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ABSTRACT.

With increasingly detailed physics questions to ask, and with more advanced diagnostics available,

there is a strong case for trying to generalise the way analysis of diagnostic data, and connection to

underlying physics models, is done in today’s experiments. With current analysis chains, it is difficult,

verging on impossible, to fully grasp the exact assumptions, hidden in different legacy codes, that

goes into a full analysis of the main physics parameters in an experiment. We show that by using

Bayesian probability theory as the underlying inference method, it is possible to generalise scientific

analysis itself, and therefore build an effective and modular scientific inference software

infrastructure. The Minerva framework [1,2] uses the concept of Bayesian graphical models [3] to

model the full set of dependencies, functional and probabilistic, between physics assumptions and

diagnostic raw data. Using a graph structure, large scale inference systems can be modularly built

that optimally and automatically use data from multiple sensors. The framework, used at the JET,

MAST, H1 and W7-X experiments, is exemplified by a number of JET applications, ranging from

inference on the flux surface topology to profile inversions from multiple diagnostic systems.’

1. INTRODUCTION’

Probability theory in the Bayesian interpretation is often used as an alternative to standard least

squares, or heuristic analysis methods to increase the understanding of how different types of

uncertainties influence the inference of underlying physics parameters. What is not always

emphasised, is the fully generic way in which this is actually done: a scientific inference problem,

whether the width of a spectral line is measured, or a tomographic X-ray inversion is done, is

always fully defined by the specification of two quantities: an assumption of the range and a priori

likely values of the parameters of the model, and a probabilistic measure of the misfit between

model and observations, which together form a joint probability distribution over observations and

free parameters. This identity, through the joint probability distribution, of all types of inference

problems, creates the possibility of a general data analysis software infrastructure. The Minerva

framework [1,2], used for the analysis in this paper, is a generic scientific inference system where

models are modularly built using Bayesian Graphical Models [3], through which complex networks

of probabilistic dependencies can be handled effectively. Minerva allows the connection between

physics models, parameterisations, nuisance parameters (such as calibration factors, instrument

functions), experimental constraints (such as line of sight geometry), and observed raw data for

different diagnostic systems to be fully specified in generic probabilistic graph structures. These

can subsequently be analysed using standard inversion methods, such as linear and nonlinear

optimizers, and different Markov Chain Monte Carlo (MCMC) samplers. Using graph models, the

analysis of diagnostic data can be done with a high level of transparency and modularity, where

physics models and diagnostics can be modularly replaced without changing legacy codes (fig.1). It

also creates the possibility of optimal utilisation of data from multiple diagnostics, by combining

different diagnostic observations for joint inference on common physics parameters, as done in [4-7].

parameters. Top figure shows the generative aspect of Minerva models; by sampling from an

observation node, synthetic observations given the current state of the ancestors can be done, which
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can be used for experimental design etc. Bottom figure: the same model can be used for different

types of inference on the free parameters, by storing actual observations at the observation nodes

and dropping the graph in one of a number of generic inversion methods. Currently a range of

nonlinear optimizers for finding Maximum Posterior (MAP) points, Markov Chain Monte Carlo

(MCMC) samplers, and automatic graph linearisation can be applied.

APPLICATIONS

By developing stand-alone Minerva graph models for individual diagnostic systems, it is possible

to do analysis with different combinations of those diagnostics under changing model assumptions.

Figure 2a shows a direct inference, in this case without an imposed force balance assumption, on

the JET flux surface topology using a Minerva graph that includes increasingly more diagnostic

systems. The system also delivers the uncertainties of the inferred positions of flux surfaces for the

different cases, using up to six diagnostic systems [6]. A force balance assumption can be built into

the graph structure by adding nodes that implements a Grad-Shafranov force balance constraint

[8]. For the latter case, it has been shown that small scale features can be resolved from the magnetic

sensors alone (figure 2b), although the precise uncertainties are still under investigation. Figure 3

shows the results of ne and Te profile inversion using the JET core and edge LIDAR diagnostics,

and an 8-channel interferometry system jointly, which have been fully remodelled and installed as

Minerva graphs. The latter system delivers substantially higher resolution, also for the pedestal

region, than any of the diagnostic systems used individually [7]. The generic architecture of Minerva

allows graphs and models to be transferred between laboratories, and is also being applied at the

MAST, H1 and W7-X experiments [9-10]. The successes so far of this approach seems to indicate

that it could scale to include all main diagnostics of an experiment, which would then lead to a

highly transparent and modular, centralised analysis system that would also deliver substantial

improvements in accuracy and internal consistency of inferred physics parameters.
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Figure 1. Minerva Bayesian graph model for joint inference on a common physics model from data from two diagnostics.
Blue ovals are free parameters (n is a diagnostic nuisance parameter), gray ovals observations. The graph defines
the joint distribution p(a,b,c,n,d1,d2) which is proportional to the posterior distribution of the free parameters. Top
figure shows the generative aspect of Minerva models; by sampling from an observation node, synthetic observations
given the current state of the ancestors can be done, which can be used for experimental design etc. Bottom figure: the
same model can be used for different types of inference on the free parameters, by storing actual observations at the
observation nodes and dropping the graph in one of a number of generic inversion methods. Currently a range of
nonlinear optimizers for finding Maximum Posterior (MAP) points, Markov Chain Monte Carlo (MCMC) samplers,
and automatic graph linearisation can be applied.

 JG
10

.1
69

-1
c

http://figures.jet.efda.org/JG10.169-1c.eps


4

Figure 2: (a) Samples from posterior current distribution including progressively more diagnostics: (pickup coils,
saddle coils and flux loops), (added MSE), (added interferometry and polarimetry), (b) toroidal current distribution
using magnetics and an imposed force balance assumption.
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Figure 3: (a) Beam paths for the JET core and edge LIDAR systems. b) ne and Te profiles as a function of normalised
poloidal flux comparing the joint inversion of the JET core LIDAR, edge LIDAR, and interferometry diagnostics
(colored thick lines – red color is high posterior probability, blue low), edge LIDAR analysed on its own (violet), core
LIDAR analysed on its own (white), and the independent high resolution Thomson scattering measurements (orange).
[7]. JET Pulse No: 75656, t=19.13s
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