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INTRODUCTION

Mode conversion heating has become one of the standard tools to do transport analysis and is often

used in rotation experiments (see e.g. [1, 2]). It relies on the mode conversion, at the Ion-Ion Hybrid

(IIH) resonance, of the Fast Wave (FW) launched by standard RF antennas, to shorter wavelength

waves that are efficiently damped on electrons. The interference effect described by Fuchs et al. [3]

allows to significantly enhance the mode conversion and thereby the overall RF heating efficiency

when the machine and plasma parameters are chosen such that an integer number of FW wavelengths

can be folded in between the High Field Side (HFS) FW cutoff and the IIH layer. This effect was

already experimentally identified in (3He)-D plasmas [4] and was recently tested in (3He)-H JET

plasmas. In the latter case, commonly referred to as an ‘inverted scenario’, the ion-ion hybrid layer

is positioned between the antenna on the Low Field Side (LFS) and the ion-cyclotron layer of the

minority 3He ions while in standard – e.g. (3He)-D - scenarios the ion-cyclotron layer is in between

the IIH layer and the LFS. As shown in the past [5], the (3He)-H scenarios require much lower 3He

concentrations, X[3He], to reach the mode-conversion heating regime and their RF wave behavior

critically depends on the plasma composition.

1. (3HE)-H JET MODE CONVERSION EXPERIMENTS

The adopted RF frequency was 32.5MHz and the toroidal magnetic field was B0 = 3.41T, placing

the 3He cyclotron layer slightly away from the centre (R = 3.16m). Dipole (0π0π) phasing of the RF

antenna was used and 3-4MW of RF power was coupled, yielding core electron temperatures of Teo

= 3-4keV while the ion temperatures stayed somewhat lower (Tio = 2.5-3keV).

The 3He concentrations referred to in this paper are estimated from visible spectroscopy light in

the divertor, linking relative light intensities of given species to their relative concentrations, relying

on an expression routinely adopted to control the 3He injection in real time during the experiments

[4]. Because of the C wall tiles, JET plasmas typically contain 1-2% of Carbon. Additionally, D

being the machine’s most commonly used working gas and the fact that the reported experiments

were performed after a 4He plasma campaign, Deuterons and 4He ions released from the wall by

recycling were present in all discharges. Due to the use of diagnostic D beams, the concentration of

D ions (and possibly 4He ions due to the NBI duct ‘contamination’ resulting from a change-over

from D to 4He beams) was further enhanced. As the location of the ion-ion hybrid layers depends

on the plasma composition, experimentally found mode conversion absorption positions can be

correlated to the species’ concentrations via a dispersion equation study. A minimization was

performed to estimate the actual plasma composition. It was found that the presence of the small

quantities of C, D and 4He in the plasma – in addition to the injected 3He - gave rise to a supplementary

mode conversion layer close to the plasma center. Being based on the intensity of the light in the

divertor and not at the confluence itself, the adopted X[3He] real time control expression is believed

to be able to qualitatively describe the changes of X[3He] but to be inaccurate quantitatively. A

multiplicative correction factor of 1.6 is found via the minimization; preliminary charge-exchange

recombination spectroscopy data of the 3He profile provide a similar correction.

The RF power level was modulated so that the experimental power deposition profile could be
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determined from the temperature response to the power steps by FFT and break-in-slope analysis

(see e.g. [6]); a more global absorption efficiency estimate followed from studying the response of

the plasma energy. At fmodulation =
 4Hz, both the ion and electron response could be examined but

the temperature response to the power modulation was partly masked by transport. At fmodulation =

25Hz, the ion response could no longer be captured but the RF deposition on the electrons could be

determined more accurately than at 4Hz. The electron RF deposition profiles are represented in

Figure 1. At low X[3He], 2 confluence layers exist, one of which is partly hidden as the ECE

diagnostic does not sample the plasma core. At higher X[3He] only the more central confluence

layer remains. Overall, dominant electron heating with global heating efficiencies between 30%

and 70% - depending on the 3He concentration - were observed in these experiments. The electron

response was clear, prompt and dominant, while the ion response typically was noisier and smaller

by a factor of 4-5.

Looking in detail at the response of various signals, 3 regimes could be distinguished as a function

of X[3He] (see Figure 2): (i) a regime at low concentration (X[3He] <1.8%) at which the RF heating

is efficient, (ii) a regime at intermediate concentrations (1.8<X[3He]<5%) in which the RF

performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime

at 3He concentrations beyond 6%. The latter regime was the only one in which both the neutron rate

and the (D and 4He) fast ion losses were significant, in spite of the fact that the scheme was intended

to predominantly heat the electrons through mode conversion. The observed tails were identified as

RF heated D beam particles accelerated at their Doppler-shifted cyclotron resonance (also seen in

[4]). Gamma ray analysis showed that a sub-population of fast 4He particles was created. Very fast
3He were observed at low X[3He], in agreement with earlier results, showing that at such levels of
3He minority heating at the 3He cyclotron layer is the dominant heating scheme [5].

At 3He concentrations beyond 6%, the heating efficiency did not critically depend on the actual

concentration while at lower concentrations (X[3He]<4%) a bigger excursion in heating efficiency

is observed and the estimates differ somewhat from shot to shot, and depending on whether local or

global signals are chosen (see Figure 3). At intermediate concentrations, the RF system was

systematically struggling to couple power to the plasma. As the 3He-H ion-ion hybrid layer and its

associated cutoff approach the LFS plasma edge when increasing X[3He], the progressively widening

evanescent layer the incoming waves have to tunnel through to reach the core was held responsible

for the poor RF coupling in that regime.

2. MODELING

A numerical study with the 1D TOMCAT code [8] was done to estimate the heating efficiency. It

confirmed the presence of the different regimes: At low X[3He], the heating efficiency is significant

and on average decreasing for increasing X[3He] but its exact value depends very much on the

particular parameters considered. At intermediate concentrations, the 3He-H confluence/cutoff pairs

goes through the LFS edge and the heating efficiency is poor. At higher concentrations the heating

efficiency recovers but varies much less than at low X[3He]. As an example, the heating efficiency’s

dependence on the toroidal mode number and on X[3He] are given in Figure 4.
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The key to understanding the experimental and modeling results is the constructive/destructive

interference phenomenon described analytically by Fuchs [3]. Kazakov et al. [7] extended Fuchs’

results to the case where 2 rather than a single mode conversion layers lie in the plasma. Via the

phase integral method he found that the total mode conversion coefficient is of the form C = T1T2(1-

T1T2) + 4T1(1-T1)(1-T2)sin2∆φ/2 in which T1,2 are the transmission factors through the individual

cutoff/resonance layers and where the argument of the interference term, ∆φ =2Φ + Ψ2 - Ψ1 (the

different terms corresponding to the phases of the various reflected partial waves constituting the

total reflected wave field), is similar to the Fuchs result but contains a supplementary contribution

- Ψ2 due to the added interaction layer. The observed experimental behavior can be understood as

the (in-)sensitivity of the heating efficiency to the experimental parameters through the position of

the various confluence/cutoff layers. For example the HFS cutoff location – and thus F - was found

to critically depend on the toroidal mode number and thus on the antenna spectrum, while the

confluence and associated LFS cutoff positions – and thus Yi - are primarily dependent on the

plasma composition and the density profile.

DISCUSSION & CONCLUSIONS

Recent mode conversion experiments in (3He)-H JET plasmas allowed to identify the possibility to

enhance the mode conversion efficiency by properly tuning the plasma parameters but equally

demonstrated that such optimization becomes nontrivial when due to multiple ion species multiple

mode conversion layers simultaneously occur. The experiments also underlined that although some

plasma constituents may themselves not be heated by the RF waves, they can have a considerable

impact on the RF heating efficiency.
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Figure 1: Electron RF power deposition profiles for various X[3He]. Electron power deposition maxima identify the
mode conversion loci.
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Figure 2: Dependence of (a) the diamagnetic energy and (b) the antenna resistance on X[3He].
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Figure 3: RF heating efficiency as a function of X[3He].
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Figure 4: RF heating efficiency as a function of  X[3He]:
sensitivity to the toroidal mode number.
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