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1. INTRODUCTION

ITER-like plasmas with edge-localised pellet fuelling need to be modelled in an integrated approach

combining transport codes for the plasma core and Scrape-Off Layer (SOL) with a pellet code

based on first principles assumptions. This would allow to properly account for strong interactions

between the pellet injection and particle deposition behaviour and edge and core transport properties,

which together determine the fuelling efficiency and affect the overall plasma performance [1]. At

JET, first integrated predictive modelling has been performed for recent pellet experiments with

the new High Frequency Pellet Injector (HFPI) [2-5]. With the help of synthetic diagnostics, i.e.

tools that convert the simulation data into diagnostic measures, it was possible to draw direct

comparisons with measurements from new high resolution pellet diagnostic systems available at

JET and to compensate for reduced measurement capabilities in conditions with low signal-to-

noise ratio, enabling the study of the E×B drift of ablated pellet particles, the pellet retention time,

the pellet penetration length required for ELM triggering and the interaction between pellet-triggered

ELMs and pellet fuelling.

2. SIMULATION CONDITIONS

The JET Integrated Transport Suite of Codes JINTRAC, which includes the pellet ablation and

deposition code HPI2, the 1.5D core transport code JETTO [6] and the multi-fluid SOL code

EDGE2D-EIRENE [7,8], has been run to simulate pellet injections in L-mode (Pulse No’s: 76411,

76570, 78605, 78606) and H-mode target plasmas (Pulse No’s: 77864, 78606) from the Low Field

Side (LFS) and the Vertical High Field Side (VHFS) of the JET tokamak. HPI2 determines the

pellet particle source by application of a pellet ablation model which is based on the Neutral Gas

and Plasmoid Shielding (NGPS) description [9]. Plasmoid drift, the E×B drift of the ionised ablated

pellet material cloudlets, can be taken into account following a four-fluids Lagrangian model for

the plasmoid homogenisation process [10]. In JETTO, the transport equations are solved for plasma

current, temperatures and density. Transport coefficients are calculated according to the mixed

Bohm/gyroBohm transport model [11]. Edge Transport Barrier (ETB) zones in H-mode are

established by transport reduction to neoclassical level; if the normalised pressure gradient within

the ETB exceeds a prescribed value, ELM events are emulated by a temporary sharp increase in

edge transport. In the SOL, perpendicular transport is defined by the diffusivities at the separatrix;

longitudinal transport follows Braginskii's approximation. Gas puff injection at a low puffing rate

up to 1021 s-1 was considered according to experimental settings. Particles are pumped out at the

sub-divertor region with the pump efficiency prescribed by an albedo value. The JINTRAC

simulations were iterated in steps of 10-30ms, with the neutral distribution recalculated every 100-

300ms. Synthetic measurement data is produced for the JET interferometry, Thomson scattering,

Electron Cyclotron Emission (ECE), and Dα emission diagnostic systems.

3. PLASMOID DRIFT

The increase in line-integrated core and edge densities after pellet injection measured by
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interferometry has been evaluated to demonstrate the existence of a small plasmoid drift in JET L-

mode target plasmas (ne0 ~ 2.5×1019 m-3, Te0 ~ 2keV, B0 ~ 2.3T), and to determine the average drift

displacement of the pellet particles. Pellets injected from the LFS would penetrate more deeply into

the plasma, because their initial speed (~167m/s versus ~145m/s for VHFS pellets) and their relative

velocity compared to the flux surfaces is higher as compared to VHFS pellets. However, due to the

outward E×B drift displacement, their ratio between core and edge particle deposition is lower as

observed in the experiment (Fig.1). The deposition behaviour can be roughly reproduced by

JINTRAC simulations except for massive pellets leading to an increase in plasma particle content

by more than 100% (rp > 1.5mm). For small VHFS pellets, the result is not very clear, due to the

influence of accompanying pellet fragments which increase the particle accumulation at the edge.

According to the simulation results, the average plasmoid drift for fuelling pellets amounts to ~12cm

and ~5cm for LFS and VHFS injections respectively (in terms of mid-plane minor radius coordinates),

confirming results from a statistical analysis [12]. Expressed in local Cartesian coordinates, the

drift displacement for VHFS pellets can exceed that for LFS pellets though by up to ~30%. This

discrepancy can be explained by possible influences from the pellet rocket acceleration and pre-

cooling effect [13], which can become important for VHFS injections with long ablation times of

more than 4ms [14], and the fact that the drift acceleration scales inversely with the local major

radius [10]. According to ECE measurements, the propagation velocity of the pellet-induced

temperature drop is significantly enhanced compared to the pellet velocity. This disagreement can

only be relaxed by assumption of a small plasmoid drift and electron temperature equilibration

times that are comparable to the characteristic time for the drift displacement.

4. POST PELLET TRANSPORT

The evolution of the plasma after pellet injection can best be reproduced by JINTRAC, if the

particle diffusivity in the region affected by the pellet is increased by a factor of 3–5 compared to the

nominal Bohm/gyroBohm level; this is in agreement with previous observations [15]. The evolution

of the edge density depends on the SOL conditions. The pump efficiency is increased to account for a

higher neutral pressure and strongly enhanced plasma particle transport that appears to scale with the

plasma density in the SOL in low pressure conditions [16] rather than with the transport level at the

plasma edge. For the same pellet trains analysed in Fig.1, the pellet retention time [17] has been

calculated and compared with JINTRAC calculations (Fig.2). As expected, the fuelling efficiency is

improved for VHFS injections caused by E×B drift-induced deeper particle deposition.

5. PACING PELLETS

For ELM-pacing sized pellets (rp < 1 mm) injected into L-mode plasmas at a speed of Vp ~ 130m/s,

the penetration length has been calculated and compared with measurement data to determine the

range of effective pellet masses reaching the plasma. A large mass scatter up to a maximum of ~4×1019

D has been observed (Fig.4). Assuming pellets covering the same mass range reach ELMy H-mode

target plasmas, the minimum required penetration length for ELM triggering could be estimated by
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simulations, which seems to be comparable to the width of the ETB zone [2,3] (Fig.5). JINTRAC

simulations of pellet-fuelled ELMy H-mode plasmas have shown that the fuelling efficiency can be

significantly reduced due to ELM triggering, if the pellet particle deposition takes place mainly in the

ETB zone, as it is the case for LFS injections at JET. For ITER, a similar behaviour is expected even

for injections from the high field side, if the E¥B drift will be lower than predicted.

CONCLUSIONS

With the help of integrated modelling and the synthetic diagnostics available with JINTRAC,

evidence for the existence of an E×B drift displacement has been given for individual pellets.

Particle transport seems to be enhanced compared to the level predicted by the mixed Bohm/

gyroBohm model in the plasma edge and the SOL after pellet injection. The pellet penetration

length required for ELM triggering in JET has been estimated and the detrimental effect of ELM

triggering for edge-localised pellet fuelling has been demonstrated. These results confirm the

assumption that the ITER performance targets can only be reached with pellet fuelling from the

high field side relying on the E×B drift [18,19].
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Figure 1: Ratio between the relative increase of line-
integrated plasma core and edge densities measured along
the JET interferometry lines of sight in dependence of the
increase in line-integrated core density after pellet
injection.

Figure 2: Pellet particle retention time measured as
exponential decay time of the line-integrated plasma core
density signal after pellet injection in dependence of the
pellet-caused increase in line-integrated core density.
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Figure 3: Simulated density evolution for a pellet
(rp = 1.6mm, Vp = 160m/s) injected from the LFS into a
JET L-mode target plasma assuming increased edge
particle transport (5x compared to Bohm/gyroBohm level)
after injection; the data is compared with profile
reconstructions from interferometry data.

Figure 4: Ratio between the relative increase of line-
integrated plasma core and edge densities measured along
the JET interferometry lines of sight in dependence of the
increase in line-integrated core density after pellet
injection, for small pellets used for ELM triggering.
According to the simulation results, the upper mass limit
is ~4×1019 D.

Figure 5: Pellet ablation profiles for small pellets injected
from the LFS into a JET H-mode plasma; pellets with
a mass of > 1019 D seem to reliably trigger ELMs [2].
The shaded area indicates the ETB zone.
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