearity is included in (32)-(33) using the function Fα as follows:

Fα =exp(-zpα 2/2z0 
2), 

where zpα= -(a ρmax/ρ) (Pα′/Pα - Pc′/Pc) is a dimensionless “distance” between the electron or ion 
pressure profiles and the canonical pressure profile. The form of Fα means that the transport barrier 
occurs, when the distance zpα exceeds the critical gradient z0: |zpα |>z0. Note that inside the transport 
barrier Fk << 1 and the first terms in fluxes (32)-(33) will be small, but outside this region Fk ≈ 1. In 
the transient regime the parameter z0 determines the L-H transition threshold, but at the steady-state 
it determines the width of transport barrier. The range of z0 for different devices was explored in [11]: 
z0 = 6-9. A more precise estimate of z0 is only essential for the determination of the threshold power 
of the L-H transition. A rough estimate of z0 is sufficient to describe the developed H-mode. Here 
we put z0 = 8. With this choice the ETB width, which arises as a result of bifurcation, usually equals 
to 3-5% of minor plasma radius - this value does not contradict experiment. Note that the transport 
model described in (32)-(35) does not include the effects of rotation on the transport properties of
plasma. Such effects were discovered many years ago in experiment and were described
recently in [12, 13].

̄

(35)
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4.3. Transport coefficient for the linear model of rotating plasma
We assume that the stiffness of the angular frequency profile χω PC is proportional to the stiffness 
of the electron temperature profile:

χω PC = Cω χe 
PC, 

where χe 
PC is defined by (34). We determined Cω using 11 JET shots from the International Multi-

tokamak Confinement Profile database [14] (Table 1). The transport equations were solved in the 
interval (0 < ρ < ρmax). Boundary conditions at the point ρ = ρmax are taken from the experiment: 
ω(ρmax) = 8 – 22 (krad/s). Due to errors in experimental values of ω(ρmax), we have chosen ω(ρmax) to 
optimise the solution of the equation for ω to fit the experimental values of ωexp in the zone ρ/ρmax 
~ 0.8 - 0.9. For each shot we optimise Cω to give the best fit to experimental measurements during 
the steady-state phase of discharge. The results of calculations may be approximated by formula:

Cω = 1 /n1/3       (n in 1019 m-3)

We see that at high densities the rotation stiffness is rather less than the electron temperature stiffness. 
We will assess the accuracy of the simulation using the RMS deviations between calculated and 
measured profiles. The temperature deviation may be written as:

(38)

Similar formulae are used for density and angular frequency. Although the experimental data obtained 
by TRANSP are finite over the whole plasma cross section, there are really no measurements of the 
velocity at ρ > 0.8 ρmax. Therefore we only sum in (38) over the region (0 < ρ < 0.8 ρmax).

5. Results of calculations
The calculated and experimental profiles of angular rotation frequency, ω(ρ) and ωexp(ρ), at t = 11 s 
for hybrid H-mode Pulse No: 60933 are shown in Fig. 1. We see their reasonable agreement. Figure 
2 presents the temporal evolution of four deviations: d2Te, d2Ti, d2n and d2ω for the same shot. The 
first three deviations are calculated with the nonlinear model presented in section 4.2; the fourth 
deviation is obtained by the calculations with the linear model presented in section 4.1. The next 
figures illustrate the Pulse No: 52009 with the H-mode and rather high density. Figure 3 shows the 
temporal evolution of the total input NBI power PNBI, line-averaged density n, and experimental 
and calculated central electron temperatures, Tex0, Te0. We see that the quasi- steady state phase in 
this shot lasts at least 6s (17s < t< 23s).
	 Figure 4 shows the temporal evolution of the deviations of electron temperature, density and 
angular frequency in the same shot. During the rapid density ramp-up, the simulation procedure 

(36)

(37)

T calc− T calc

T expd2T =   (1/N) Σ
N

k=1

2 1/2
k

k

k
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adjusts the calculated density with some delay, so the RMS density deviation d2n is as large as 
20%, and the deviations of temperature and frequency are also at the level of 20- 25%. However, 
in the second part of steady state phase, for 20 s< t < 23 s, the calculated density is reasonable 
(d2n ~ 3-5%) and the temperature and frequency deviations decrease to the level of 5-10%. The 
next figure presents the data for Pulse No: 52014, a very high density Hmode plasma. Such a high 
density leads to peripheral deposition of beam particles, which transfer their torque to plasma ions 
also at the periphery (Fig. 5). However, the experimental profile of angular frequency has maximum 
at the plasma center. Such plasma behaviour may be evidence of an anomalous momentum pinch, 
directed to the plasma center. This momentum pinch is intrinsic in our model, when the first term 
in brackets for the momentum flux in (27) is less than the second one. Such an anomalous torque 
pinch was seen in experiment also [15].
	 Figure 6 presents the momentum confinement time τω (a) (Eq. (31)) and the ratio τω/τE (b) as 
functions of the plasma density for shots with rather high plasma currents (Ip>1.5 MA) at the quasi 
steady-state phase of discharges. At high densities the profiles of input power are hollow, and the 
energy rapidly escapes from plasma. However, owing to the strong pinch of angular momentum 
(illustrated by Fig. 5) the momentum confinement time increases during the density ramp-up. The 
ratio τω/τE grows from small values (~ 0.5) at low densities up to values exceeding unity (~ 2) at 
high densities.
	 Figure 7 shows RMS deviations of angular frequency d2ω averaged over the time intervals Δt
~ 1-2 s for shots with currents Ip > 1.5 MA, and ranked with plasma density. We see that the deviations 
are generally less than 10-15%.
	 The developed model was applied to MAST experiment. For this device the coefficient Cω in 
(37), found from the analysis of 3 shots, is smaller: Cω = 0.5 /n1/3. Figure 8 shows the profiles of 
deposited torque (from TRANSP), calculated angular rotation frequency ω and the experimental 
one, ωexp, for the Pulse No: 18696. It is seen that for MAST the calculated and experimental profiles 
are also close one to another.

Conclusions
The variational problem of the minimising plasma energy allowed us to find the canonical profile 
of the toroidal rotation angular velocity. The transport model based on this canonical profile has 
been calibrated to describe reasonably the velocity of forced toroidal rotation of JET plasmas. The 
RMS deviations of calculated rotation profiles from the experimental ones do not exceed 10-15%.
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# Shot # Current Power Density Torque Comment
Ip,MA PNBI, MW n,1019m-3 T,Nm

1 38285 2.5 12 6 11 H-mode
2 38287 2.5 12 5 10 H-mode
3 52009 2.5 15 7.5 14 H-mode
4 52014 2.5 13.5 10.5 10 H-mode
5 52015 2.5 13.5 10 12 H-mode
6 52022 2.5 15 9 11.5 H-mode
7 52024 2.5 15 10 11.5 H-mode
8 52025 2.5 15 8.5 12.5 H-mode
9 60927 1.4 13 3.5 13 Hybrid
10 60931 1.4 17 3.5 17 Hybrid
11 60933 2.0 15.5 3 22 Hybrid

Table 1. Parameters of studied shots.
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Figure  1. Calculated and experiemental rotation 
frequencies for low-density JET shot.

Figure 2: The temporal evolution of temperature, density 
and rotational frequency deviations of calculations from 
experiement for the same shot.

Figure 3: Temporal evolution of the NBI power PNBI, 
line-averaged density n, and experimental and calculated 
central electron temperatures, Tex0, Te0 for the JET Pulse 
No: 52009 with the H-mode and rather high density.

Figure 4: Deviations of the calculated electron temperature, 
density and angular frequency from experimental ones for 
the same JET shot.
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Figure 5: Profiles of experimental ωexp and calculated angular frequency ω and input specific torque for high-density 
JET Pulse No: 52014 at t = 21s.

Figure 6: The momentum confinement time τω (a) and the ratio τω/ τE (b) as functions of the plasma density.
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Figure. 7: RMS deviations of angular frequency for 11 
JET shots of Table 1.

Figure 8: The profiles of deposited torque, calulated 
angular rotation frequency ω and experimental one ωexp 
for MAST Pulse No: 18696.
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